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Purpose: Steroid hormone metabolism plays an essential role in high-altitude pulmonary
edema (HAPE) progression. This study aimed to investigate the association between poly-
morphism in seven steroid hormone metabolism genes (STAR, HSD3B1, HSD3B2, CYP17A1,
CYP21A2, CYP11B1, and CYP11B2) and HAPE susceptibility among Han Chinese.
Patients and Methods: A total of 41 tagSNPs in the seven genes were genotyped using
Sequenom MassARRAY SNP assays from 169 HAPE patients (HAPE-p) and 309 matched
Han Chinese individuals resistant to HAPE (HAPE-r). The genotypic and allele frequencies,
odds ratios (ORs), and 95% confidence intervals (95% CIs) were calculated.
Results: Four SNPs, including the allele C of rs6203 (p = 0.034, OR [95% CI] = 1.344 [1.022
−1.767]) inHSD3B1, allele G of rs3740397 (p = 0.044, OR [95%CI] = 1.314 [1.007−1.714]) and
allele C of rs10786712 (p = 0.039, OR [95% CI] = 0.751 [0.572−0.986]) in CYP17A1, and allele
T of rs6402 (p = 0.006, OR [95% CI] = 0.504 [0.306−0.830]) in CYP11B1, were significantly
associated with HAPE. The distribution of the genotypes of these SNPs also significantly
differed between the HAPE-p and HAPE-r groups. Moreover, six haplotypes (the linkage
disequilibrium block including rs10883783, rs4919686, rs3740397, rs3824755, and
rs10786712) of CYP17A1 were also significantly associated with HAPE.
Conclusion: The four SNPs located in HSD3B1 (rs6203), CYP17A1 (rs3740397 and
rs10786712), and CYP11B1 (rs6402) and the six haplotypes of CYP17A1 are likely to have
an effect on HAPE.
Keywords: steroid hormone metabolism gene, SNP, high-altitude pulmonary edema,
susceptibility

Introduction
High-altitude pulmonary edema (HAPE) is a serious acute mountain sickness
(AMS) that is triggered by the failure to acclimatize to high altitudes and
hypoxia.1 The initial symptoms of HAPE include sympathetic overactivity, defec-
tive nitric oxide synthesis, exaggerated endothelin-1 synthesis, reduced fluid clear-
ance from the alveolar space, and hypoxic pulmonary vasoconstriction, which can
then develop into pulmonary hypertension, increased capillary pressure, and finally
HAPE.2 Although hypoxia is a major trigger factor, the exact pathogenesis of
HAPE remains unclear, and individuals usually differ in their susceptibility to
HAPE at the same high altitude.3

At present, HAPE is considered a multifactorial disease involving both genetic and
environmental risk factors.4,5 Many studies have shown that hypoxia-induced
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inflammation and steroid hormone metabolism at high alti-
tudes may contribute to the development of HAPE.5–8 For
example, some studies have reported that the salivary corti-
sol response after awakening differs between AMS+ and
AMS- both at high and low altitudes, suggesting a link
between hypothalamic-pituitary-adrenal (HPA)-axis home-
ostasis and AMS.9 In addition, high levels of plasma aldos-
terones have been detected in HAPE when compared with
controls.10 Clinical observations have revealed that the onset
time for HAPE is usually in the middle of the night, which is
consistent with the period during which cortical hormone
secretion is low. These studies suggest that an imbalance in
endogenous cortical hormone secretion in HAPE patients
may be a key underlying pathophysiological mechanism.
The incidence of HAPE can be reduced using conventional
drug-based treatments, such as acetazolamide and dexa-
methasone, which play an important role in the regulation
of extracellular volume homeostasis and inflammatory
reactions.2 This weight of evidence indicates that the adre-
nocortical hormone system and corresponding metabolism
genes may significantly influence the pathophysiological
HAPE process.

The biosynthesis of steroid hormones from cholesterol
involves multiple enzymes, including cytochrome P450
enzymes (CYPs), hydroxysteroid dehydrogenases (HSDs),
and steroid reductases. Studies have found that the poly-
morphisms of these enzymes are associated with a variety of
diseases.11 Although many genetic association studies have
identified dozens of genes associated with susceptibility to
HAPE,12–19 few studies have reported a relationship between
the genetic characteristics of steroid hormone metabolism
genes and HAPE. Thus, in this study, we conducted a case–
control association analysis to investigate the correlation
between seven steroid hormone metabolism genes (STAR,
HSD3B1, HSD3B2, CYP17A1, CYP21A2, CYP11B1, and
CYP11B2) and HAPE in a Chinese Han population (Figure 1).

Materials and Methods
Subjects
In total, 169 Han Chinese who were admitted to Yushu &
Hainan People’s Hospital between March 2010 and
June 2020 due to the onset of HAPE 1−7 days after their
arrival at the destination (>2500 m) were recruited by this
study as HAPE patients (HAPE-p) and included in the
final analysis. The diagnosis of HAPE was based on
chest X-rays and standard diagnostic criteria.20 In total,
309 healthy controls that were resistant to HAPE (HAPE-

r) were randomly selected from coworkers of the HAPE-p
group to match the patients in terms of age, gender, ethni-
city, and working conditions. These subjects remained
healthy after working at the destination (>2500 m) for at
least three months and did not suffer from HAPE or other
high-altitude diseases. All subjects from both groups came
from the same elevation and had the same ascent profile
and working conditions. The study protocols were
approved by the Ethics Committee of Qinghai University
(Xining, China) and were conducted in accordance with
the Declaration of Helsinki. All participants in this study
signed informed consent forms.

Gene and SNP Selection and Genotyping
Assays
Seven genes (STAR,HSD3B1,HSD3B2,CYP17A1,CYP21A2,
CYP11B1, and CYP11B2) were selected because of their key
roles in steroid hormone metabolism. The stellate protein
encoded by the STAR gene is the first and rate-limiting step
in cholesterol transport from the outer to the inner mitochon-
drial membrane.21 HSD3B (HSD3B1 and HSD3B2) is a key
rate-limiting enzyme in the biosynthetic pathway for steroids,
which produces aldosterone, estradiol, testosterone, and
cortisol.11 The steroid 21 hydroxylase encoded by the CYP21
gene is a key enzyme in the synthesis of mineralocorticoid
(aldosterone) and glucocorticoid (cortisol),22 while 17α-
hydroxylase encoded by CYP17A is a key regulatory enzyme
in the steroid hormone production pathway.23 CYP11B2
encodes aldosterone synthase, which catalyzes the final step
in the biosynthesis of the major mineralocorticoid aldosterone,

Figure 1 Flowchart for this study.
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and 11β-hydroxylase, which is encoded by CYP11B1, is the
final step in catalyzing the synthesis of cortisol.24

DNAwas isolated from the whole blood cells of the parti-
cipants with the use of a Gentra Puregene Blood Kit (Qiagen,
158389, Germany) following standard procedures. A total of
41 tagSNPs (a minor allele frequency >0.05, with an r2 thresh-
old of 0.8) in the STAR, HSD3B1, HSD3B2, CYP17A1,
CYP21A2, CYP11B1, and CYP11B2 genes have been identi-
fied in the HapMap Han Chinese population. The SNPs were
genotyped using single-base extension detecting technology
(iPLEX; Capital Bio Corporation, Beijing, China). The pri-
mers for PCR and single-base extension were designed using
Sequenom MassARRAYAssay Design Genotyping Software
and Tools (Sequenom, San Diego, CA, USA). PCR was con-
ducted under the following thermal cycling conditions: 94°C
for 4 min, followed by 94°C for 20 sec, 56°C for 30 sec, and
72°C for 1 min for 45 cycles, then 72°C for 4 min. PCR
products were treated with shrimp alkaline phosphatase to
remove free deoxyribonucleoside triphosphates, and the sin-
gle-base extension reactionwas performed in a systemcontain-
ing 2.0 mL of EXTENDMIX, 0.619 mL of ddH2O, 0.94 mL
of Extend primer mix, 0.2 mL of iPLEX buffer plus, 0.2mL of
iPLEX terminator, and 0.041 mL of iPLEX enzyme
(Sequenom, San Diego, CA, USA). The thermal cycling con-
ditions were as follows: 94°C for 30 sec, followed by 94°C for
5 sec, 52°C for 5 sec, and 80°C for 5 sec for 40 cycles, then
72°C for 3 min. The purified extension products were dis-
pensed onto a 384-element SpectroCHIP bioarray
(Sequenom, San Diego, CA, USA), and mass spectrometric
analysis was conducted using matrix-assisted laser desorption/
ionization–time of flight (MALDI-TOF; Sequenom, San
Diego, CA, USA). The results were analyzed using TYPER
4.0 software (Sequenom, San Diego, CA, USA).

Statistical Analysis
SPSS software (version 17.0, SPSS, Inc., Chicago, USA) was
used for the statistical analysis. Student’s t-tests and Fisher’s
exact tests were used to assess the differences in the mean and
frequency distributions of the demographic and clinical char-
acteristics between theHAPE-p andHAPE-r groups, while the
Hardy-Weinberg equilibrium (HWE) was used to assess the
representativeness of the participants. Allele frequencies were
calculated based on the genotype frequencies in the HAPE-p
and HAPE-r groups, and the intergroup differences were esti-
mated using χ2 tests. Haplotype frequencies and the expected
number of haplotypes for each individual were calculated
using SHEsis software (http://analysis.bio-x.cn).25

Differences were deemed significant at p < 0.05 for all
comparisons.

Results
Basic Characteristics of the Study
Population
A total of 169 patients with HAPE and 309 healthy con-
trols were included in the study (Table 1). No significant
differences were noted in the demographic characteristics
(ie, gender or age) of the HAPE-r and HAPE-p groups,
and no significant differences were observed in their clin-
ical characteristics (ie, HR, SaO2, HGB, or Hct).

Genotype and Allele Distribution
We calculated the genotypic distributions and allelic fre-
quencies of 41 SNPs in the seven steroid hormone meta-
bolism genes. The HWE was analyzed for the HAPE-p
and HAPE-r groups using PLINK 2.0, and the 14 SNPs
that did not conform to the HWE (corrected p < 0.05) were
excluded (Table S1). The allele and genotype distributions
of the remaining SNPs in the HAPE-p and HAPE-r groups
are presented in Table S2. Of these, four were significantly
associated with HAPE (Table 2). The minor allele C of
rs6203 (p = 0.034, OR [95% CI] = 1.344 [1.022−1.767]) in
HSD3B1 was significantly associated with the risk of
HAPE. The distribution of the genotype between the
HAPE-p and HAPE-r groups was also significantly differ-
ent for this allele (p = 0.019, OR [95% CI] = 2.051 [1.117
−3.767]). The minor allele G of rs3740397 (p = 0.044, OR
[95% CI] = 1.314 [1.007−1.714]) and minor allele C of
rs10786712 (p = 0.039, OR [95% CI] = 0.751 [0.572
−0.986]) in CYP17A1 were significantly associated with

Table 1 Demographic and Clinical Characteristics of the Study
Subjects

HAPE-r HAPE-p p

Gender

Male 260 156 0.997

Female 49 13

Age (years) 36.40±9.54 33.85±9.85 0.151

HR 80.63±12.06 79.58±11.85 0.224

SaO2 (%) 90.34±2.89 90.68±7.21 0.687

HGB (g/L) 168.58±15.12 162.71±18.48 0.113

Hct (%) 49.96±5.50 48.13±5.71 0.325
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HAPE. The distribution of the genotypes between the
HAPE-p and HAPE-r groups was also significantly differ-
ent for these two alleles (genotype GG of rs3740397: p =
0.049, OR [95% CI] = 1.694 [1.000−2.870]; genotype CC

of rs10786712: p = 0.024, OR [95% CI] = 0.520 [0.293
−0.923]). The minor allele T of rs6402 (p = 0.006, OR
[95% CI] = 0.504 [0.306−0.830]) in CYP11B1 was sig-
nificantly associated with a lower risk of HAPE. The

Table 2 Minor Allele and Genotype Frequencies for the SNPs Associated with HAPE in the Chinese Han Population

Gene SNP Type Genotype/
Allele

HAPE-p
(n %)

HAPE-r
(n %)

OR (95% CI) X2 p

HSD3B1 rs6203 Genotype TT 59(0.349) 130(0.421)

TC 83(0.491) 150(0.485) 1.219(0.811–1.834) 0.907 0.341

CC 27(0.160) 29(0.094) 2.051(1.117–3.767) 5.479 0.019

Allele T 201(0.595) 410(0.663)

C 137(0.405) 208(0.337) 1.344(1.022–1.767) 4.478 0.034

Dominant model TT 59(0.349) 130(0.421)

TC+CC 110(0.651) 179(0.579) 1.354(0.918–1.997) 2.343 0.126

CYP17A1 rs3740397 Genotype CC 48(0.284) 72(0.233)

CG 84(0.497) 143(0.463) 1.135(0.721–1.787) 0.299 0.585

GG 37(0.219) 94(0.304) 1.694(1.000–2.870) 3.865 0.049

Allele C 180(0.533) 287(0.464)

G 158(0.467) 331(0.536) 1.314(1.007–1.714) 4.061 0.044

Dominant model CC 48(0.284) 72(0.233)

CG+GG 121(0.716) 237(0.767) 0.766(0.500–1.172) 1.512 0.219

CYP17A1 rs10786712 Genotype TT 65(0.385) 103(0.333)

TC 82(0.485) 139(0.450) 0.935(0.618–1.413) 0.102 0.749

CC 22(0.130) 67(0.217) 0.520(0.293–0.923) 5.072 0.024

Allele T 212(0.627) 345(0.558)

C 126(0.373) 273(0.442) 0.751(0.572–0.986) 4.274 0.039

Dominant model TT 65(0.385) 103(0.333)

TC+CC 104(0.615) 206(0.667) 0.800(0.542–1.181) 1.26 0.262

CYP11B1 rs6402 Genotype GG 137(0.811) 276(0.893)

TG 30(0.178) 33(0.107) 0.546(0.320–0.932) 5.009 0.025

TT 2(0.012) 0(0.000) – 3.99 0.046

Allele G 304(0.899) 585(0.947)

T 34(0.101) 33(0.053) 0.504(0.306–0.830) 7.467 0.006

Dominant model GG 137(0.811) 276(0.893)

TG+TT 32(0.189) 33(0.107) 1.954(1.153–3.311) 6.337 0.012

Notes: Data are presented as the odds ratio (OR), 95% confidence interval (CI), and p-values in the comparison between HAPE patients and the control group. A bolded
p-value indicates statistical significance.
Abbreviations: HAPE-p, high-altitude pulmonary edema patients; HAPE-r, high-altitude pulmonary edema resistant (ie, the control).
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distribution of the genotype between the HAPE-p and
HAPE-r groups was also significantly different for this
allele (p = 0.025, OR [95% CI] = 0.546 [0.320−0.932]).

Haplotype Analysis
As shown in Figure 2, rs10883783, rs4919686, rs3740397,
rs3824755, and rs10786712 were present in a linkage dis-
equilibrium (LD) block within CYP17A1. Haplotype ana-
lysis revealed that six haplotypes within that LD block
differed significantly between the two groups (Table 3).
Of these, the haplotypes TACCT (p = 0.049, OR [95% CI]
= 1.536 [1.000−2.359]) and TACGT (p = 0.000, OR [95%
CI] = 12.706 [5.078−31.795], p = 0.000) in CYP17A1
were associated with HAPE risk. In contrast, the haplo-
types AAGGC (p = 0.038, OR [95% CI] = 0.492 [0.249
−0.973]), TACCC (p = 0.039, OR [95% CI]= 0.551 [0.311
−0.976]), TACGC (p = 0.000, OR [95% CI] = 0.014
[0.001−0.130]), and TAGGT (p = 0.025, OR [95% CI] =
0.720 [0.541−0.960]) in CYP17A1 were associated with
a lower risk of HAPE.

Discussion
To date, a number of genes associated with susceptibility
to HAPE have been identified, including angiotensin-
converting enzyme (ACE),12–14 endothelial nitric oxide
synthase (eNOS),15,16 angiotensin (AGT) and its receptor
(AGTR1),17 heat-shock protein 70 (HSP70),18 HLA,19

mitochondrial DNA (mtDNA),26 aldosterone synthase

(CYP11B2),16 endothelin-1 (ET-1),12 pulmonary surfac-
tant-associated protein A1 (SP-A1) and A2 (SP-A2),27

and β2 adrenergic receptor (ADRB2).28,29 However, few
studies have investigated the association between the
genetic characteristics of steroid hormone metabolism
genes and HAPE. In this study, we conducted a case–
control association analysis to investigate the correlation
between seven steroid hormone metabolism genes and
HAPE in a Chinese Han population. It was found that
four SNPs located in HSD3B1, CYP17A1, and CYP11B1
were significantly associated with HAPE. Subsequent hap-
lotype analysis revealed that six haplotypes in an LD block
including five SNPs in CYP17A1 were significantly asso-
ciated with HAPE.

The minor allele C of rs6203 (p = 0.034, OR
[95% CI] = 1.344 [1.022−1.767]) in HSD3B1 was signifi-
cantly associated with the risk of HAPE. HSD3B is a key
rate-limiting enzyme in the steroid biosynthesis pathways
that produce aldosterone, estradiol, testosterone, and corti-
sol. It has two tissue-specific isoforms (HSD3B1 and
HSD3B2) that have different substrate affinities.30 In
humans, a genetic variation in HSD3B1 can lead to an
elevation in plasma aldosterone with a resultant increase in
intravascular volume and hypertension.31 Research has
found that rs6203 and rs1047303 in HSD3B1 are useful
genetic markers for essential hypertension, while poly-
morphisms of HSD3B1 are associated with blood pressure
and aldosterone levels.32

Figure 2 Linkage disequilibrium for the five SNPs (rs10883783, rs4919686, rs3740397, rs3824755, and rs10786712) of CYP17A1 in the (A) HAPE-p group and (B) HAPE-r
group.
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The minor allele G of rs3740397 (p = 0.044, OR [95% CI]
= 1.314 [1.007−1.714]) and minor allele C of rs10786712 (p =
0.039, OR [95% CI] = 0.751 [0.572−0.986]) in CYP17A1
were significantly associated with HAPE, as were six haplo-
types in CYP17A1 The microsomal enzyme cytochrome
P450c17α, a key regulatory enzyme in the steroidogenic path-
way, is encoded by CYP17A1, which is located on chromo-
some 10q24.3. It has two key roles in 17α-hydroxylase and 17,
20-lyase activity that determine the ability of adrenal glands
and gonads to synthesize 17α-hydroxylated glucocorticoids
(17α-hydroxylase activity) and/or sex steroids (17, 20-lyase
activity).33 Various disease susceptibility variants ofCYP17A1
have been widely reported. For example, genetic polymorph-
isms in CYP17A1 have been linked to variations in estrogen
levels and to the increased risk of polycystic ovaries,34,35

breast cancer,36 and other estrogen-related diseases.
CYP17A1 variants have also been reported to be associated
with an increased risk of high-altitude polycythemia (HAPC)
in Tibetans.37

The minor allele T of rs6402 (p = 0.006, OR [95% CI] =
0.504 [0.306−0.830]) inCYP11B1was significantly associated
with a lower risk of HAPE. CYP11B1 encodes 11β-
hydroxylase, the enzyme that catalyzes the final step in the
synthesis of cortisol.38 Some evidence suggests that the
CYP11B1/B2 locus is important in hypertension and cardio-
vascular regulation.39 It has been reported that there is
a significant association between polymorphisms in
CYP11B2 and CYP11B1 and a genetic predisposition towards
primary hyperaldosteronism.40

Several studies have reported that some genetic loci
associated with lung-related diseases overlap with loci for
pulmonary fibrosis.41–43 For example, two chronic obstruc-
tive pulmonary disease-associated loci (FAM13A and DSP)
overlap with loci for lung function and pulmonary fibrosis,42

while five pulmonary fibrosis-associated loci (DPP9, DSP,
FAM13A, IVD, and MUC5B) are also significantly asso-
ciated with interstitial lung abnormalities.43 However, we
did not find an explicit genetic association between HAPE
and pulmonary fibrosis susceptibility in this study, and this
has not been reported in other genetic analyses of HAPE. Of
the seven selected genes, only CYP17A1 has been reported to
be associated with HAPC in Tibetans on the Qinghai-Tibetan
plateau.37 Thus, further research needs to be conducted to
investigate the association between these genes and altitude
sickness and/or other hypoxia-related diseases.

Another limitation of the student is that, due to the lack
of large plateau populations, our analysis could only test
a moderate number of subjects. We also did not attempt to
employ population stratification in our sample, which is
considered to be the most important confounder in genetic
association mapping. Moreover, we did not measure the
plasma levels of adrenocortical hormones for all subjects,
which may correlate with some potential functional SNPs
located in the steroid hormone metabolism genes.

Conclusion
In summary, this study conducted a case–control associa-
tion analysis to investigate the relationship between seven

Table 3 Haplotype Effects for CYP17A1 (rs10883783-rs4919686-rs3740397-rs3824755-rs10786712)

Gene Haplotype HAPE-p (freq) HAPE-r (Freq) X2 p value Odds Ratio (95% CI)

CYP17A1 (rs10883783-
rs4919686-rs3740397-

rs3824755-rs10786712)

AACCC 36.00(0.107) 56.00(0.091) 0.74 0.389681 1.214 [0.780~1.888]

AACGC 20.00(0.059) 28.98(0.047) 0.755 0.385002 1.296 [0.721~2.329]

AAGGC 11.00(0.033) 40.00(0.065) 4.312 0.037902 0.492 [0.249~0.973]

TACCC 16.38(0.048) 52.87(0.086) 4.276 0.038709 0.551 [0.311~0.976]

TACCT 42.01(0.124) 52.99(0.086) 3.889 0.048666 1.536 [1.000~2.359]

TACGC 0.27(0.001) 34.58(0.056) 17.76 0.0000255 0.014 [0.001~0.130]

TACGT 33.73(0.100) 5.42(0.009) 46.813 8.75E-12 12.706 [5.078~31.795]

TAGGC 42.36(0.125) 60.58(0.098) 1.879 0.17053 1.338 [0.881~2.032]

TAGGT 98.26(0.291) 226.57(0.367) 5.037 0.024859 0.720 [0.541~0.960]

TCCCT 31.62(0.094) 56.15(0.091) 0.039 0.84288 1.047 [0.663~1.656]

Notes: A bolded p-value indicates statistical significance. X:2 Chi-square. Data are presented as the odds ratio (OR) and 95% confidence interval (CI).
Abbreviations: HAPE-p, high-altitude pulmonary edema patients; HAPE-r, high-altitude pulmonary edema resistant (ie, the control).
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steroid hormone metabolism genes and HAPE in
a Chinese Han population. It was found that four SNPs
located in HSD3B1, CYP17A1, and CYP11B1, and six
haplotypes in CYP17A1 were significantly associated
with HAPE. Nevertheless, the relationship between these
susceptibility genes and HAPE, as well as the underlying
molecular mechanisms, require confirmatory research.
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