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Introduction

Prostate cancer (PCa) is one of the most common 
cancer among men globally (Jemal et al., 2011). The 
precise mechanisms underlying PCa development is 
largely unknown. Mounting evidence suggests that 
genomic and environmental factors play a role in 
development and progression of PCa (Cunningham et 
al., 2003; Chokkalingam et al., 2007; Zhou et al., 2015; 
Sattarifard et al., 2018). Small insertions/deletions (indels), 
the second most common form of genetic variations in 
human genome, have been linked to cancer development 
(Mullaney et al., 2010; Hashemi et al., 2018a; Hashemi 
et al., 2018c; Hashemi et al., 2018d). 

EGLN2 (Egl nine homolog 2) gene which is located on 
chromosome 19 (19q13.2) encodes prolyl hydroxylases 1 
(PHD1) (Ryan et al., 2014). 

Hypoxia, a main characteristic of solid tumors, leads 
to alterations of gene expression in tumor cells to adapt to 
the hypoxic environment (Brahimi-Horn et al., 2007). The 
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hypoxia-inducible factor 1 (HIF-1), a key transcriptional 
activator is induced by hypoxia (Semenza, 1999). The 
HIF-1 plays a critical role in the development of solid 
tumors and in coordinating the cellular response to 
hypoxia and oxygen homeostasis (Maxwell and Ratcliffe, 
2002; Semenza, 2007; Kaelin and Ratcliffe, 2008). The 
level of HIF-1 is tightly regulated by three PHDs (PHD1, 
PHD2 and PHD3) (Appelhoff et al., 2004; Willam et 
al., 2004). In normoxia condition HIF is hydroxylated 
at specific residues by PHDs which uses oxygen as a 
substrate. Hydroxylated HIF binds to a protein called Von 
Hippel Lindau protein (VHL) for its degradation, while in 
hypoxic situation, stabilization and nuclear translocation 
occur, leading to oncogenes activation (Appelhoff et al., 
2004; Stolze et al., 2006; Pezzuto and Carico, 2018). 

Several studies investigated the correlation between 
EGLN2 4-bp ins/del polymorphism (rs10680577) and 
susceptibility to various cancer comprising breast cancer 
(Hashemi et al., 2018b), colorectal cancer (Li et al., 
2017), gastric cancer (Wang et al., 2014), hepatocellular 
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carcinoma (HCC) (Zhu et al., 2012), and lung cancer (Che 
et al., 2014; Zhu et al., 2018), As far as we know, there 
is no data concerning the impact of EGLN2 4-bp ins/del 
polymorphism on PCa susceptibility. Consequently, the 
current study aimed to assess the impact of this variant 
on PCa development. 

Materials and Methods

This case-control study conducted on 170 histologically 
confirmed PCa patients and 196 cancer free men. The 
study design and enrollment procedure have been 
explained previously (Hashemi et al., 2017a; Hashemi 
et al., 2017b; Sattarifard et al., 2018). The study was 
approved by the Zahedan University of Medical Sciences 
ethics committee and all participants were asked to provide 
their written informed consent. Whole blood samples were 
collected in EDTA tube, and genomic DNA was purified 
by salting out method.

Genotyping
Genotyping of EGLN2 4-bp ins/del (rs10680577) 

polymorphism was done by mismatch polymerase chain 
reaction-restriction fragment length polymorphism 
(PCR-RFLP) as described previously (Hashemi et 
al., 2018b). The forward and reverse primers were 
5`-CCGTTATAAAAGATACTTATGTAAATCAC-3` and 
5`-TTGGAATCAAGTGGCGTCG-3`, respectively. PCR 
was achieved using Prime Taq Premix (Genet Bio, Korea) 
and the PCR products were digested by AleI restriction 
enzyme. The del allele digested and created 224 and 31 
bp fragments, whereas the ins allele remained undigested 
(259 bp).

Statistical analysis
All analyses were conducted with SPSS 22 statistical 

package. The χ2 and independent sample t-test were used 
for categorical and continuous data, respectively. Odds 
ratios (ORs) and 95% confidence intervals (95% CIs) was 
estimated by logistic regression analysis. P value < 0.05 
was considered statistically significant. 

Pooled analysis 
Pooling of our outcomes with six previous published 

studies was done using STATA 14.1 software. Electronic 
databases were searched for all articles describing the 
relationship between EGLN2 4-bp ins/del polymorphism 
and cancer susceptibility. The characteristic of study 
included into pooled analysis is shown in Table 3. The 
relationship between EGLN2 polymorphism and cancer 
risk was assessed by pooled ORs and their 95% CIs. The 
significance of the pooled OR was assessed by the Z-test, 
and P<0.05 was considered to be statistically significant. 
Heterogeneity between studies was determined by I2 test 
and Q test. The I2≥50% or PQ< 0.1 showed the presence 
of heterogeneity. If heterogeneity exists the random effect 
model was applied. We determined publication bias using 
Begg’s funnel plot and Egger’s test. Sensitivity analyses 
were conducted in order to assess the data stability. 

Results 

The study group consisted of 170 histologically 
confirmed PCa (mean age: 61.2±6.6 years) and 196 
cancer free men (mean age: 64.5±8.9 years). Statistically 
significant difference was observed between cases 

4-bp ins/del 
polymorphism

Case
n (%)

Control
n (%

*OR (95%CI) *P

Codominant

   ins/ins 51 (30.0) 59 (30.1) 1 -

   ins/del 109 (64.1) 118 (60.2) 0.98 (0.61-1.57) 0.816

   del/del 10 (5.9) 19 (9.7) 0.50 (0.21-1.21) 0.126

Dominant

   ins/ins 51 (30.0) 59 (30.1) 1 -

   ins/del+del/del 119 (70.0) 137 (69.9) 0.91 (0.58-1.45) 0.695

Recessive

   Ins/del+ins/ins 160 (94.1) 177 (90.3) 1 -

   De/del 10 (5.9) 19 (9.7) 1.95 (0.87-4.41) 0.107

Allele

   ins 211 (62.0) 236 (60.2) 1 -

   del 129 (38.0) 156 (39.8) 0.92 (0.69-1.25) 0.649

Table 1. Genotype and Allele Frequencies of EGLN2 
rs10680577 (4-bp ins/del) Polymorphism in PCa and 
Controls

*Adjusted by age

Characteristic of 
patients

EGLN2 4-bp ins/del p
Ins/ins Ins/del Del/del

Age at diagnosis (years, n) 0.32
   ≤60 22 54 7
   >60 28 55 3
Stage 0.554
   pT1 2 5 1
   pT2a 3 20 2
   pT2b 2 8 1
   pT2c 30 50 5
   pT3a 3 6 1
   pT3b 10 20 0
PSA level at diagnosis (ng/ml), n 0.923
  ≤4 1 1 0
  4-10 26 54 6
  >10 23 54 4
Gleason score, n 0.228
   ≤7 40 84 10
   >7 10 25 0
Perineural invasion, n 0.567
   Positive 31 72 5
   Negative 19 37 5
Surgical margin, n 0.883
   Positive 17 40 3
   Negative 33 69 7

Table 2. Association between EGLN2 4-bp ins/del 
Polymorphism and Clinical Characteristics of Prostate 
Cancer Patients
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and controls groups regarding age (p<0.05). The 
frequency distribution of genotype and allele is shown in 
Table 1. The results indicated that EGLN2 4-bp ins/del 
polymorphism was not correlated with PCa susceptibility 
in heterozygous (OR=0.98, 95%CI=0.61-1.57, p=0.816), 
homozygous (OR=0.50, 95%CI=0.21-1.21, p=0.126) 
dominant (OR=0.91, 95%CI= 0.58-1.45, p=0.695, 
recessive (OR=1.95, 95%CI=0.87-4.41, p=107) and allele 
(OR=0.92, 95%CI=0.69-1.25, p=0.649) genetic models. 

The relat ionship between the variant  and 
clinicopathological features such as age, stage, prostate 
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specific antigen (PSA) level, Gleason score, perineural 
invasion, and surgical margin were determined (Table 2). 
The results indicated no significant relationship between 
the variant and clinicopathological features.

Main pooled analysis results 
The pooled results with six previous published studies 

support an association between 4-bp ins/del polymorphism 
of EGLN2 and cancer susceptibility. The variant 
positively associated with  overall cancer susceptibility in 
heterozygous (OR=1.38, 95 % CI=1.26-1.52, p<0.00001, 
ins/del vs ins/ins), homozygous (OR=1.66, 95 % 
CI=1.05-2.61, p=0.029, del/del vs ins/ins), codominant 
(OR=1.44, 95%CI=1.32-1.58, p<0.00001, ins/del+del/
del vs ins/ins), and allele (OR=1.32, 95%CI=1.18-1.49, 
p<0.00001, del vs ins) inheritance model (Table 4 and 
Figure 1).

Heterogeneity between the studies comprised in the 
pooled analysis is indicated in Table 2. The findings 
suggested no heterogeneity in heterozygous and dominant 
genetic models. 

Begg’s funnel plot and Egger’s test noticed no 
publication bias in all genetic models except in dominant 
(Table 4).

We executed sensitivity analysis to evaluate the 
influence of each study on the overall estimate. The 
pooled ORs were not substantially changed except in 
homozygous model, indicating that the present pooled 
analysis is stable and reliable.

Discussion

Prolyl hydroxylases 1 (PHD1) encoded by EGLN2 
gene is involved in the catalyze degradation of HIF-1 

Figure 1. The Forest Plot for the Relationship between EGLN2 4-bp ins/del Polymorphism and Cancer Susceptibility 
for ins/del vs ins/ins (A), del/del vs ins/ins (B), ins/del+del/del vs ins/ins (C), dels/del vs ins/del+del/del (D), and del 
vs ins (E). 
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by prolyl hydroxylation of specific residues. Several 
studies examined the role of EGLN2 4-bp ins/del 
polymorphism and the risk of some cancers (Zhu et al., 
2012; Che et al., 2014; Wang et al., 2014; Li et al., 2017; 
Hashemi et al., 2018b; Zhu et al., 2018). In the current 
study, for the first time, we inspected the correlation 
between EGLN2 4-bp ins/del polymorphism with the 
risk and clinicopathological characteristic of PCa. Our 
findings revealed no association between this variant 
and susceptibility as well as clinicopathological features 
of PCa patients. Furthermore, pooled analysis of our 
outcomes with six previous published studies indicated 
a significant association between the variant and risk of 
overall cancer in heterozygous, homozygous, codominant, 
and allele genetic models.

Long non-coding RNAs (lncRNAs), a class of 
non-coding transcripts longer than 200 nucleotides, 
are involved in epigenetic, transcriptional and 
post-transcriptional regulation of gene expression 
(Ponting et al., 2009). Growing evidence revealed that 
dysregulation expression of lncRNA contributes to the 
development and progression of various cancer for their 
function as proto-oncogene or anti-oncogene (Pibouin et 
al., 2002; Calin et al., 2007; Lin et al., 2007; He et al., 
2016; Tian et al., 2016; Pei et al., 2017). 

RERT-lncRNA, with 2,849 base pairs in length, is 
located within the proximal promoter of EGLN2, and 
a 4-bp ins/del polymorphism (rs10680577) is within 
PERT-lncRNA (Zhu et al., 2012). As rs10680577 variant 
is positioned within the RERT-lncRNA, it is reasonable 
that this variant may influence the expression level 
of RERT-lncRNA by affecting its folding structures. 
Recently, Zhu et al., (2018) reported that 4-bp ins/del 
polymorphism (rs10680577) affect the expression of 
EGLN2 and PERT-lncRNA. They found that the ins/
del+del/del genotype carriers had increased expressions 
level of RERT-lncRNA as well as EGLN2. 

In conclusion, our findings proposed that EGLN2 
4-bp ins/del polymorphism was not correlated with 
susceptibility and clinicopathological features of PCa in 
an Iranian population. Pooled analysis of our findings with 
previously published studies designated that 4-bp ins/del 
variant significantly augmented the risk of overall cancer. 
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