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Introduction
In eukaryotes, sister chromatid cohesion depends on the ring-

like cohesin complex, consisting of four subunits (SMC1, SMC3, 

SCC3, and SCC1/MCD1/RAD21 or the α-kleisin). Cohesins are 

recruited to chromosomes before DNA replication, a process 

that requires the SCC2–SCC4 complex and the assembly of 

preRC (Ciosk et al., 2000; Toyoda et al., 2002; Gillespie and 

Hirano, 2004; Rollins et al., 2004; Takahashi et al., 2004; Watrin 

et al., 2006). However, the recruitment alone is not suffi cient for 

sister chromatid cohesion because yeast mutants lacking the 

acetyltransferase Eco1/Ctf7 (or Eso1 in fi ssion yeast) exhibit 

defective cohesion despite cohesins continuing to localize to the 

chromosomes (Skibbens et al., 1999; Toth et al., 1999; Tanaka 

et al., 2000).

The mechanism involving Eco1/Ctf7 seems to be con-

served, as its orthologues have been identified in Drosophila 
melanogaster (Williams et al., 2003) and humans (Bellows et al., 

2003; Hou and Zou, 2005). Eco1/Ctf7 family proteins exhibit 

acetyltransferase activity and modify several cohesion proteins 

in vitro (Ivanov et al., 2002; Bellows et al., 2003; Hou and 

Zou, 2005). However, the acetyltransferase activity may not 

be required for sister chromatid cohesion (Ivanov et al., 2002; 

Brands and Skibbens, 2005). It has been suggested that the inter-

actions with other proteins, rather than the acetyltransferase 

 activity, is important for sister chromatid cohesion. In budding 

yeast, Eco1/Ctf7 interacts genetically and physically with many 

proteins involved in DNA replication (Skibbens et al., 1999; 

Madril et al., 2001; Edwards et al., 2003; Kenna and Skibbens, 

2003;  Skibbens, 2004), and its physical interaction with PCNA is 

required for sister chromatid cohesion (Moldovan et al., 2006).

After it is established, sister chromatid cohesion is main-

tained until anaphase. In yeast, cohesins locate along the entire 

chromosome in S, G2, and M phase and hold sister chromatids 

together along their entire length. However, in higher eukaryotes, 

most of the cohesins are removed from the chromosome arms 

in prophase by the so-called “prophase pathway” (Waizenegger 

et al., 2000). This step of cohesin removal depends on Wapl 

(Gandhi et al., 2006; Kueng et al., 2006) and the phosphoryla-

tion of the SA1/2 subunit of the cohesin complex (Hauf et al., 

2005), which is catalyzed by the pololike kinase 1 (Plk1) and 

aurora B kinase. The cohesins at the kinetochores and at some 

heterochromatin regions are protected from this prophase path-

way. Proteins such as Sgo1, PP2A, and Bub1 have been impli-

cated in this protection (Salic et al., 2004; Tang et al., 2004; 

Kitajima et al., 2005, 2006; Riedel et al., 2006; Tang et al., 2006). 

The second step of cohesin removal is catalyzed by separase, 

which cleaves the α-kleisin and triggers the fi nal separation of 

sister chromatids in anaphase.
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 P
roper sister chromatid cohesion is critical for main-

taining genetic stability. San is a putative acetyltrans-

ferase that is important for sister chromatid cohesion 

in Drosophila melanogaster, but not in budding yeast. We 

showed that San is critical for sister chromatid cohesion in 

HeLa cells, suggesting that this mechanism may be con-

served in metazoans. Furthermore, although a small frac-

tion of San interacts with the NatA complex, San appears 

to mediate cohesion independently. San exhibits acetyl-

transferase activity in vitro, and its activity is required for 

sister chromatid cohesion in vivo. In the absence of San, 

Sgo1 localizes correctly throughout the cell cycle. However, 

cohesin is no longer detected at the mitotic centromeres. 

Furthermore, San localizes to the cytoplasm in interphase 

cells; thus, it may not gain access to chromosomes until mi-

tosis. Moreover, in San-depleted cells, further depletion of 

Plk1 rescues the cohesion along the chromosome arms, but 

not at the centromeres. Collectively, San may be specifi -

cally required for the maintenance of the centromeric cohe-

sion in mitosis.
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Interestingly, a genetic screen in D. melanogaster revealed 

a putative acetyltransferase called San (Williams et al., 2003). 

San is essential for life and the mutant exhibits apparent sister 

chromatid cohesion defects. In D. melanogaster, San associates 

with Nat1 and Ard1, both of which are subunits of the N-terminal 

acetyltransferase A (NatA), which is conserved from yeast to 

human (Polevoda and Sherman, 2003). NatA has been exten-

sively characterized in yeast, and no cohesion phenotype has 

been reported. Furthermore, the closest yeast homologue to San 

is Nat5. Although Nat5 is also found in the yeast NatA complex, 

its deletion causes no detectable phenotype (Gautschi et al., 

2003). Therefore, the requirement of San-like protein for sister 

chromatid cohesion is not conserved in budding yeast.

In this study, we found that depletion of San in HeLa 

cells also causes precocious sister chromatid separation. The 

depletion causes cohesin to dissociate from the centromeres 

in mitosis without affecting the localization of Sgo1. Differ-

ent from the fi ndings in D. melanogaster, most San proteins 

do not associate with the NatA complex and, unlike San, the 

NatA complex is not required for sister chromatid cohesion. 

In addition, recombinant San exhibits acetyltransferase activity 

on its own and is capable of modifying several chromosome-

associated proteins. Rescue experiments indicate that the enzy-

matic activity of San is required for sister chromatid cohesion. 

Cells depleted of San exhibit normal Sgo1 localization, but 

no detectable cohesin complexes at the mitotic centromeres. 

Finally, depletion of Plk1 rescued sister chromatid cohesion in 

the San-depleted cells along the chromosome arms, but not at 

or near the centromeres. This result indicates that San is not 

required for the establishment of the cohesion along the chromo-

some arms. It is, however, necessary for centromeric cohesion 

in human cells.

Results
Depletion of San causes premature sister 
chromatid separation in HeLa cells
A single human cDNA (gi 13376735) was identifi ed by BLAST 

search using the protein sequence of D. melanogaster San. The 

full-length cDNA, encoding a protein of 169 aa, was cloned 

from a human fetal thymus cDNA library (CLONTECH Labo-

ratories, Inc.) by PCR and the sequence was confi rmed by ana-

lyzing at least three different clones (unpublished data). This 

sequence is identical to the recently described human homologue 

of San (Arnesen et al., 2006). Full-length recombinant San was 

produced in Escherichia coli, polyclonal antibody was generated 

using the recombinant San as the antigen, and the antiserum 

was affi nity purifi ed before use. As shown in Fig. S1 (available 

at http://www.jcb.org/cgi/content/full/jcb.200701043/DC1), 

the antibody detected a single protein band of �20 kD in HTC116, 

293T, and HeLa cell lysates, which comigrated with the in vitro–

synthesized protein in wheat germ extract.

To investigate whether the loss of San causes any sister 

chromatid cohesion defect, we depleted endogenous San from 

HeLa cells by siRNA (Fig. 1 A). Mitotic chromosome spreads 

were prepared and analyzed. Remarkably, �78% of the spreads 

prepared from the San-depleted cells exhibited precocious 

chromatid separation, whereas only �14% of the mock-treated 

 controls showed a similar phenotype (Fig. 1, B and C). In addition 

to the dramatic increase in the unpaired chromatids, San-siRNA 

cells also exhibited a noticeable delay in cell division. FACS 

analysis showed that San-siRNA cells of 4N DNA content accu-

mulated from 15 to 60% (Fig. 1 D). Indirect immunofl uorescent 

microscopy revealed that the incidences of multipole spindles 

(type II) and scattering chromosomes (type III) increased from 

10 to 48% and from 4 to 30% of the mitotic cells, respectively 

(Fig. 1, E and F). The enrichment of 4N cells is likely caused by 

metaphase arrest because the level of cyclin B in these cells re-

mained high, whereas the level of cyclin A was low (Fig. S2, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200701043/DC1). 

All these phenotypes indicate that depletion of San causes pre-

mature sister chromatid separation in HeLa cells.

Depletion of the NatA complex in HeLa 
cells causes lethality without detectable 
cohesion defects
In D. melanogaster, San was found exclusively in the NatA 

complex, implying a role of the N-terminal acetyltransferase ac-

tivity in sister chromatid cohesion (Williams et al., 2003). To in-

vestigate any role of the human NatA complex in sister chromatid 

cohesion, we performed loss-of-function studies of the two sub-

units of the complex, NatH and Ard1 (Fluge et al., 2002; Arnesen 

et al., 2005). Depletion of Ard1 and NatH by siRNA caused a 

rapid loss of viability in 3 and 5 d, respectively (unpublished 

data). This was supported by the FACS analysis, which revealed 

many cells with DNA content smaller than 2N (Fig. 1 D). The 

lethality suggested that the depletion was effective. For the pur-

pose of direct comparison with the result obtained in San-siRNA 

cells, we performed siRNA-depletion for both Ard1 and NatH 

and prepared chromosome spreads 5 d after the fi rst transfection 

of the siRNA oligonucleotides. The depletion effect was further 

confi rmed by Western blot (Fig. 1 A). In all cases, we did not 

observe any cohesion defects (Fig. 1 C). In fact, there were less 

unpaired sister chromatids than the mock-transfected controls. 

Therefore, it seems that the NatA complex is not involved in sis-

ter chromatid cohesion. However, we could not exclude the pos-

sibility that the essential function of the NatA complex, which 

causes lethality in its absence, overshadows its role in sister 

chromatid cohesion in these analyses.

Interestingly, siRNA-depletion of NatH reproducibly re-

duced the expression levels of both San and Ard1 (Fig. 1 A). It 

seems that the optimal protein levels of San and Ard1 depend on 

NatH. In addition, in approximately half of the depletion experi-

ments, a reduction of San expression was also observed in the 

cells depleted of Ard1, such as the one shown in Fig. 1 A. This was 

likely caused by the observation that cells depleted of Ard1 were 

dying rapidly and San might be degraded in some experiments, 

depending on when the samples were harvested. In all cases, de-

pletion of San did not affect the expression of Ard1 or NatH.

Over 80% of endogenous San is not 
associated with the NatA complex
Because depletions of San and Ard1/NatH caused different 

phenotypes, we asked whether San associates with the NatA 
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complex in HeLa cells. To this end, we fused HA3-tag to the 

N terminus of San and overexpressed it in 293T cells. The in-

teractions between HA3–San and endogenous NatH and Ard1 

were analyzed by coimmunoprecipitation with anti-HA beads. 

Both NatH and Ard1 precipitated with HA3-San and the amounts 

pulled down were >10% of their respective inputs (Fig. 2 A, 

lane 9). Similarly, both San and Ard1 coimmunoprecipitated 

with overexpressed HA3-NatH (Fig. 2 A, lane 3); and both San 

and NatH coimmunoprecipitated with overexpressed HA3-Ard1 

(Fig. 2 A, lane 6). The interaction seemed to be stable, as it sur-

vived stringent washing conditions with up to 500 mM NaCl. A 

similar observation has recently been reported using 293 cells 

(Arnesen et al., 2006). However, the amounts of endogenous 

San pulled down by HA3-NatH and HA3-Ard1 were noticeably 

<10% of their respective inputs, despite the fact that the over-

expressed HA3-NatH and HA3-Ard1 were virtually depleted by 

HA-beads (Fig. 2 A, lanes 2 and 5, respectively). This sug-

gested that a signifi cant pool of San might not associate with 

the NatA complex.

To further demonstrate whether San also exists outside 

of the NatA complex, we performed sucrose gradient analysis 

(Fig. 2 B) and size exclusion chromatography (Fig. 2 C) to 

 examine whether endogenous San cofractionates with the NatA 

complex. In both analyses, NatH and Ard1 were detected in the 

same fractions. On the other hand, over 80% of San was found 

in the fractions excluding the NatA complex. This indicates that 

Figure 1. San is required for sister chromatid 
cohesion in HeLa cells. (A) San and the sub-
units of the NatA complex were effectively de-
pleted by siRNA in HeLa cells. The levels of 
San, Ard1, and NatH were determined by 
immunoblot assay in siRNA- and mock-depleted 
cells. The level of α-tubulin was also blotted as 
a loading standard. (B) Chromosome spreads 
of paired (top) and unpaired chromatids (bot-
tom) prepared from the aforementioned siRNA 
cells. (C) Quantifi cation of the mitotic spreads 
with unpaired sister chromatids. The means of 
at least three independent trials are indicated 
above the bars. The error bars represent the 
SD. (D) FACS analysis of the HeLa cells de-
pleted from San, NatH, and Ard1. As controls, 
cells arrested at the G1/S boundary by double-
thymidine protocol (DT) and at c-metaphase by 
thymidine–nocodazole protocol (TN) were also 
analyzed. (E) Distribution of different types of 
mitotic cells observed in the mock- and San-
siRNA cells. (F) Confocal images of the mitotic 
cells with multipole spindle and scattering 
chromosomes observed in San-siRNA cells. 
The kinetochores are stained with CREST serum 
(green). The microtubules are stained with a 
monoclonal anti–α-tubulin (red). DNA is stained 
with DAPI (blue).
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the majority of San either is not in the NatA complex or only 

weakly associates with the complex. Together with the loss-of-

function studies, it appears that San mediates sister chromatid 

cohesion independent of the NatA complex.

San alone exhibits acetyltransferase 
activity in vitro
To determine whether San is an acetyltransferase independent 

of the NatA complex, we incubated purifi ed chromosome pel-

let with recombinant San in the acetyltransferase activity assay. 

Immunoblot analysis failed to detect NatH and Ard1 in these 

chromosome pellets, which was expected because both proteins 

localize primarily in the cytoplasm. As expected, many pro-

teins were acetylated in a San-dependent manner (Fig. 3, A and B, 

lane 2), although their identities have not yet been determined. 

Furthermore, San is also autoacetylated (Fig. 3, A and B, 

lane 3), which is a common feature of many acetyltransferases. 

Collectively, these results indicate that San, by itself, is an 

acetyltransferase.

To generate a mutant San defective in acetyltransferase 

activity, we substituted tyrosine-124 with phenylalanine because 

this tyrosine is conserved among several well-characterized 

acetyltransferases. Based on the atomic structure studies, muta-

tional analyses, and/or enzymatic kinetics studies of serotonin 

N-acetyltransferase (SNAT), aminoglycoside 6’-N-acetyltransferase 

(ACC6), and HPA1/2 (Angus-Hill et al., 1999; Hickman et al., 

1999; Wybenga-Groot et al., 1999), this tyrosine is required for 

catalysis. Furthermore, SNAT is predicted to be the closest struc-

tural homologue of San by 3D-PSSM (Kelley et al., 2000). As 

expected, this mutation reduced the level of autoacetylation by 

approximately threefold, as determined by quantifying the 14C 

signals of lanes 3 and 5 in Fig. 3 B. Similarly, the Y124F mutant 

only slightly increased the level of labeling above the back-

ground (Fig. 3 B, compare lane 4 with 1), and the 14C signals of 

lane 4 in the area above San were reduced by approximately 

ninefold. The difference in reduction between the autoacety-

lation and the acetylation of the chromosome substrates can be 

explained if the autoacetylation occurs via an intramolecular 

mechanism. Unlike an intermolecular mechanism, the reaction 

rate of an intramolecular mechanism will not be affected by the 

diminishing concentration of the substrate. Therefore, during the 

1-h incubation time, the autoacetylation could be faster and more 

complete than the acetylation of the chromosome substrates. To 

determine whether autoacetylation occurs via an intramolecular 

mechanism, we constructed a mutant San lacking the C-terminal 

10 aa (∆C10). This mutant migrates faster than the full-length 

San on SDS-PAGE and remains active in vitro (Fig. 3 B, lanes 

6 and 7). The mutant also rescued sister chromatid cohesion 

when expressed in the San-depleted cells (unpublished data). 

When incubated with ∆C10, the catalytic-defective Y124F mu-

tant remained unlabeled (Fig. 3 B, lane 8), indicating that the au-

toacetylation, indeed, occurs via an intramolecular mechanism. 

Therefore, we have constructed a catalytic-defective San mutant 

by a single substitution at the conserved tyrosine-124.

Figure 2. The majority of San does not cofractionate with the NatA 
complex. (A) San interacts with the NatA complex in a coimmunoprecipi-
tation assay. HA3-tagged NatH (lanes 1–3), Ard1 (lanes 4–6), and San 
(lanes 7–9) were individually expressed transiently in 293T cells. The 
tagged proteins were pulled down with anti-HA beads and the beads 
were washed in buffers containing 20 mM Tris, pH 8.0, 100–500 mM 
NaCl, 0.1% NP-40, and 10% glycerol. The proteins on anti-HA beads (P) 
and 10% of the lysates before (L) and after (S) immunoprecipitation were 
analyzed by immunoblot assay using antibodies to NatH, Ard1, and San. 
As a negative control, empty vector was also transfected and analyzed 
similarly (Mock). α-Tubulin was blotted as the loading control. 293T lysate 
(S100) was analyzed on a 0–10% sucrose gradient (B), and on a Super-
dex 200 gel fi ltration column (C). The standards are indicated below 
the lanes.

Figure 3. Recombinant San possesses acetyltransferase activity. In a 
10-μl assay, �1 μg of recombinant San (wild type or mutant, as indicated 
above the lanes) was used in the presence of �1 mM 14C-acetyl-CoA. 
(A) After a 60-min incubation at 30°C, SDS-PAGE was performed and the 
gel was dried after Coomassie blue staining. (B) The same gel was also ex-
posed to a phosphorimaging screen to detect the protein bands labeled by 
14C. The molecular weight standards (in kilodaltons) are marked on the left 
of the Coomassie blue staining images. Chromosome pellet (4 μl) was 
used as the substrate in lanes 1, 2, 4, and 6.
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The Y124F mutant does not rescue 
cohesion when expressed near the 
physiological levels
To determine whether the acetyltransferase activity of San is 

required for sister chromatid cohesion, we performed a rescue 

experiment. To this end, we fi rst constructed a stable cell line 

where the expression of a shRNA targeting San was induced by 

doxycycline. The design of the shRNA is identical to the siRNA 

oligonucleotides that successfully deplete San in HeLa cells 

(Fig. 1 A). After screening �200 stable lines, one San-shRNA 

cell line that was integrated with three copies of shRNA units 

was isolated. After induction for �4–5 d, the level of endoge-

nous San was reduced �90% (Fig. 4 A). The depletion increased 

the percentage of the mitotic spreads with unpaired sister chro-

matids from 9 to 57% (Fig. 4 B; P = 3 × 10−5; n = 5 in a paired 

t test). This, again, confi rmed that San is required for sister 

chromatid cohesion.

Using this conditional shRNA cell line, we tested whether 

sister chromatid cohesion could be rescued by the wild-type or 

Y124F mutant San. The Y124F mutant was chosen because it is 

based on an established substitution that has been shown to spe-

cifi cally affect catalysis in several acetyltransferases. The cells 

were transfected with the scrambled rescue constructs (his6-

San* and his6-San-Y124F*) at the time of induction. After two 

rounds of transfections with 0.8 μg of the rescue construct, cells 

were harvested on day fi ve. As shown in Fig. 4 B, transfecting 

GFP did not rescue the cohesion defect (48 vs. 57%; P = 0.09; 

n = 5). On the other hand, expression of the wild-type San 

 signifi cantly reduced the cohesion defect from 48 to 19% (P = 

0.002; n = 5). The <100% transfection effi ciency was likely 

responsible for not reducing the defects to the background level 

of 9% detected in the uninduced cells. On the other hand, the 

Y124F mutant only partially reduced the defects to 33%, which 

is not signifi cantly different from 48% obtained with GFP (P = 

0.06; n = 5), but signifi cantly greater than 19% achieved by the 

wild type (P = 0.004; n = 5).

The partial rescue is most likely caused by the residual 

activity of the Y124F mutant described in Fig. 3, A and B. The 

effect of this residual activity might be further augmented by 

the high expression level of this mutant (Fig. 4 C, compare lane 

6 with 10). We titrated the amount of transfected DNA from 

0.2–1.2 μg and measured the rescue effects (Fig. 4 D). Within 

this range of DNA, we did not detect any variations in transfec-

tion effi ciency by transfecting GFP under the same vector (un-

published data). With the same amount of DNA, the expression 

level of the Y124F mutant was reproducibly higher than that of 

the wild-type San, perhaps caused by a difference in mRNA or 

protein stability. To compare the effects of the rescue constructs 

expressing at the same level, we measured the signals of San 

and actin with a densitometry reader, calculated the ratio of the 

signals of San to actin, normalized the ratios derived from the res-

cue constructs to the ratio of endogenous San, and plotted the 

rescue effects of the wild-type and mutant San against their nor-

malized expression levels (Fig. 4 D). When the wild-type San 

was expressed at a slightly higher rate than the endogenous San, 

sister chromatid cohesion was rescued with only �20% the 

spreads exhibiting unpaired chromatids. At the same expression 

level, the Y124F mutant had little, if any, effect. When the expres-

sion of Y124F increased to approximately threefold of the endog-

enous San, we observed a rescue effect similar to that achieved 

by the wild-type San expressing near the endogenous level. 

Figure 4. The Y124F mutant partially rescues the sister chromatid cohe-
sion defect. (A) The inducible San-shRNA cell line and the scrambled res-
cue construct. The depletion effect of San-shRNA was analyzed by 
immunoblot assay over 5 d after doxycycline induction. Endogenous San 
was depleted in �4–5 d. The kinetics of depletion was not affected by the 
expression of the scrambled rescue construct (his6-San*). (B) Quantifi cation 
of the rescue effect by San* and Y124F*. The means and the SDs (repre-
sented by error bars) of the percentage of the mitotic spreads with un-
paired chromosomes were calculated using the data from fi ve independent 
trials. (C) Immunoblot showing the levels of endogenous San and the res-
cue constructs at the time the cells were harvested. Actin was blotted as the 
loading controls. The amounts of transfected rescue constructs were indi-
cated. (D) Rescue of sister chromatid cohesion by the wild-type and Y124F 
mutant San at different expression levels. The normalized expression level 
is determined by quantifi cation of the Western blot shown in C and repre-
sents the fold of difference comparing to the expression level of the endog-
enous San. The error bars indicate the SD, which was calculated basing on 
three to fi ve independent trials.
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Therefore, the Y124F mutant is approximately threefold less 

 effective at rescuing sister chromatid cohesion in San-siRNA 

cells. Remarkably, the Y124F mutant is also threefold less 

active than the wild-type San, as determined by autoacetylation 

(Fig. 3 B). Therefore, we conclude that the acetyltransferase 

activity of San is required for its function in mediating stable 

sister chromatid cohesion.

San localizes to the cytoplasm and its 
expression levels are unchanged during 
the cell cycle
Although the results from the aforementioned experiments indi-

cate that San and its acetyltransferase activity are required for 

stable sister chromatid cohesion in HeLa cells, the mechanism 

remains elusive. Delineating the regulation of San may shed 

some light on this. To this end, we analyzed the expression levels 

of San in different phases of the cell cycle. HeLa cells were syn-

chronized at the G1/S transition and c-metaphase by double-

thymidine and thymidine–nocodazole treatment, respectively. Next, 

the cultures were synchronously released into the cell cycle. 

Cells were withdrawn from the cultures at various time points, 

and the levels of San and an array of cell cycle markers were de-

termined by immunoblot assay. As shown in Fig. 5 (A and B), the 

expression levels of San are constant throughout the cell cycle.

Next, we tested whether the cellular localization of San is 

regulated. We performed cellular fractionation and detect 

San only in the cytoplasmic fraction (Fig. 5 C). To confi rm this 

localization, we also performed indirect immunofl uorescence 

microscopy using our affi nity-purifi ed polyclonal antibody. As 

shown in Fig. 5 D, the antibody is specifi c to San because it de-

tects strong signals in the uninduced San-shRNA cells (−Dox), 

but only weak signals upon induction (+Dox). Enlarged images 

are shown in the insets, and, consistent with the cellular frac-

tionation, San signals were detected in the cytoplasm in the un-

induced cells. On the contrary, the weak background signals 

distributed uniformly in the induced cells. Using this antibody, 

we examined the localization of San in various phases of the cell 

cycle. San localizes to the cytoplasm in interphase and is ex-

cluded from chromosomes in metaphase and anaphase (Fig. 

5 E). Similar observations were confi rmed with HA3-tagged San, 

which was transiently overexpressed in HeLa cells (unpublished 

data). Although we could not exclude the possibility that a small 

undetectable fraction of San is inside the nucleus, the cytoplas-

mic localization implies that San may facilitate sister chromatid 

cohesion either directly and only during mitosis after the break-

down of the nuclear envelope or indirectly in interphase by acet-

ylating a cytoplasmic factor, which is shuttled into the nucleus.

Sgo1, but not cohesin, localizes to the 
centromeres in San-depleted HeLa cells
Studies in D. melanogaster suggested that San might be in-

volved in the centromeric cohesion. To investigate whether the 

same is true in HeLa cells, we analyzed whether the localization 

of Sgo1, which is one of the factors required for cohesion at the 

Figure 5. Cell cycle regulation and cellular localization of San. (A and B) The protein level of San is unchanged throughout the cell cycle. HeLa cells were 
synchronized at the G1–S transition by the double thymidine arrest protocol (A) and at c-metaphase by the thymidine–nocodazole arrest protocol (B) and re-
leased into the cell cycle. ESCO2, phospho-histone H3, and securin were blotted as the markers for different stages of the cell cycle. Specifi cally, the degra-
dation of ESCO2 (Hou and Zou, 2005) commences at late S phase (6 h after release from DT); histone H3 becomes phosphorylated in mitosis (10–12 h 
after release from DT and 0–3 h after release from TN); and securin is degraded in anaphase and early G1 (12–16 h after release from DT and 3–10 h after 
release from TN). (C) San is detected in the cytoplasmic fraction. HeLa cells were fractionated into the cytoplasm (C) and the nuclear (N) fractions. Topoiso-
merase II and α-tubulin are markers for the nuclear and cytoplasm fractions, respectively. As expected, NatA and Ard1 were also detected in the cytoplasm 
(Arnesen et al., 2005). (D) The antibody to San detected San and its cytoplasmic location (insets) in the uninduced (−Dox), but not in the induced (+Dox), 
San-shRNA cells. San-shRNA cells were incubated under induced and uninduced conditions for 5 d before being analyzed. (E) The localization of San, as 
determined by immunofl uorescent microscopy. The localization of San in HeLa cells was analyzed in the cells at interphase, metaphase, and anaphase.
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centromeres, was affected by depletion of San. Using an anti-

body described previously (Tang et al., 2004), we examined the 

localization of Sgo1 in the San-shRNA cell line under both the 

induced and uninduced conditions. We fi rst confi rmed the pre-

vious fi nding that Sgo1 localizes to the centromeres. As shown 

in Fig. 6 A, the nuclear localization of shugoshin was detected 

in some, but not all, interphase cells. This is consistent with the 

fact that Sgo1 is a substrate of the anaphase-promoting complex 

(APC/C) and is degraded only in early G1 cells (Salic et al., 

2004). In prophase cells, punctuated staining of Sgo1 was de-

tected, which roughly colocalized with the kinetochores illumi-

nated by crest serum. Centromeric Sgo1 was also detected in 

metaphase cells. However, in early anaphase, although the over-

all levels of Sgo1 remained high, the signals on chromosomes 

had greatly diminished. By late anaphase or telophase, Sgo1 

was barely detectable. Similar analysis revealed the same dy-

namics of Sgo1 in cells depleted of San. As shown in Fig. 6 B, 

we detected strong centromeric Sgo1 signals in the cells with 

either multipolar spindles or scattering chromosomes (Fig. 6 B), 

indicating that, as in D. melanogaster, Sgo1 localizes to the centro-

meres in a San- independent manner.

Next, we determined whether the centromeric localization 

of the cohesin complexes was affected by depletion of San. To 

this end, we used a stable cell line expressing a C-terminal GFP-

tagged SMC1. The tagged SMC1 is a good reporter for the co-

hesin dynamics for the following reasons. First, the expression 

of SMC1-GFP is well below the endogenous level of SMC1 

(Fig. S3 A, lane 1, available at http://www.jcb.org/cgi/content/

full/jcb.200701043/DC1). Second, SMC1-GFP interacts with 

SCC1 in a coimmunoprecipitation assay (Fig. S3 A, lane 2) and 

cosediments with the cohesin complex on a sucrose gradient 

(Fig. S3 B). Third, SMC1-GFP localizes to chromosomes in 

interphase, and most of them disassociate from chromosomes 

in mitosis (Fig. 6 C and Fig. S3 C). Fourth, the chromosome 

 localization of SMC-GFP depends on the presence of SCC1 

(Fig. 6 E). Finally, SMC1-GFP can be detected at or near the 

Figure 6. Depletion of San causes centromeric cohesion defects. (A) Shugoshin localizes to the centromeres in HeLa cells. Shugoshin localization at various 
stages of the cell cycle was analyzed by immunofl uorescent microscopy. The cells used in this experiment were the San-shRNA cells without induction. 
(B) Shugoshin localizes to the centromeres in San-shRNA cells under induction. Images shown are San-depleted cells with multipole spindle and scattering 
chromosomes. (C) Immunofl uorescent staining of the interphase SMC1-GFP HeLa cells. The cells were extracted before fi xation. (D) Immunofl uorescent 
staining of the mitotic SMC1-GFP cells. The cells were extracted before fi xation. (E) Immunofl uorescent staining of the mitotic spreads prepared from the 
SMC1-GFP cells. SCC1 was also depleted by siRNA to serve as a control. The signal of SMC1-GFP appears sandwiched between the signals of CREST. 
These signals were undetectable in both SCC1- and San-siRNA cells. Bars, 5 μm.
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centromeres in mitosis (Fig. 6, D and E). All of these observa-

tions are expected for the cohesin complex. As shown in Fig. 

S3 E, we were able to effectively deplete San in this cell line with-

out affecting the protein levels of SCC1 and SMC1-GFP. The 

depletion increased the percentage of the mitotic spreads with 

unpaired chromatids from 2 to 58%. Next, the depleted cells 

were extracted with detergent and fi xed to analyze the localiza-

tion of SMC1-GFP. As shown in Fig. 6 C, SMC1-GFP localized 

to chromosomes during interphase in both mock and San 

siRNA-depleted cells. Therefore, San is not required for the 

overall association of the cohesin complex with chromosomes. 

On the other hand, SMC1-GFP was no longer detected on the 

mitotic chromosomes in the absence of San (Fig. 6 D). By ana-

lyzing the mitotic chromosome spreads (Fig. 6 E), cohesin was no 

longer detected at the centromeres in San-siRNA cells. Therefore, 

it seems that San is required for the mitotic localization of cohe-

sin at the centromeres.

Depletion of Plk1 in the San-depleted cells 
rescues sister chromatid cohesion at the 
chromosome arms, but not centromeres
To determine whether San is specifi cally involved in centro-

meric cohesion or is also required for cohesion at chromosome 

arms, we inactivated the prophase pathway so that cohesion at 

chromosome arms could be examined in mitosis. To this end, 

both Plk1 and San were depleted separately and simultaneously 

(Fig. 7 A), and the resulting chromosome spreads were analyzed. 

We observed three major types of mitotic chromosome spreads. 

The “paired” type contained mostly the paired chromatids. This 

type could be further classifi ed into two subtypes. One consisted 

of the butterfl y-shaped chromosomes observed mostly in the 

mock-treated samples (Fig. 7 B, Mock). The other subtype had 

tightly paired chromosomes with cohesion along their entire 

length. This subtype is observed in the Plk1-depleted samples 

(Fig. 7 B, Plk1). The “separated” type contained mostly completely 

separated chromatids observed in the San-depleted samples 

(Fig. 7 B, San). In the double-depleted samples, many of the 

spreads contained chromatids that were separated only in the 

middle of the chromosomes (Fig. 7 B, San&Plk1). This type of 

spread was called the “puffed” type. Remarkably, the separated 

region always contained the centromeres, as revealed by stain-

ing the spreads with the crest serum and Sgo1, which illuminate 

the kinetochores (Fig. S4, available at http://www.jcb.org/cgi/

content/full/jcb.200701043/DC1). The distances between the 

kinetochores of these puffed chromatids in the San&Plk1-

depleted samples were signifi cantly extended compared with 

the paired chromatids in the mock and Plk1-depleted samples 

(Fig. 7 C). Therefore, the “puffed” type represents the chromo-

somes with defective cohesion specifi cally at their centromeres.

As expected, Plk1 depletion resulted in 83% of the mitotic 

spreads displaying mostly tightly paired chromosomes (Fig. 

7 D). This depletion also reproducibly caused 10% of the “puffed” 

type, which may refl ect a background level of defective cohe-

sion at the centromeres in HeLa cells. In the absence of cohe-

sion at the arms, this background defect would have contributed 

to the “separated” type observed in 21% of the mock-treated 

cells. In addition, we also detected �7% of the “separated” type 

in the Plk1 depletion samples. These cells grossly failed to 

 establish or maintain sister chromatid cohesion. Remarkably, 

double depletion of San and Plk1 signifi cantly reduced the 

“separated” type from 60 to 14%in the San-depleted samples 

(P = 0.001; n = 3). At the same time, the “puffed” type signifi -

cantly increased from 10% (the background level in the Plk1-

depleted cells) to 36% (P = 0.03; n = 3) and the “paired” type 

slightly increased from 38% (mostly the butterfl y-shaped chromo-

somes) to 50% (mostly the tightly paired chromosomes; P = 

0.08; n = 3). The rescue of cohesion at the chromosome arms 

indicates that San is not required for establishment or mainte-

nance of cohesion at these regions. On the other hand, the fail-

ure to rescue the centromeric cohesion suggests that San is 

Figure 7. Depletion of Plk1 rescued the co-
hesion at chromosome arms, but not at centro-
meres, in San-depleted cells. (A) San and Plk1 
were effectively depleted by siRNA. The 
immunoblot shows the level of San and Plk1 
after RNAi depletion. The level of actin serves 
as the loading control. (B) Examples of three 
types of the mitotic chromosome spreads ob-
served in the depletion experiments described 
in A. The chromosomes marked with the white 
arrowheads are enlarged by twofold and dis-
played in the insets. (C) Comparison of the 
distance between the sister kinetochores in vari-
ous siRNA-depletion cells. The distance was 
measured between the crest signals between 
two paired or puffed chromatids (Fig. S4). 
Completely separated chromatids were not 
analyzed. The medians of the distances in 
mock-, Plk1-, and Plk1&San-depleted cells are 
0.18, 0.20, and 0.43 μm, respectively. For 
each depletion, 60 chromosomes were mea-
sured. (D) Distribution of the types of mitotic 
spreads observed. The means of at least four 
independent trials are indicated above the 
bars. The error bars represent the SD. Fig. S4 
is available at available at http://www.jcb
.org/cgi/content/full/jcb.200701043/DC1.
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necessary for the establishment and/or maintenance of the cohe-

sion at the centromeres.

Discussion
San is required for sister chromatid 
cohesion in metazoans
Depletion of San causes sister chromatids to separate prema-

turely. This result can be interpreted in two ways. The simplest 

explanation is that San is required for sister chromatid cohesion. 

Alternatively, depletion of San may cause prolonged mitotic 

arrest, which allows enough time for the prophase pathway to 

remove even centromeric cohesion. We consider the second 

explanation unlikely for the following two reasons: fi rst, the ac-

tual length of mitotic arrest was <12 h in our experiments be-

cause we removed most of the loosely attached mitotic cells by 

a shake-off during a medium change 12 h before harvesting the 

cells; second, the prophase pathway mainly depends on Plk1 to 

remove cohesins from chromosomes. However, in the double-

depletion experiment, cohesion between the chromosome arms 

is rescued, whereas the centromeres remain separated (Fig. 

7 D). This directly argues against any signifi cant role of the pro-

phase pathway in mediating the premature chromatid separa-

tion in cells depleted of San. Collectively, these data strongly 

support that San is required for stable sister chromatid cohe-

sion. Because the homologue of San is required for cohesion in 

D. melanogaster, but not in budding yeast, this function of San 

may be conserved among only metazoans.

The acetyltransferase activity of San 
is required for sister chromatid cohesion
The implication of San in sister chromatid cohesion again raises 

the question of whether the activity itself is required. To test 

this, we generated a catalytic-defective mutant San by a single 

mutation at the conserved tyrosine-124. Based on the extensive 

studies of several established acetyltransferases, this conserved 

tyrosine is involved in catalysis (Angus-Hill et al., 1999; Hickman 

et al., 1999; Wybenga-Groot et al., 1999). As expected, the 

Y124F substitution reduces the autoacetylation of San about 

threefold. Because the autoacetylation occurs via an intra-

molecular mechanism (Fig. 3), a reduction of autoacetylation 

indicates a reduction in the enzymatic activity rather than sub-

strate interaction. Furthermore, although the residual activity is 

less desirable for the rescue experiment, it does indicate that the 

substitution does not grossly disrupt the conformation of San. 

Consistent with the notion that the acetyltransferase activity of 

San is required for sister chromatid cohesion, the Y124F mu-

tant, even expressed at a higher level, failed to rescue the cohe-

sion as effi ciently as the wild-type San (Fig. 4). Collectively, 

our results strongly suggest that the acetyltransferase activity of 

San is required for its function in sister chromatid cohesion.

San is required for centromeric cohesion 
by stabilizing cohesin at the centromeres 
in a Sgo1-independent manner
In HeLa cells, the localization of Sgo1 appears unchanged af-

ter the depletion of San (Fig. 6 B). This is similar to what was 

reported in D. melanogaster (Williams et al., 2003). Nonethe-

less, the centromeric cohesion is compromised based on the 

“puffed” phenotype in cells depleted of both San and Plk1 and 

the lack of cohesin at the mitotic centromeres in cells depleted 

of San. How does San mediate the centromeric cohesion? One 

possibility is that San is required for the establishment of sis-

ter chromatid cohesion specifi cally at the centromeres. In the 

absence of San, the centromeric cohesion may never be prop-

erly established, thus cannot be rescued by inactivating the 

prophase pathway. This scenario is attractive because genetic 

studies suggest that acetyltransferase Eco1/Ctf7 may be in-

volved in the establishment of sister chromatid cohesion dur-

ing S phase. It is possible that in metazoans, the establishment 

of cohesion may use two different acetyltransferases. How-

ever, San seems to localize to the cytoplasm in interphase cells 

(Fig. 5). This localization is also conserved in D. melanogaster 

(Williams et al., 2003). In contrast to San, the members of 

the Eco1/Ctf7 family localize directly on interphase chromo-

somes in yeast and human cells (Toth et al., 1999; Tanaka 

et al., 2001; Hou and Zou, 2005). Therefore, it is unlikely that 

San plays a direct role in the establishment of sister chromatid 

cohesion in interphase. It may, however, modify a cohesion 

establishment factor in the cytoplasm, which is then shuttled 

into the nucleus.

Alternatively, San may be involved in the maintenance of 

the centromeric cohesion in mitosis. This is consistent with 

the apparently normal cohesin localization in interphase cells 

(Fig. 6 C). If this is the case, the epistasis of the San and Plk1 

depletions suggests that San may function downstream of Plk1. 

However, because Plk1 seems to phosphorylate SA2  directly to 

remove cohesin from chromosomes (Hauf et al., 2005), a linear 

pathway, which places San between Plk1 and cohesin, becomes 

less plausible. On the other hand, San and Plk1 may work inde-

pendently to stabilize cohesins on the mitotic centromeres, in which 

both the dephosphorylated status of SA2 and the acetylated-

status of a San substrate are  required for stable centromeric 

cohesion. This scenario will satisfy the epistasis described in 

Fig. 7. Interestingly, a recent study demonstrated that a phos-

phorylation of histone H3 may be  required for sister chromatid 

cohesion in a Sgo1-independent manner (Dai et al., 2006). It is 

possible that San may also mediate this histone phosphorylation 

event. The identifi cation of the “cohesion substrate” of San will 

ultimately shed light on the mechanism.

Materials and methods
Antibodies
The polyclonal rabbit antibody to human San was raised by Genemed 
Synthesis, Inc. using His-tagged recombinant San as the antigen. The result-
ing crude serum was affi nity-purifi ed before use in immunoblot and indirect 
immunofl uorescent staining. Antibodies to NatH and Ard1 were provided 
by J.R. Lillehaug (University of Bergen, Bergen, Norway; Arnesen et al., 
2005). Antibody to Sgo1 was a gift from H. Yu (University of Texas 
Southwestern Medical Center, Dallas, TX; Tang et al., 2004). Antibodies 
to securin (Zou et al., 1999) and ESCO2 (Hou and Zou, 2005) have 
been previously described. Antibodies to cyclin B1, cyclin A2, α-tubulin, 
phospho-H3, and topoisomerase II-α were purchased from Santa Cruz Bio-
technology. The CREST serum was purchased from Immunovision. FITC, 
Cy3, and Alexa Fluor 488–labeled secondary antibodies were purchased 
from Invitrogen.
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Cell culture, cell cycle synchronization, cellular fractionation
HeLa and 293T cells were grown in DME, whereas HCT116 cells were 
cultured in McCoy’s 5A, both supplemented with 10% FBS. The GFP-
SMC1–stable HeLa cell line was maintained in DME containing 0.5 mg/ml 
G418 (Sigma-Aldrich). HeLa cells were synchronized at G1/S or c-metaphase 
by double thymidine block or thymidine–nocodazole arrest, respectively 
(Fang et al., 1998). The cellular fractionation was performed as previ-
ously described (Mendez and Stillman, 2000).

Transient transfection of siRNA oligonucleotides
To knockdown San and NatH transiently in HeLa cells, two consecutive 
transfections were performed on days one and two by the calcium phos-
phate method, and cells were harvested on day fi ve for analysis. To de-
plete Plk1, a previously described RNA duplex (Kraft et al., 2003) was 
introduced into HeLa cells on day four. The RNA oligonucleotides (sense/
antisense) synthesized by Thermo Fisher Scientifi c to deplete NatH, Ard1, 
and San are A C C U U G G C U A U G A A A G G A ctt/A U C C U U U C A U A G C C A A-
G G U tt, U G G G A A G A U U G U G G G G U A ctt/A U A C C C C A C A A U C U U C C C-
A tt, and G A C A A G U U C U A C A A U U A G tt/A U C C U U G U A G A A C U U G U C A tt, 
respectively. To deplete San from the SMC1-GFP cells, we used G G C U A G-
G A A U A G G A A C U A A tt/U U A G U U C C U A U U C C U A G C C tt.

San shRNA-inducible stable cell line and the rescue experiment
The DNA oligonucleotides G A T C C C G T G A C A A G T T C T A C A A T T A G T T C A A-
G A G A A T C C T T G T A G A A C T T G T C A T T T T T A  and A G C T T A A A A A T G A C A A G T-
T C T A C A A G G A T T C T C T T G A A C T A A T T G T A G A A C T T G T C A C G G  synthesized 
by IDT were annealed and cloned into BglII and HindIII sites of the pSupe-
rior.puro vector from OligoEngine to generate a single-unit shRNA con-
struct. The shRNA unit, containing an H1 promoter and San-shRNA fl anked 
by XhoI and SalI sites, was amplifi ed by PCR and cloned into the SalI site 
of the single-unit shRNA construct to generate the two-unit shRNA construct. 
This procedure was repeated again to generate the three-unit shRNA con-
struct that was used in this study. The inducible San-shRNA construct and 
pcDNA6/TR (Invitrogen) were cotransfected into HeLa cells using Lipo-
fectamine (Invitrogen) according to the manufacturer’s protocol. The next 
day, cells were selected with 1 μg/ml puromycin and 3 μg/ml blasticidin. 
3 wk later, individual clones were picked up, and the expression of shRNA 
was induced with 3 μg/ml doxycycline for 4 d. A clone showing the best 
knockdown effect was used for the rescue experiment. In the rescue experi-
ment, the rescuing plasmids were transfected into the inducible San-shRNA 
cell line right before the induction. The second round of DNA transfection 
was performed the next day to boost the transfection effi ciency, and cells 
were harvested 4 d later for analysis. All the rescue constructs were based 
on pCS2 and tagged with His6 tag. To make their transcripts resistant to San-
shRNA, the DNA sequence “A A T G A C A A G T T C T A C A A G G A T ” in San cDNA 
was scrambled to “AACGATAAATTTTATAAAGAC,” which does not change 
the resulting amino acid sequence (the substitutions are underlined).

Construction of the SMC1-GFP stable cell line
The SMC1 gene, with GFP fused in-frame at its C-terminal end, was cloned 
into the pIRESneo3 vector (CLONTECH Laboratories, Inc.) for eukaryotic 
gene expression. The construct was transfected into HeLa cells, and a 
G418-resistant stable cell line expressing SMC1-GFP was generated and 
used for further experiments.

In vitro acetylation assay
The assay was performed as previously described (Hou and Zou, 2005). The 
fi nal concentration for 14C-labeled acetyl-CoA is �1 mM. The chromosome 
pellet was prepared as previously described (Mendez and Stillman, 2000).

Chromosome spreads and immunofl uorescent staining
The procedure to prepare mitotic chromosome spreads has been previ-
ously described (Hou and Zou, 2005). To prepare the spreads for immuno-
fl uorescent staining, the cells were incubated in hypertonic buffer (60–70 
mM KCl) for 10 min and cytospun onto the slides. For statistical compari-
son, the percentage of the mitotic spreads exhibiting various status of sister 
chromatid cohesion was calculated. After repeating at least three trials, the 
statistic signifi cance was determined by a paired two-sided t test and indi-
cated as the P value.

For immunofl uorescent staining of regular HeLa cells, chromosome 
spreads or cells growing on the coverslip were fi xed with cold methanol 
(−20°C) for 2 min and rinsed briefl y with PBS. The cells were permeabi-
lized with PBS containing 0.2% Triton X-100 for 10 min, followed by block-
ing with 3% BSA in PBS for 30 min. After that, the cells were incubated with 
the primary antibody in 3% BSA for 1 h, followed by the incubation with 
the secondary antibody in donkey serum with three washes in between. 

After three washes with PBS, the coverslips were mounted onto the slides 
and sealed. To stain Sgo1, the cells were fi xed with 4% paraformaldehyde 
(in PBS) instead of methanol.

For immunofl uorescent staining of the SMC1-GFP HeLa cells, chromo-
some spreads or cells growing on the coverslip were extracted with 
PBS + 0.2% Triton X-100 before being fi xed with 4% formaldehyde in PBS for 
30 min. Blocking was performed in SNBP buffer (0.02% saponin, 0.05% 
NaN3, and 1% BSA in PBS) for 30 min. Cells were washed three times 
with PBS after incubation with anti-GFP (Invitrogen) for 1 h. After the incu-
bation with secondary antibody for 1 h, cells were washed three times. 
After a brief incubation with DAPI in PBS for 5 min, the coverslip was mounted 
and sealed.

Epifl uorescence and confocal microscopy were performed at room 
temperature on an Axioplan 2 microscope and a LSM510 META Laser 
Scanning Confocal Microscope, respectively (both Carl Zeiss MicroImag-
ing, Inc.). A Plan-A P O C H R O M A T  100×/1.4 NA oil objective or a Plan 
NEOFLUAR 10×/0.30 NA was used on the Axioplan2 and the images 
were acquired with a 1,388 × 1,040 AxioCam HRm charge-coupled de-
vice camera controlled by OpenLab (Improvision). A Plan-A P O C H R O M A T  
100×/1.4 NA oil objective was used on the LSM510, and the images 
were acquired with accompanied software. Gamma adjustments and nec-
essary cropping were performed using Photoshop 7.0 (Adobe).

Online supplemental material
Fig. S1 shows the cloning of the human homologue of San. Fig. S2 shows 
that San-siRNA cells were arrested in metaphase. Fig. S3 shows that the 
endogenous San was depleted by siRNA in HeLa cells stably expressing 
SMC1-GFP, and that SMC1-GFP faithfully reported the dynamics of the 
cohesin complex. Fig. S4 shows that Sgo1 localizes next to the crest sig-
nals on the chromosome spreads with both paired and unpaired chro-
matids. The online version of this article is available at http://www.jcb
.org/cgi/content/full/jcb.200701043/DC1.
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