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We congratulate Mody et al.(1) on their sophisticated multi-state analysis of 1,577 

hospitalized patients with COVID-19 in a regional U.S. hospital system. Multi-state models 

allow for a detailed investigation of the course of disease while importantly avoiding severe, 

yet common, types of bias (2). 

Previous articles characterize the longitudinal trajectory of COVID-19 hospitalized patients 

with regard to methodology (3) and outcome classification (4) in multi-state settings, and 

apply these methods to German data (5). Our experience enables important additional insights 

that we would like to contribute here. 
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First, we stress that recognition of discharge alive as a competing risk in the cause-specific 

Cox regression is vital for a complete understanding of covariate effects. Patients who are 

discharged alive are no longer at risk of intensive care unit (ICU) admission, intubation and 

death in the hospital. Effects on the discharge hazard have an indirect effect on the risk of 

these events. For example in Rieg et al.(5), we found that the male sex significantly reduces 

the discharge hazard. Even though sex was not found to have a significant effect on the death 

hazard, the absolute risk of death in the hospital was increased for male patients; they stayed 

longer in the hospital and were consequently longer at risk for ICU admission, intubation and 

death. Thus, the Cox regression analysis only provides a complete picture of the covariate 

effects if the effects on the discharge hazard are also presented. 

Furthermore, Mody et al. provide detailed stacked probability plots (figures 1, 2 (1)) for 

different levels of care (inpatient floor, intensive-care, invasive and non-invasive ventilation) 

as well as death and discharge. Separate to the plots, the median and interquartile range (IQR) 

of the time patients spent in each level of care is given (figure 5). We emphasize that the 

stacked probability plots also impressively combine this information in one single graphic. 

The mstate R-package that the authors use provides a powerful function that allows for the 

estimation of the mean time spent in each level of care. Confidence intervals can be obtained 

via bootstrapping (3,4,6). These estimates are directly related to the stacked probability plot as 

the area between two curves (7); readers can discern the different durations spent in each level 

of care directly from the graphic. In contrast to median and IQR, the estimated mean durations 

provide direct information for the planning of hospital capacities such as ICU beds and 

ventilators. Of note, the multi-state model can be simplified by consolidating states while 

neither altering these estimates nor the risks of requiring a specific level of care, being 

discharged alive, or dying. At the same time the simplified model results in higher statistical 

power, allows a clearer presentation of the results and facilitates comparison with other 

studies with lower level of detail. 

Finally, we highlight that multi-state analyses are also a powerful tool to harmonize 

heterogeneous endpoints in randomized controlled trials (4). For example, all categories of the 

endpoint scale developed by the World Health Organization for COVID-19 trials can be 

combined in a single informative stacked probability plot (8). This allows for direct visual 

comparisons of the course of disease of different treatment groups resulting in fast and easily 

accessible information. 

Mody et al. performed an exemplary analysis and we hope that our insights provide readers 

with further constructive information on the disease modelling of COVID-19. Researchers are 

encouraged to also use multi-state methodology for the evaluation of emerging threats such as 

the genetic variants of SARS-COV-2. A well-designed study, analyzed with multi-state 

methodology, can provide important insights into the complex disease progression. 
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