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Multi-marker methods for genetic association analysis can be performed for common
and low frequency SNPs to improve power. Regression models are an intuitive way
to formulate multi-marker tests. In previous studies we evaluated regression-based
multi-marker tests for common SNPs, and through identification of bins consisting of
correlated SNPs, developed a multi-bin linear combination (MLC) test that is a compromise
between a 1 df linear combination test and a multi-df global test. Bins of SNPs in
high linkage disequilibrium (LD) are identified, and a linear combination of individual
SNP statistics is constructed within each bin. Then association with the phenotype is
represented by an overall statistic with df as many or few as the number of bins. In
this report we evaluate multi-marker tests for SNPs that occur at low frequencies. There
are many linear and quadratic multi-marker tests that are suitable for common or low
frequency variant analysis. We compared the performance of the MLC tests with various
linear and quadratic statistics in joint or marginal regressions. For these comparisons, we
performed a simulation study of genotypes and quantitative traits for 85 genes with many
low frequency SNPs based on HapMap Phase III. We compared the tests using (1) set of
all SNPs in a gene, (2) set of common SNPs in a gene (MAF ≥ 5%), (3) set of low frequency
SNPs (1% ≤ MAF < 5%). For different trait models based on low frequency causal SNPs,
we found that combined analysis using all SNPs including common and low frequency
SNPs is a good and robust choice whereas using common SNPs alone or low frequency
SNP alone can lose power. MLC tests performed well in combined analysis except where
two low frequency causal SNPs with opposing effects are positively correlated. Overall,
across different sets of analysis, the joint regression Wald test showed consistently good
performance whereas other statistics including the ones based on marginal regression
had lower power for some situations.
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INTRODUCTION
Recently, many multi-marker methods have been developed for
the analysis of rare SNPs. Among them, one class of tests is
called “collapsing method” or “linear statistics” (Derkach et al.,
2013). These statistics combine the individual SNP-based scores
linearly with various weights. The cohort allelic sum test (CAST)
(Morgenthaler and Thilly, 2007), CMC test (Li and Leal, 2008),
the weighted sum test (Madsen and Browning, 2009) are well-
known linear statistics. Linear statistics work well when the
combined alleles are mostly deleterious or mostly protective, but
when the rare variants include a substantial portion of protective
and deleterious effects, they will lose power. The multi-marker
tests based on a sum of squared terms are called “quadratic statis-
tics” (Derkach et al., 2013). C-alpha test (Neale et al., 2011),
SKAT (Wu et al., 2011) and SSU tests (Pan, 2009) are popular

ones in this class, and are usually robust to the occurrence
of deleterious and protective variants among multiple associ-
ated SNPs. Derkach et al. (2013) evaluated various linear and
quadratic statistics and found that linear statistics can be power-
ful for specific situations but quadratic statistics have robustness
to a wide range of trait model scenarios. Both Ladouceur et al.
(2012) and Derkach et al. (2013) concluded that there is no
single method that is consistently more powerful than other
methods.

The multi-marker methods mentioned above are constructed
from the marginal association analysis of the trait phenotype
with each individual SNP. Alternatively, global statistics can be
constructed from joint analysis of multiple SNPs in a mul-
tiple regression model. In previous studies, we developed a
regression-based multi-marker method that combines linear and
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quadratic components using bins defined by the linkage disequi-
librium (LD) patterns within a gene (Yoo et al., 2013). Regression
analysis with multiple SNPs is performed and a global test statistic
is constructed from the beta coefficients and associated covari-
ance matrix. The multi-bin linear combination (MLC) statistic
takes a weighted linear combination of SNPs effects within a bin
of highly correlated SNPs and a quadratic function across bins as
a sum of squared within-bin linear combinations. The MLC typ-
ically requires an algorithm to adjust the coding of risk and base
alleles such that SNPs within a bin are positively correlated, as
far as this is possible. In comparison to alternative methods, we
found the MLC tests to have relatively good power and robust-
ness under various one and two causal SNP trait models across a
wide range of gene structures. Several other multi-marker statis-
tics based on marginal regression analysis such as MinP and SSB
(Pan, 2009) also compared in Yoo et al. (2013) showed good
power, except for the genes with weakly correlated SNPs (that is,
with low LD).

Since MLC is constructed from multi-SNP regression analy-
sis of categorical explanatory variables, we anticipated that the
MLC test would be mainly suitable for detecting association with
common SNPs, assuming all SNPs, both causal and tagging, are
common (MAF ≥ 5%). However, if a large sample size is avail-
able, it may be feasible to analyse low frequency variants that have
1% < MAF < 5% with the aim of detecting genes that harbor
low frequency causal variants as well as common causal variants.
Some multi-marker tests for rare-variant analysis, such as SSB
and SSBw (Pan, 2009), can be applied for combined analysis of
low and common frequency variants. There are also modified ver-
sions of rare variant tests for combined analysis such as SKAT-C
(Ionita-Laza et al., 2013), and methods by Chen et al. (2012) and
Curtis (2012).

In this study, we compare several gene-based multiple regres-
sion association tests including MLC tests under various trait
models with low frequency causal variants. We compare dif-
ferent analytic strategies for study of both common and low
frequency variants by formulating regression models that anal-
yse common and low frequency SNPs together, common SNPs
alone, or rare SNPs alone. We also investigate the condi-
tions in which specific statistics tend to perform better than
others.

MATERIALS AND METHODS
REGRESSION-BASED FRAMEWORK
When there are multiple SNPs in a gene, multi-SNP analysis
can be performed by multiple regression with multi-parameter
hypotheses, or alternatively, by combining the results of single-
SNP marginal regression analysis. Both approaches require coded
genotype data. Here we assume an additive genotype model with
the minor allele chosen as risk allele such that the genotype is the
count of the minor allele. Suppose that K SNPs in a gene, denoted
as X = (X1, X2, . . . , XK), have been genotyped and coded as 0, 1,
or 2.

The multi-SNP joint regression model of K SNPs is formu-
lated as:

E[Y] = β0 + β1X1 + β2X2 + · · · + βK XK

where E[Y] is the expected value of quantitative trait Y . Global
tests of association based on the regression analysis results are
constructed using beta estimates β̂ = (β̂1, . . . , β̂K) and covari-
ance estimates �B from multi-SNP multiple regression. A Wald
test of the global null hypothesis of no association (βj = 0 for all
j) against the alternative that at least one βj �= 0 is defined as

Wald = β̂T�−1
B β̂

with an asymptotic null distribution that follows a chi-square
distribution with K degrees of freedom (df ).

The maximum value of an individual SNP test statistic can
become a global statistic with proper adjustment for multiple test-
ing. This can be done in joint regression analysis with a statistic
defined as

MinP-J = min {p-value(Z1, . . . , ZK)}.

where Z = (Z1, . . . , ZK) =
(

β̂1√
Var(β̂1)

, . . . ,
β̂K√

Var(β̂K )

)
. Because

a simple Bonferroni p-value correction is too conservative due to
the correlation between beta estimates arising from the under-
lying LD in the SNPs, we apply a multiple testing adjustment
based on assuming a multivariate normal distribution for the test
statistics (James, 1991; Conneely and Boehnke, 2007).

The marginal regression models for each of K different single
SNPs are formulated as:

E[Y] = βM
0j + βM

j Xj, j = 1, . . . , K.

Global tests of association based on these regressions are con-
structed with beta estimates β̂ = (β̂M

1 , . . . , β̂M
K ) from the marginal

single-SNP regressions and covariance matrix �M
B . For the latter,

the covariance between marginal beta estimates from individual
SNP analyses can be estimated using a GEE-type method as sug-
gested by Pan (2009). As in the multi-marker joint regression, a
global Min-P statistic in marginal analyses is

MinP-M = min {p-value(ZM
1 , . . . , ZM

K )}

where (ZM
1 , . . . , ZM

K ) =
(

β̂M
1√

Var(β̂M
1 )

, . . . ,
β̂M

K√
Var(β̂M

K )

)
are the test

statistics for each marginal analysis.

GENE-BASED MULTI-MARKER TEST STATISTICS
As summarized in Table 1, we compared eleven global statistics,
based on joint or marginal regression that can be applied to the
genotyping data of a set of common and/or low frequency vari-
ants. In addition to the Wald and MinP tests defined above, we
also consider:

(1) MLC-B and MLC-Z tests

MLC-B and MLC-Z tests are two related multi-bin multi-marker
regression tests, one based on the beta coefficients and the other
based on the corresponding Z statistics (Yoo et al., 2013). MLC
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Table 1 | Description of multi-marker statistics investigated in this

study.

Statistic Regression Test type Null Weights

model distribution

Wald Joint Quadratic χ2
K Variance/covariance

MLC-Ba Joint Linear/Quadratic χ2
L Variance/covariance

MLC-Za Joint Linear/Quadratic χ2
L Correlation

MinP-Ma Marginal N/A MVN
(
0, �M

B

)
N/A

PC80b Joint Quadratic χ2
S Variance/Covariance

SSBc Marginal Quadratic
∑

ciχ
2
1 Equal weights

SSBwc Marginal Quadratic
∑

ciχ
2
1 Variance

SKATd,e Marginal Quadratic
∑

ciχ
2
1 {β(pi ; 1, 25)}2

LC-Ba Joint Linear χ2
1 Variance/Covariance

LC-Za Joint Linear χ2
1 Correlation

MinP-Ja Joint N/A MVN (0, �B) N/A

aYoo et al., 2013.
bGauderman et al., 2007.
cPan, 2009.
d Wu et al., 2011.
eIonita-Laza et al., 2013.

tests require construction of bins with high correlation between
SNP genotypes within a bin, and low correlation between SNP
genotypes in different bins. Suppose L bins have been obtained.
Then the MLC-B test is constructed using β̂ = (β̂1, . . . , β̂K) and
the covariance matrix �B with a weight matrix Ws and takes the
form:

MLC-B = (WT
s β̂)(WT

s �BWs)
−1(β̂TWs)

where Ws = (�−1
B · J)(JT · �−1

B · J)−1 and J is a K by L matrix
indicating bin assignment of the SNPs, i.e., Jij = 1 if the ith SNP
belongs to the jth bin and Jij = 0 if not.

MLC-Z is constructed similarly using the standardized test

statistic Zj = β̂j/

√
Var(β̂j) = β̂j/

√
�−1

Bjj
and correlation matrix

�Z :

MLC-Z = (WT
o Z)(WT

o �ZWo)
−1(ZTWo)

where Wo = (�−1
Z · J)(JT · �−1

Z · J)−1 and J is the same as for
MLC-B.

The asymptotic null distributions of MLC-B and MLC-Z tests
are chi-square with L df. The Wald test is a special case of
the MLC-B test where J is the K by K identity matrix, which
corresponds to each SNP constituting a singleton bin.

(2) LC-B and LC-Z tests

At the other extreme, if one bin includes all SNPs in a gene, the
MLB test reduces to a linear combination (LC) test. From the
definition of MLC-B and MLC-Z, LC-B, and LC-Z tests can be
formulated as:

LC-B = (wT
s β̂)(wT

s �Bws)
−1(β̂Tws)

and

LC-Z = (wT
o Z)(wT

o �Zwo)
−1(ZTwo)

where wsj = (�−1
B · J)j(JT · �−1

B · J)

and woj = (�−1
Z · J)j(JT · �−1

Z · J) with J = (1, 1, . . . , 1)T .

The asymptotic null distributions of LC-B and LC-Z tests are
chi-square with 1 df.

(3) PC-80 test

MLC tests reduce the dimension of testing by summing effects of
correlated SNPs. A related method uses principal components of
the SNP genotypes as variables in a multiple regression. Here, a
gene-based test is constructed from the regression analysis of a
subset of principal components (Gauderman et al., 2007), with
principal components selected by a criterion of genotypic vari-
ance explained. Assuming the principal components are ordered
by the size of variance explained from the largest (P1) to smallest
(PK), P1, . . . , PS is the smallest set that explains more than 80%
of the variance. Then the regression using S principal components
is modeled as:

E[Y] = β∗
0 + β∗

1P1 + β∗
2P2 + · · · + β∗

SPS

Using the estimated beta coefficients of principal components
β̂∗ = (β∗

1, β
∗
2, . . . , β

∗
S) and their covariance �∗

B, the PC80 test is
defined as

PC80 = β̂∗T�∗ − 1
B β̂∗

with an asymptotic null distribution that follows chi-square with
S df. When all K of the principal components are included in the
regression, the test statistic is the same as the Wald statistic defined
above for joint regression.

(4) SSB and SSBw test

Pan (2009) proposed quadratic test statistics based on the results
of marginal analysis in which squared beta coefficients are
summed to form a global test with (SSBw) or without (SSB)
weighting by the variance of the beta estimates. The statistics are
defined as:

SSB = β̂MT β̂M =
K∑

i = 1

(β̂M
i )2

and

SSBw = (β̂M)T[diag
(
�M

B

)]−1
β̂M =

K∑
i = 1

(
β̂M

i

)2
/Var

(
β̂M

i

)
.

which have null distributions that can be approximated by a mix-
ture of independent chi-squared components with 1 df (Pan,
2009).
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(5) SKAT

The sequence kernel association test (SKAT) proposed by Wu
et al. (2011) is a quadratic score test with flexibly devised weights
that upweight rare variants. The SKAT statistic is constructed as

SKAT = Y′X · Diag(w1, . . . , wK) · X′Y

where Y is the n by 1vector of phenotypes, X is the n by K matrix
of genotypes, and the weights are set as wi = {β (pi; 1, 25

)}2,
according to the density function of the beta distribution for the
MAF pi of the kth SNP. Asymptotically, the null distribution of
SKAT follows a mixture distribution of independent chi-squared
components with 1 df.

COMBINED ANALYSIS OF COMMON AND LOW FREQUENCY VARIANTS
To investigate the performance of gene-based tests for combined
analysis of common and low frequency variants, we compared
three approaches. In the first, we made no distinction between
the low frequency and common variants within a gene, anal-
ysed all the variants in one multiple regression or multiple single
regressions, and constructed global test statistics from all variants
combined. Then we repeated analyses separately for the low fre-
quency variants (1% < MAF < 5%) and the common variants
(MAF ≥ 5%) within each gene.

For the MLC statistics, the bin construction was conducted
independently in each of the three analyses. Bins can be deter-
mined by any clustering algorithm of SNPs according to the LD
measure r. We specified r2 > 0.5 as the threshold for binning
and used the LDSelect algorithm (Carlson et al., 2004) which is
a greedy algorithm that constructs clusters beginning with the
bigger bins first. Within each bin thus constructed, we applied
the coding correction method of Pan (2009) and Wang and
Elston (2007). This correction algorithm proceeds sequentially,
and switches coding of 0/1 for base and risk alleles if a SNP has
too many negative r-values with other SNPs (more than half).

We also adapted the mixture statistic SKAT-C proposed by
Ionita-Laza et al. (2013) for combined analysis of rare and com-
mon variants:

SKAT-C = ϕSKATrare + (1 − ϕ)SKATcommon

substituting SKATLF for SKATrare. Here each of the SKAT statistics
uses a separate set of variants with different weighting schemes:
wi = {β(pi; 1, 25)}2 for the set of low frequency variants, and
wc

i = {β(pi; 0.5, 0.5)}2 for the set of common variants. The mix-
ture parameter is specified as ϕ = SD(SKATLF)/{SD(SKATLF) +
SD(SKATcommon)}where SD is the standard deviation of the SKAT
statistics. Asymptotically, the null distribution of SKAT-C follows
a mixture distribution of independent chi-squared components
with 1 df.

INDIRECT ASSOCIATION FOR OMITTED CAUSAL SNPs
In the simulation study which follows below, we assume the causal
variants have not been typed and are not included in the joint or
marginal regressions. This corresponds, for example, to a GWAS
setting with genotyping of common variants supplemented by

low frequency variant genotyping that is substantially less dense
than sequencing. In this case, the genotyped SNPs in the analysis
set are expected to indirectly capture the causal effect, depending
on how well they tag the causal variants, i.e., depending on the
strength of their relationship with the causal variants. However,
the regression coefficients of the genotyped SNPs will be less than
that of the unobserved causal variant. In the next paragraphs,
we give expressions for the expected values of the beta estimates
of the markers included in the multi-SNP regression analysis
using an omitted variable bias estimation procedure (Greene,
2000, pp. 334–335). We evaluate these expressions empirically
for selected genes from HapMap III under trait models with one
or two causal variants, and use the evaluations to help interpret
the results of the simulation studies we designed to compare the
gene-based test statistics.

Trait model with one causal variant
Suppose that C is the genotype variable of an unobserved causal
variant not included in the analysis set of K SNPs with genotypes
X = (X1, X2, . . . , XK). We assume the true trait model (with a
mean Y of zero and a null intercept) is

Y = a1C + ε where ε ∼ N(0, σ2).

Then E[β̂] in the analysis model Y = β0 + β1X1 + β2X2 + · · · +
βK XK is

E[β̂] = a1(d1, d2, . . . , dK) (1)

where E[δ̂ =
(
δ̂1, δ̂2, . . . , δ̂K

)
] = (d1, d2, . . . , dK) is the vector of

expected slope coefficients from the regression model

C = δ0 + δ1X1 + δ2X2 + · · · + δK XK .

This can be easily shown from the least squares estimation equa-

tion for β̂∗ =
(
β̂0, β̂1, . . . , β̂K

)
:

β̂∗ = (
X′X

)−1
X′Y = (

X′X
)−1

X′(a1C + ε)

where X is the n by (K + 1) genotype matrix including a column
for the intercept, Y is the phenotype vector for n subjects, C is the
n by 1 genotype vector for the causal SNP, and ε is the residual
error vector. Equation (1) follows from E[δ̂∗] = E[(X′X)−1X′C]
where δ̂∗ = (δ̂0, δ̂1, δ̂2, . . . , δ̂K) and E[(X′X)−1X′ε] = 0.

For the marginal analysis of each SNP, the indirect association
for each SNP in the analysis set is determined for a trait model
with one causal variant Y = a1C + ε as

E[β̂M
i ] = a1ρCi

σC

σi
= δ1ρCi

√
pC(1 − pC)

pi(1 − pi)

where ρCi is the correlation between the causal SNP and ith SNP
in the analysis set, and pC and pi are minor allele frequency (MAF)
values of the causal SNP and the ith SNP, respectively. Likewise,
σC and σi are the standard deviations of the genotype variables
for the causal SNP and the ith SNP, respectively.
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Trait model with two causal variants
More generally, if the true trait model involves two causal SNPs
such that

Y = a1C1 + a2C2 + ε,

the vector of expected beta coefficients for X =
(X1, X2, . . . , XK) is

E[β̂] = a1(e1, e2, . . . , eK) + a2(f1, f2, . . . , fK) (2)

where E[λ̂ = (λ̂1, λ̂2, . . . , λ̂K)] = (e1, e2, . . . , eK) and E[η̂ =
(η̂1, η̂2, . . . , η̂K)] = (f1, f2, . . . , fK) are the expected slope coef-
ficients in the regression models for each of two causal SNP
genotypes

C1 = λ0 + λ1X1 + λ2X2 + · · · + λK XK and

C2 = η0 + η1X1 + η2X2 + · · · + ηK XK .

Equation (2) follows from E[λ̂∗] = E[(X′X)−1X′C1] for λ̂∗ =
(λ̂0, λ̂1, λ̂2, . . . , λ̂K) and E[η̂] = E[(X′X)−1X′C2] for η̂∗ =
(η̂0, η̂1, η̂2, . . . , η̂K) with

β̂∗ = (X′X)−1X′Y = (X′X)−1X′(a1C1 + a1C2 + ε)

where C1 and C2 are the n by 1 genotype vectors of the two causal
SNPs.

For the same trait model, Y = a1C1 + a2C2 + ε, the expected
marginal association is

E[β̂M
i ] = a1ρC1i

σC1

σi
+ a2ρC2i

σC2

σi

= 1√
pi(1 − pi)

(a1ρC1i

√
pC1(1 − pC1)

+ a2ρC2i

√
pC2(1 − pC2))

where ρC1i and ρC2i are the correlations between each causal SNP
and the ith SNP, pC1 and pC2 are MAF values of the causal SNPs,
and σC1 and σC2 are the standard deviations of the genotype
variables for the causal SNPs.

SIMULATED DATA AND EMPIRICAL POWER EVALUATION
To evaluate the performance of different gene-based tests, we
simulated quantitative trait values and genotypes in 85 gene
regions which we identified in HapMap phase III, based on data
for 170 individuals in the Asian population. First we excluded
SNPs with MAF less than 1% from the HapMap genotype
data, and then using a list of 16514 genes across 22 auto-
somes from the UCSC genome annotation database for NCBI
hg18 Build 36.1 (http://hgdownload.soe.ucsc.edu/goldenPath/
hg18/database/), we defined gene regions and constructed bins for
each gene using the LDSelect algorithm with the threshold value
of r2 > 0.5. We selected genes with 8–15 SNPs, and required the
occurrence of 3 or more low frequency SNPs in the same bin for
at least one bin, which yielded 85 genes remaining after all criteria
for selection were applied. Here, we categorize SNPs with MAF ≥

0.05 as common SNPs and SNPs with 0.01 ≤ MAF < 0.05 as low
frequency SNPs. The list of genes and the distribution of low fre-
quency and common SNPs are presented in Figure 1. The average
of absolute r across 85 genes was 0.37 [95% CI: (0.35,0.39)] and
the range was 0.17–0.59.

We considered five trait models that differed according to the
number of causal SNPs, the frequency category (low frequency or
common) of each causal SNP, and the direction of the causal SNP
effects (Table 2). For each gene, we generated genotype data for
each of n = 5000 people by randomly pairing haplotypes from
the haplotype pool for the phased genotype data of the HapMap
Asians. Then the causal SNPs were randomly assigned for each
gene based on the conditions for the trait model. The low fre-
quency causal SNPs were selected from the bin of 3 or more
correlated low frequency SNPs identified at the stage of gene selec-
tion. The common causal SNPs were selected randomly from
among all common SNPs. To generate quantitative trait data, we
specified an additive model based on allele counts of the causal
variant and a normal error model with a specific variance value.
We adjusted the variance for each trait model and each gene such
that the power of the Wald test is roughly 80%, to improved com-
parability among the genes and among the trait models. Since
we limited the range of standard deviation to between 0.0001
and 100, there were several cases where the 80% power was not
achieved. This procedure was repeated for each of the five trait
models (that is, new genotypes were generated for each model).

We examined three analysis sets to evaluate the effects of sub-
setting SNPs based on MAF: (1) set of all SNPs in a gene, (2)
set of common SNPs in a gene (MAF ≥ 0.05), (3) set of low fre-
quency SNPs (0.01 ≤ MAF < 0.05). For each SNP set, joint and
marginal regression analyses were performed in N = 1000 sim-
ulation replicates of 5000 individuals. To characterize the trait
models, expected beta coefficients were summarized in various
ways and averaged over genes (Table 3). In each simulation repli-
cate, several gene-based multi-marker methods, including the
MLC tests, were applied and compared. These statistics, sum-
marized in Table 1, were chosen to include linear and quadratic
statistics based on joint or marginal regression analysis. The
empirical type I error and power of each statistic corresponding
to a nominal 5% critical value were obtained as the proportion
of data sets in which the asymptotic p-value was less than 0.05
among 1000 replicates.

RESULTS
COMPARISONS AMONG ANALYSIS OF THREE SNP SETS
We compared the power of gene-based tests obtained from three
analysis sets for each gene panel: (1) set of all SNPs in a gene
(common and low frequency), (2) common SNPs only, (3) low
frequency (LF) SNPs only. We report the type I error evalua-
tion and empirical power values averaged across the 85 genes
with corresponding confidence intervals (Figure 2, Tables 4, 5).
Comparison plots of the three analysis sets for most of test statis-
tics (except MLC-Z and LC-Z since they are virtually equal to
MLC-B and LC-B) also display the power values for each of the
85 genes (Figures 3–8).

Empirical type I error, averaged over 85 genes was not sub-
stantially different from the nominal 0.05 level. (Note that the CIs
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FIGURE 1 | The distribution of common and low frequency SNPs for each of 85 genes used for the simulation study.

are constructed from the standard deviation of the gene-specific
type I error estimates, so tend to be quite narrow). There was
slight elevation of empirical type I error for MinP-M, especially
for the analysis of only LF SNPs. This likely reflects an inadequacy
of the multivariate normal distribution approximation used for
correlated multiple testing (Conneely and Boehnke, 2007). The
empirical type I error for trait model 1 was slightly inflated across
all tests.

Depending on the trait model, the choice of analysis set
affected power differently (Figure 2). For Models 1 and 2, anal-
ysis using only LF SNPs was most powerful, while analysing only
common SNPs was least powerful, and using the combined set
yielded power slightly lower than using LF SNPs alone. In con-
trast, for Model 3, power was somewhat higher using all SNPs,
and lowest for the LF SNPs. For Models 4 and 5, which have one
common causal SNP and one LF causal SNP, the combined and
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Table 2 | Five trait models for simulation of the quantitative trait data.

Model label Description Trait model parameters∗

Model 1 One low frequency causal SNP a1 = 1

Model 2 Two deleterious low frequency causal SNPs in the same bin a1 = 1, a2 = 1

Model 3 Two low frequency causal SNPs, one deleterious and one protective in the same bin a1 = 1, a2 = −1

Model 4 One common frequency causal and one low frequency causal SNP, both deleterious a1 = 1, a2 = 1

Model 5 One deleterious common frequency causal and one protective low frequency causal SNP a1 = 1, a2 = −1

*The trait model is Y = a1C1 + a2C2 + ε where ε ∼ N(0, σ2). σ2 is specified for each gene such that the power of Wald test is about 0.8.

Table 3 | Summary of expected beta coefficients for joint and marginal regression analysis using three analysis sets averaged over 85 genes.

Model Analysis set Method Percentage ofa Sum ofb Sum ofc Mean ofd Mean ofe

|β| > 0.5 β |β| β |β|

All SNPs Joint 17.1 0.64 1.70 0.07 0.19
Marginal 22.9 1.99 2.33 0.22 0.25

1 Common SNPs Joint 24.5 0.06 1.80 0.02 0.26
Marginal 4.2 0.33 0.64 0.06 0.10

Low frequency Joint 39.7 0.92 1.15 0.35 0.41
SNPs Marginal 74.3 1.82 1.87 0.66 0.68

All SNPs Joint 29.8 0.83 3.33 0.11 0.40
Marginal 23.3 2.63 3.27 0.31 0.38

2 Common SNPs Joint 35.5 0.18 3.34 0.05 0.50
Marginal 11.0 0.65 1.25 0.12 0.20

Low frequency Joint 73.9 1.65 1.77 1.07 1.12
SNPs Marginal 79.3 2.15 2.20 1.23 1.24

All SNPs Joint 13.6 −0.03 1.58 0.002 0.18
Marginal 2.9 −0.07 0.45 −0.01 0.05

3 Common SNPs Joint 9.8 −0.01 0.99 0.003 0.14
Marginal 0.2 0.003 0.19 0.002 0.03

Low frequency Joint 13.0 −0.05 0.38 −0.03 0.15
SNPs Marginal 9.0 −0.06 0.28 −0.03 0.13

All SNPs Joint 32.8 1.23 3.45 0.15 0.40
Marginal 61.2 4.30 5.87 0.51 0.68

4 Common SNPs Joint 38.8 0.54 2.73 0.12 0.46
Marginal 56.2 2.12 3.48 0.37 0.57

Low frequency Joint 51.9 1.24 1.84 0.44 0.63
SNPs Marginal 72.8 2.36 2.58 0.82 0.89

All SNPs Joint 33.7 0.22 3.46 0.02 0.41
Marginal 53.0 −0.05 4.78 −0.02 0.55

5 Common SNPs Joint 39.3 −0.26 2.82 −0.05 0.47
Marginal 49.8 −1.30 3.09 −0.22 0.50

Low frequency Joint 51.3 0.67 1.57 0.27 0.54
SNPs Marginal 60.2 1.27 1.96 0.50 0.69

aAverage of percentages of absolute beta coefficients that are greater than 0.5 within each gene.
bAverage of sum of all beta coefficients within each gene.
cAverage of sum of all absolute beta coefficients within each gene.
d Average of mean of all beta coefficients within each gene.
eAverage of mean of all absolute beta coefficients within each gene.
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FIGURE 2 | Averaged empirical power of gene-based tests for three analysis sets obtained under five different trait models.

common SNP sets showed similar power in comparison to lower
power in the LF set.

Since the causal SNPs in Models 1 and 2 have low fre-
quency and most genes have at least one LF SNP that is
strongly correlated with the causal SNPs, the analysis of LF
SNPs alone is usually an efficient choice in terms of df and
tagging power for causal effect. Although Model 3 also spec-
ifies two low frequency causal variants, with the combination

of deleterious and protective effects, a1 = 1 and a2 = −1,
analysis of LF SNPs alone had the lowest power. In this
case, a LF SNP that is positively correlated with both causal
SNPs will usually appear almost unassociated with the quan-
titative trait. These observations may be further understood
by the expected beta coefficients calculated using equations
(1) and (2) (Table 3). The percentage of strongly associated SNPs
(|β| > 0.5) is high for LF SNP analysis in Models 1 and 2,
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Table 4 | Empirical type I error of gene-based statistics (N = 1000 replicates) at the 0.05 level for three analysis sets, averaged over 85 genes.

All Common Low frequency

Model Statistics Average 95% CI Average 95% CI Average 95% CI

1 Wald 0.055 (0.054, 0.057) 0.054 (0.052, 0.055) 0.053 (0.052, 0.055)
MLC-B 0.054 (0.052, 0.055) 0.053 (0.052, 0.054) 0.053 (0.051, 0.054)
MLC-Z 0.053 (0.052, 0.055) 0.053 (0.051, 0.054) 0.053 (0.052, 0.055)
MinP-M 0.054 (0.052, 0.057) 0.057 (0.055, 0.060) 0.063 (0.061, 0.065)
PC80 0.053 (0.051, 0.055) 0.054 (0.052, 0.055) 0.053 (0.051, 0.054)
SSB 0.055 (0.054, 0.057) 0.053 (0.051, 0.054) 0.055 (0.053, 0.056)
SSBw 0.054 (0.053, 0.056) 0.053 (0.052, 0.055) 0.055 (0.053, 0.056)
SKAT 0.054 (0.052, 0.055) 0.053 (0.051, 0.054) 0.053 (0.051, 0.054)
LC-B 0.052 (0.050, 0.054) 0.053 (0.052, 0.055) 0.052 (0.051, 0.054)
LC-Z 0.052 (0.051, 0.054) 0.053 (0.052, 0.054) 0.052 (0.051, 0.054)
MinP-J 0.050 (0.049, 0.052) 0.053 (0.051, 0.055) 0.059 (0.058, 0.061)

2 Wald 0.049 (0.048, 0.051) 0.049 (0.047, 0.050) 0.050 (0.048, 0.051)
MLC-B 0.049 (0.048, 0.050) 0.050 (0.048, 0.051) 0.049 (0.048, 0.051)
MLC-Z 0.049 (0.047, 0.050) 0.050 (0.048, 0.051) 0.049 (0.048, 0.051)
MinP-M 0.051 (0.049, 0.054) 0.052 (0.050, 0.054) 0.053 (0.052, 0.055)
PC80 0.048 (0.047, 0.050) 0.049 (0.048, 0.051) 0.049 (0.048, 0.051)
SSB 0.049 (0.048, 0.051) 0.048 (0.047, 0.050) 0.050 (0.049, 0.052)
SSBw 0.049 (0.048, 0.051) 0.049 (0.048, 0.051) 0.051 (0.049, 0.052)
SKAT 0.048 (0.047, 0.049) 0.048 (0.047, 0.050) 0.049 (0.048, 0.050)
LC-B 0.048 (0.047, 0.050) 0.049 (0.047, 0.050) 0.049 (0.048, 0.051)
LC-Z 0.048 (0.046, 0.049) 0.049 (0.047, 0.051) 0.050 (0.048, 0.051)
MinP-J 0.047 (0.046, 0.049) 0.049 (0.047, 0.050) 0.052 (0.051, 0.054)

3 Wald 0.049 (0.047, 0.051) 0.049 (0.048, 0.051) 0.049 (0.048, 0.050)
MLC-B 0.050 (0.049, 0.052) 0.050 (0.049, 0.052) 0.049 (0.047, 0.050)
MLC-Z 0.050 (0.049, 0.052) 0.050 (0.049, 0.052) 0.049 (0.047, 0.050)
MinP-M 0.055 (0.052, 0.058) 0.055 (0.053, 0.057) 0.053 (0.051, 0.055)
PC80 0.050 (0.049, 0.052) 0.050 (0.049, 0.052) 0.049 (0.047, 0.050)
SSB 0.051 (0.050, 0.053) 0.052 (0.050, 0.053) 0.051 (0.049, 0.052)
SSBw 0.052 (0.050, 0.053) 0.052 (0.050, 0.053) 0.050 (0.049, 0.052)
SKAT 0.050 (0.048, 0.051) 0.050 (0.048, 0.051) 0.048 (0.047, 0.050)
LC-B 0.051 (0.049, 0.052) 0.051 (0.049, 0.053) 0.049 (0.048, 0.050)
LC-Z 0.050 (0.049, 0.052) 0.051 (0.049, 0.052) 0.049 (0.047, 0.050)
MinP-J 0.047 (0.045, 0.048) 0.047 (0.046, 0.049) 0.050 (0.048, 0.051)

4 Wald 0.048 (0.047, 0.050) 0.048 (0.047, 0.050) 0.049 (0.048, 0.051)
MLC-B 0.049 (0.048, 0.050) 0.049 (0.048, 0.051) 0.049 (0.048, 0.051)
MLC-Z 0.049 (0.048, 0.050) 0.049 (0.048, 0.051) 0.049 (0.048, 0.050)
MinP-M 0.050 (0.048, 0.052) 0.054 (0.052, 0.056) 0.058 (0.057, 0.060)
PC80 0.050 (0.048, 0.051) 0.049 (0.048, 0.051) 0.049 (0.048, 0.051)
SSB 0.050 (0.049, 0.052) 0.050 (0.048, 0.051) 0.051 (0.050, 0.052)
SSBw 0.051 (0.049, 0.052) 0.050 (0.048, 0.052) 0.051 (0.050, 0.052)
SKAT 0.050 (0.048, 0.051) 0.049 (0.048, 0.051) 0.049 (0.048, 0.051)
LC-B 0.050 (0.048, 0.051) 0.048 (0.047, 0.050) 0.049 (0.048, 0.051)
LC-Z 0.050 (0.049, 0.052) 0.048 (0.047, 0.050) 0.050 (0.048, 0.051)
MinP-J 0.046 (0.044, 0.047) 0.049 (0.047, 0.051) 0.054 (0.052, 0.056)

5 Wald 0.048 (0.047, 0.050) 0.049 (0.047, 0.050) 0.049 (0.047, 0.050)
MLC-B 0.048 (0.047, 0.050) 0.049 (0.047, 0.050) 0.049 (0.047, 0.051)
MLC-Z 0.048 (0.047, 0.050) 0.049 (0.048, 0.050) 0.049 (0.047, 0.051)
MinP-M 0.050 (0.047, 0.052) 0.053 (0.051, 0.055) 0.059 (0.057, 0.061)
PC80 0.048 (0.047, 0.050) 0.049 (0.048, 0.051) 0.049 (0.047, 0.051)
SSB 0.051 (0.049, 0.052) 0.049 (0.048, 0.051) 0.051 (0.049, 0.052)
SSBw 0.050 (0.049, 0.052) 0.050 (0.048, 0.051) 0.051 (0.049, 0.053)
SKAT 0.049 (0.047, 0.050) 0.048 (0.047, 0.050) 0.049 (0.047, 0.051)
LC-B 0.050 (0.048, 0.051) 0.049 (0.048, 0.051) 0.049 (0.048, 0.051)
LC-Z 0.050 (0.048, 0.052) 0.049 (0.048, 0.051) 0.049 (0.048, 0.051)
MinP-J 0.047 (0.046, 0.049) 0.049 (0.047, 0.051) 0.055 (0.053, 0.057)
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Table 5 | Empirical power of gene-based statistics (N = 1000 replicates) at the 0.05 level for three analysis sets, averaged over 85 genes.

All Common Low frequency

Model Statistic Average 95% CI Average 95% CI Average 95% CI

1 Wald 0.79 (0.79, 0.80) 0.66 (0.62, 0.70) 0.90 (0.88, 0.93)
MLC-B 0.85 (0.83, 0.87) 0.36 (0.30, 0.42) 0.93 (0.90, 0.95)
MLC-Z 0.85 (0.83, 0.87) 0.35 (0.30, 0.41) 0.93 (0.90, 0.95)
MinP-M 0.88 (0.86, 0.90) 0.31 (0.26, 0.37) 0.93 (0.91, 0.96)
PC80 0.81 (0.77, 0.86) 0.23 (0.18, 0.28) 0.91 (0.89, 0.94)
SSB 0.90 (0.87, 0.93) 0.27 (0.21, 0.33) 0.91 (0.88, 0.94)
SSBw 0.77 (0.73, 0.80) 0.23 (0.18, 0.28) 0.93 (0.90, 0.95)
SKAT 0.88 (0.85, 0.91) 0.27 (0.21, 0.34) 0.92 (0.90, 0.95)
LC-B 0.27 (0.22, 0.32) 0.17 (0.13, 0.21) 0.62 (0.53, 0.70)
LC-Z 0.33 (0.27, 0.39) 0.18 (0.14, 0.22) 0.62 (0.54, 0.70)
MinP-J 0.18 (0.14, 0.21) 0.42 (0.36, 0.48) 0.43 (0.37, 0.49)

2 Wald 0.80 (0.80, 0.80) 0.73 (0.68, 0.77) 0.88 (0.85, 0.91)
MLC-B 0.82 (0.78, 0.85) 0.42 (0.35, 0.49) 0.89 (0.86, 0.92)
MLC-Z 0.82 (0.78, 0.85) 0.42 (0.35, 0.49) 0.89 (0.86, 0.92)
MinP-M 0.84 (0.80, 0.87) 0.38 (0.31, 0.44) 0.89 (0.86, 0.92)
PC80 0.68 (0.61, 0.74) 0.29 (0.22, 0.36) 0.88 (0.84, 0.91)
SSB 0.84 (0.80, 0.89) 0.33 (0.25, 0.40) 0.86 (0.82, 0.90)
SSBw 0.63 (0.58, 0.68) 0.29 (0.22, 0.36) 0.88 (0.85, 0.91)
SKAT 0.83 (0.79, 0.88) 0.33 (0.25, 0.41) 0.88 (0.84, 0.91)
LC-B 0.25 (0.19, 0.31) 0.18 (0.13, 0.23) 0.75 (0.69, 0.81)
LC-Z 0.26 (0.20, 0.33) 0.19 (0.13, 0.24) 0.74 (0.68, 0.80)
MinP-J 0.26 (0.21, 0.31) 0.43 (0.37, 0.50) 0.75 (0.68, 0.81)

3 Wald 0.80 (0.77, 0.83) 0.66 (0.60, 0.72) 0.34 (0.27, 0.42)
MLC-B 0.56 (0.49, 0.63) 0.43 (0.35, 0.51) 0.29 (0.22, 0.36)
MLC-Z 0.56 (0.49, 0.63) 0.43 (0.35, 0.51) 0.29 (0.22, 0.36)
MinP-M 0.54 (0.47, 0.61) 0.42 (0.35, 0.50) 0.34 (0.27, 0.40)
PC80 0.46 (0.38, 0.54) 0.36 (0.28, 0.44) 0.29 (0.22, 0.36)
SSB 0.45 (0.39, 0.52) 0.39 (0.31, 0.47) 0.30 (0.24, 0.37)
SSBw 0.46 (0.38, 0.53) 0.38 (0.30, 0.45) 0.32 (0.26, 0.39)
SKAT 0.48 (0.42, 0.55) 0.27 (0.20, 0.33) 0.29 (0.22, 0.36)
LC-B 0.27 (0.21, 0.34) 0.28 (0.22, 0.35) 0.25 (0.19, 0.32)
LC-Z 0.28 (0.21, 0.34) 0.28 (0.21, 0.34) 0.24 (0.18, 0.31)
MinP-J 0.54 (0.47, 0.61) 0.47 (0.40, 0.55) 0.32 (0.25, 0.39)

4 Wald 0.79 (0.79, 0.80) 0.79 (0.76, 0.82) 0.37 (0.32, 0.43)
MLC-B 0.84 (0.82, 0.87) 0.79 (0.73, 0.84) 0.41 (0.35, 0.47)
MLC-Z 0.84 (0.82, 0.87) 0.78 (0.73, 0.83) 0.41 (0.35, 0.47)
MinP-M 0.83 (0.79, 0.86) 0.78 (0.73, 0.84) 0.43 (0.37, 0.49)
PC80 0.82 (0.79, 0.86) 0.74 (0.69, 0.80) 0.41 (0.35, 0.47)
SSB 0.64 (0.59, 0.70) 0.75 (0.69, 0.80) 0.41 (0.35, 0.47)
SSBw 0.84 (0.81, 0.88) 0.75 (0.70, 0.81) 0.42 (0.36, 0.48)
SKAT 0.83 (0.80, 0.86) 0.47 (0.40, 0.55) 0.41 (0.35, 0.48)
LC-B 0.61 (0.53, 0.68) 0.58 (0.50, 0.65) 0.31 (0.25, 0.37)
LC-Z 0.64 (0.57, 0.71) 0.58 (0.51, 0.66) 0.31 (0.25, 0.37)
MinP-J 0.19 (0.15, 0.23) 0.31 (0.25, 0.36) 0.17 (0.14, 0.20)

5 Wald 0.80 (0.80, 0.80) 0.79 (0.76, 0.82) 0.34 (0.29, 0.40)
MLC-B 0.82 (0.78, 0.86) 0.75 (0.70, 0.80) 0.37 (0.31, 0.43)
MLC-Z 0.82 (0.78, 0.86) 0.75 (0.70, 0.80) 0.37 (0.31, 0.43)
MinP-M 0.80 (0.76, 0.84) 0.75 (0.70, 0.81) 0.39 (0.33, 0.45)
PC80 0.76 (0.71, 0.82) 0.70 (0.64, 0.76) 0.37 (0.31, 0.43)
SSB 0.58 (0.52, 0.63) 0.70 (0.64, 0.76) 0.37 (0.31, 0.43)
SSBw 0.80 (0.75, 0.84) 0.72 (0.66, 0.78) 0.38 (0.32, 0.44)
SKAT 0.79 (0.74, 0.83) 0.43 (0.36, 0.50) 0.37 (0.31, 0.43)
LC-B 0.57 (0.50, 0.64) 0.57 (0.50, 0.64) 0.29 (0.23, 0.35)
LC-Z 0.55 (0.48, 0.62) 0.56 (0.49, 0.63) 0.29 (0.23, 0.36)
MinP-J 0.20 (0.16, 0.25) 0.33 (0.28, 0.39) 0.17 (0.14, 0.21)
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FIGURE 3 | Power of gene-based tests using three analysis sets of SNPs for 85 genes under trait Model 1. Genes are ordered along the horizontal axis
according to the empirical power of Wald test using only low frequency SNPs.

but substantially lower for Model 3. Also, the mean of |β| is
higher in the LF SNP analysis compared to all SNP or com-
mon SNP analysis in Models 1 and 2, whereas it was lower in
Model 3.

In Models 4 and 5, however, the two causal SNPs were not
required to be within the same bin. So the common causal SNP
was more likely to be well-tagged by common SNPs, and analysis

of LF SNPs alone had lower power irrespective of whether the LF
causal variant was deleterious or protective. The percentages of
strongly associated SNPs (|β| > 0.5) in the analysis using all SNPs
or common SNPs were both higher for Models 4 and 5 when
compared with their counterparts, Models 2 and 3, respectively.
However, in the analysis using LF SNPs these percentages were
lower for Model 4 compared to Model 2, but higher for Model 5
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FIGURE 4 | Power of gene-based tests using three analysis sets of SNPs for 85 genes under trait Model 2. Genes are ordered along the horizontal axis
according to the empirical power of Wald test using only low frequency SNPs.

compared to Model 3, which is consistent with the power results
for these models.

COMPARISONS AMONG GENE-BASED TESTS
We compared the performance of gene-based tests for each
trait model under the three gene sets analyses. In general, the
Wald test was more powerful and robust across different sim-
ulation scenarios, while differences in power among the other

tests were variable, depending on the scenario (Table 5 and
Figures 2–7).

Under Models 1–3 in which the causal SNPs are all LF vari-
ants, the Wald test was notably more powerful than other tests
when analysing only common SNPs. When we compared the dis-
tribution of expected beta coefficients from joint and marginal
regression analysis of common SNPs, we found that the percent-
ages of strongly associated SNPs (|β| > 0.5) was high for joint

Frontiers in Genetics | Statistical Genetics and Methodology November 2013 | Volume 4 | Article 233 | 12

http://www.frontiersin.org/Statistical_Genetics_and_Methodology
http://www.frontiersin.org/Statistical_Genetics_and_Methodology
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive


Yoo et al. Gene-based multiple regression test

FIGURE 5 | Power of gene-based tests using three analysis sets of SNPs for 85 genes under trait Model 3. Genes are ordered along the horizontal axis
according to the empirical power of Wald test using only low frequency SNPs.

analysis but low for marginal analysis for Models 1–3 (Table 3).
Since pairwise correlation is not likely to be strong if the tagging
SNP is common and the causal SNP is rare (Figure 8), marginal
effects of common SNPs under a LF causal model usually are
not strong. Corresponding to these results, the statistics based
on marginal analysis of common SNPs such as MinP-M, SSB,
SSBw, and SKAT did not perform well for Models 1–3. With the
common SNP analysis, the joint regression analysis captured rare

causal effects better than marginal analysis, presumably because
of the presence of three-way or higher-order LD among the causal
SNP and two or more common SNPs.

However, except for the Wald test, the MLC and LC tests based
on joint regression did not perform well-under Models 1–3 for
common SNPs alone. The sum of β from the joint regression anal-
ysis of common SNPs for these models was much smaller than the
sum of |β|, suggesting co-occurrence of deleterious and protective
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FIGURE 6 | Power of gene-based tests using three analysis sets of SNPs for 85 genes under trait Model 4. Genes are ordered along the horizontal axis
according to the empirical power of Wald test using only low frequency SNPs.

associations (Table 3). This gives some insight into the under-
performance of MLC and LC tests for common SNP analysis for
these models even though the joint regression captures the low
frequency causal effect to some degree.

For Model 3 where the causal effects are opposing, the empir-
ical power of MLC tests, MinP-M, PC80, SSB, SSBw, and SKAT
with analysis of all SNPs was substantially lower than that of the
Wald test, whereas for the other trait models, these tests were

more powerful than the Wald when the analysis included all SNPs
(Figures 2, 5). The expected beta coefficient for the marginal
association was low for both common and rare SNPs, which
resulted in relatively low power for the tests based on marginal
analysis (Table 3). The joint analysis captured the causal effect
better than the marginal analysis for the case of Model 3, but nei-
ther of the MLC or LC tests perform well since the captured effects
are opposing as indicated by the sum of β near to zero. Model 3
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FIGURE 7 | Power of gene-based tests using three analysis sets of SNPs for 85 genes under trait Model 5. Genes are ordered along the horizontal axis
according to the empirical power of Wald test using only low frequency SNPs.

is essentially a “worst case” for the MLC test construction because
the opposing LF SNPs are positively correlated and are assigned
to the same bin.

For Models 4 and 5 where two causals were in different fre-
quency groups, and therefore usually in different bins, MLC tests
performed best for the analysis using both common and LF SNPs
(Figures 2, 6, 7). This can most likely be explained by reduced
df and low prevalence of opposing effects for MLC tests, while

the effects of the two causal SNP from both frequency groups are
captured well.

DISCUSSION
In this study, we examined the performance of several multi-
marker methods that can be applied to combined analysis of
common and low frequency variants. Using 85 different gene
panels which include many low frequency SNPs, we simulated
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FIGURE 8 | The range of linkage disequilibrium measure r (correlation coefficient) with a given MAF of rare SNP A for range of MAF of SNP B. pA is
the MAF of SNP A, pB is the MAF of SNP B, and pAB is the haplotype frequency consisting of rare alleles of SNP A and B.

trait models with untyped low frequency causal SNPs. Moreover,
by calculating the expected beta estimates of indirect associa-
tion for joint and marginal regression analysis, we provide some
insight into the performance of gene-based statistics in different
situations.

In our comparison of different analysis sets of SNPs, we found
that combined analysis of low frequency and common SNPs
together is a robust choice that works for various trait models
whereas analysis using only common SNPs or only low frequency
SNPs can lose power in certain situations. The good performance
of multi-marker tests using a combined set of SNPs is not sur-
prising when one of the causal SNPs is common and the other is
rare. Also, when causal SNPs consist of only low frequency vari-
ants, it is natural to expect better performance in analysis of only
low frequency SNPs due to smaller df and correlation between
typed/analysed SNPs and untyped causal SNPs, but the reduction
in power incurred in the combined set of SNPs was rarely very
large. Furthermore, for the trait model in which the causal effects
are opposing (one deleterious, and one protective), analysis using
the combined set of SNPs was a better choice.

Across the different trait models we investigated, the statistic
that showed the most robust performance was the Wald test. In
our previous study of the MLC and other gene-based statistics,
MLC tests, MinP-M, PC80, and SSB tests using common SNPs
usually performed better than the Wald test for trait models based
on common causal SNPs (Yoo et al., 2013). In this study, the
occasional poor performance of statistics based on marginal tests
for low frequency causal variant trait model occurred when the

marginal regression analysis failed to capture the low frequency
SNP effects due to lower correlation with the causal SNP (see
Figure 8). The reason for poor performance of MLC tests dif-
fered from that of tests based on marginal regression analysis.
Since the joint regression analysis was usually better in capturing
low frequency causal effects due to multilocus LD, the Wald test
performed well. However, the effects captured by multiple SNPs
were mostly in opposing directions and since the SNPs had high
positive correlation, and fell within the same bin, the MLC tests
usually suffered.

The genotypes in our simulation were derived from HapMap
haplotypes, and therefore are expected to represent realistic val-
ues occurring in an Asian population, at least for more common
SNPs. Therefore, the genes selected to include many low fre-
quency correlated SNPs were only 85 in number when we limited
the gene size to be between 8 and 15. We expect genotyping data
obtained through sequencing study would have a large number of
low frequency correlated SNPs and more diversity in gene struc-
ture. Further simulation studies based on sequencing data might
be needed to address realistic gene structure in a broad sense.
Along the same lines, it would be of interest to evaluate the use
of imputed SNPs for multi-marker tests. If we could remove or
reduce the bias caused by the omitted causal SNPs and use proper
global tests for the imputed SNPs, more powerful analysis may be
performed.

Many popular multi-marker tests for rare variants are based
on marginal analysis, but we were able to confirm the merit
of joint regression analysis for certain trait models. Tests based
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on joint regression analysis are in need of further development.
Joint regression analysis is more suitable for combined analysis
of common and low frequency variants in a gene-based analysis
framework. Also, further study of a combination of gene-based
tests having different merits for different situations would be
warranted.
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