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Abstract
In a meta-analysis with multiple end points of interests that are correlated between or within

studies, multivariate approach to meta-analysis has a potential to produce more precise

estimates of effects by exploiting the correlation structure between end points. However,

under random-effects assumption the multivariate estimation is more complex (as it

involves estimation of more parameters simultaneously) than univariate estimation, and

sometimes can produce unrealistic parameter estimates. Usefulness of multivariate

approach to meta-analysis of the effects of a genetic variant on two or more correlated traits

is not well understood in the area of genetic association studies. In such studies, genetic

variants are expected to roughly maintain Hardy-Weinberg equilibrium within studies, and

also their effects on complex traits are generally very small to modest and could be hetero-

geneous across studies for genuine reasons. We carried out extensive simulation to explore

the comparative performance of multivariate approach with most commonly used univariate

inverse-variance weighted approach under random-effects assumption in various realistic

meta-analytic scenarios of genetic association studies of correlated end points. We evalu-

ated the performance with respect to relative mean bias percentage, and root mean square

error (RMSE) of the estimate and coverage probability of corresponding 95% confidence

interval of the effect for each end point. Our simulation results suggest that multivariate

approach performs similarly or better than univariate method when correlations between

end points within or between studies are at least moderate and between-study variation is

similar or larger than average within-study variation for meta-analyses of 10 or more genetic

studies. Multivariate approach produces estimates with smaller bias and RMSE especially

for the end point that has randomly or informatively missing summary data in some individ-

ual studies, when the missing data in the endpoint are imputed with null effects and quite

large variance.

Introduction
In genetic association studies of complex traits, estimation of the average effects of genetic vari-
ants on one or multiple quantitative phenotypic traits such as systolic blood pressure (SBP),
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diastolic blood pressure (DBP), blood triglycerides level (TG), low density lipoprotein (LDL)
and high density lipoprotein (HDL) levels, etc. could be of interest. If two or more of these
traits are measured in the same set of individuals, they may be correlated as they could be
simultaneously influenced by the same gene(s) (pleiotropic effects) and/or environment (e.g.,
high dietary fat intake) in the same individuals [1,2]. Hence the true risks (e.g., log-odds ratios
per one copy increase in the number of mutant/minor allele in a genotype at a DNA locus) of a
causal gene on such correlated traits may be correlated across studies and corresponding esti-
mates of risks may be correlated within studies. In individual studies, if risks estimates of differ-
ent groups are obtained compared to a common referent group, then the estimates could be
correlated within studies. For example, in genetic association studies the estimates of two log-
odds ratios measuring the risks of a disease or phenotype in two groups carrying one and two
copies of mutant risk allele as compared to a group carrying none are correlated within a study.

Multivariate approach could be used to jointly synthesize such correlated end points. (An
'endpoint' in the context of meta-analysis is an effect parameter to be estimated). It can exploit
the between and/or within-study correlation structure to yield more efficient or precise esti-
mates while univariate approach ignores such correlation structure [3,4]. It has been analyti-
cally shown to produce similar or more précised pooled estimates for correlated endpoints [5].
Also, simulation studies in clinical studies settings have shown that it can performs superior
particularly for the endpoint with randomly or informatively missing study-wise summary
data [3,6,7]

However, there are some practical issues with the use of multivariate approach in meta-
analysis. First, for a small meta-analysis or for situation where between-study variation is rela-
tively small compared to within-study variation, the multivariate method often estimates the
between-study correlation at the boundary of parameter space (−1 or +1) [6,8]. This is thought
to result in upwardly biased estimates of between-study variances and consequently imprecise
pooled estimates [6]. Next, when the dimension, p, of multiple endpoints increases, estimation
problem under multivariate random-effect meta-analysis becomes more complex because the
effective number of parameters to be estimated is p(p + 1)/2. For example, when p = 3, a 3-vari-
ate meta-analysis requires the estimation of a total of six between study variances and correla-
tion parameters simultaneously while a univariate meta-analysis requires estimation of just
one between-study variance parameter at a time. Therefore, even when the end points are
highly correlated, the use of multivariate approach can be prohibitive or may offer no clear
advantage especially when number of studies is small or between-study variances are smaller
compared to within-study variances. Despite advantages in theory, recent studies summarizing
the empirical meta-analysis studies found that the improvement on the bias or precision of the
pooled estimates is not remarkable from multivariate analysis compared to univariate in most
applications [9,10,11]. Finally, univariate analysis is simpler and easier to understand and con-
duct than multivariate approach [4].

Given the above-discussed promises and issues of multivariate meta-analysis, it is not clear
when its application may be preferable (i.e., whether it offers any practical advantage) to uni-
variate analysis in the setting of genetic association studies such as candidate genes studies,
genome-wide association studies (GWASs) or their replication and validation studies. Minor
allele frequency (MAF), and genotypic distribution that maintains Hardy-Weinberg Equilib-
rium (HWE) are important characteristics of such studies. Also, the effects of the most genetic
variants on complex traits are very small to moderate. Another important consideration is
potentially high degree of heterogeneity in genetic effects [12]. Besides clinical and methodo-
logical differences (e.g., variation on outcome definition) across studies, genetic studies have
additional sources of heterogeneity, which can be genuine (e.g., gene-local environment inter-
action) or artifact of the population (e.g., variation in MAF across populations) [12]. There are
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a few prior simulation studies (e.g., [3,6,7,10,13]) comparing the performance of multivariable
(MV) and univariate (UV) methods for bivariate problems in the setting of clinical or diagnos-
tic studies using aggregate data generation. But, none of them considered the settings typical of
meta-analysis of genetic association studies.

In this study, we compared the performance of univariate (separate) vs. multivariate (joint)
meta-analysis under random-effects (RE) assumption. When heterogeneity exists (which is
quite likely for genetic association studies [12] as discussed above), random-effect analysis is
the sensible and natural framework that can utilize the non-zero between-study correlation [3].
Although fixed-effect (FE) analysis has higher power to detect or discover disease-associated
genetic variants [14,15,16], random-effects assumption is desirable for the generalization of the
finding across populations. Multivariate approach theoretically offers some promise when
there is moderate to high heterogeneity in true effects on correlated traits, and we wanted to
assess if there is any practical advantage in different scenarios in the setting of genetic studies.
We considered the following scenarios varying: 1) multivariate dimension, p (2-variate and
3-variate end points), 2) degrees of between-study correlation, 3) degrees of within-study cor-
relation, 4) levels of heterogeneity, 5) average size of individual study, 6) size of meta-analysis.
Each of these scenarios were analyzed under four different aggregate (summary) data availabil-
ity scenarios: a) all aggregate data are available, b) all aggregate data except estimates of within-
study correlations are available, hence are ignored in the meta-analysis, c) aggregate data for
some studies are missing at random for end point 2, and d) aggregate data for some studies are
missing informatively for end point 2. We evaluated the performance with respect to mean
bias, relative mean bias percentage and root mean square error of the pooled estimate of effect
and coverage probability of the 95% confidence interval of the effect for each end point via
extensive simulation.

Methods
In a meta-analysis of genetic association studies, suppose we are interested in the estimation of
overall (average) effects of some factor X on multiple correlated quantitative traits or multiple
correlated estimates at different levels of the same factor on a trait. Correlated traits could be
HDL and LDL, X could be the number of copies of minor (mutant) allele in a genotype of a sin-
gle nucleotide polymorphism (SNP) at a specific DNA locus in an individual, and the effects
could be we the average increase/decrease in the traits values per one copy increase in X (under
additive model of inheritance). Such a meta-analysis could be performed using univariate or
multivariate approach.

Meta-analysis approaches
Univariate (UV) meta-analysis. In the ith study (i = 1,2,. . .,m), suppose y�ijk is the value of

the jth phenotype (j = 1,2,. . .,p) from the kth subject (k = 1,2,. . .,Ni), and xik is the correspond-
ing value of x. Then their relationship in the original study or in a meta-analysis when individ-
ual participant data (IPD) are available can be modeled as (can include other covariates as
well)

y�ijk ¼ aij þ bijxik þ εijk; εijk � Nð0; s2
ijÞ; ð1Þ

where, βij is the true effect of x on the jth end point (phenotype) and s2
ij is the error variance in

study i. In a univariate random-effects (RE) meta-analysis, we are interested in estimating βj,
the average of βij's of x on jth phenotype, fromm studies. For the observed effect (estimate),

Yij ð¼ b̂ ijÞ and its variance s2ij for the end point j (obtained by, say, fitting Eq 1) in study i, we
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usually assume Yijjbij � Nðbij; s
2
ijÞ and bij � Nðbj; t2j Þ, where t2j is between-study variance

for the end point j. Hence, we can use the marginal distribution, Yij � Nðbj; s2ij þ t2j Þ for the
estimation of parameters. In practice, t2j is unknown and is most commonly estimated by the

method of moment (MM). It can also be estimated by some likelihood based method such as
restricted maximum likelihood (REML) which performs better than MM especially when num-
ber of studies is limited. The estimate of βj and its variance for the end point j are obtained as

b̂ j ¼
Xm

i¼1
wijYij=

Xm

i¼1
wij and varðb̂ jÞ ¼ 1=

Xm

i¼1
wij;

where, wij ¼ 1= ðs2ij þ t̂2j Þ, is the weight of the ith study for the jth phenotype (j = 1,. . .,p). If

fixed-effect (FE) of x is assumed (i.e., βij = βj for all i, hence t2j ¼ 0Þ, then βj is interpreted as

the true effect, rather than the average effect, of x on the jth phenotype that we wish to estimate

in a univariate meta-analysis. In FE analysis, b̂ j and its variance are similarly computed as

above except that wij ¼ 1= s2ij is used.

Multivariate (MV) meta-analysis. Multivariate meta-analysis is the generalization of uni-
variate meta-analysis when p� 2 and is theoretically a promising alternative when the p traits
are correlated. In individual studies, we can jointly model the multiple phenotypes as

y�
ik ¼ αi þ βixik þ εik; εik � Npð0; ΨiÞ; ð2Þ

where βi = (βi1,βi2,. . .,βip)
t is the p-dimensional true effects of x jointly on all p phenotypes

andΨi is the p × p residual covariance matrix in study i. In random-effect multivariate
meta-analysis, we are interested in simultaneously estimating the average joint effects vector
β = (β1,β2,. . .,βp)

t of x on p phenotypes in overall population fromm studies.

Let Yi ¼ ðYi1; Yi2; . . . ; YipÞt ¼ ðb̂ i1; b̂ i2; . . . ; b̂ ipÞt be the joint observed (estimated)

effects and Si be covariance matrix of Yi in study i. Under RE model, let’s assume that
βi *MVNp(β,Σ) and its estimates Yi|βi *MVNp(βi, Si) in study i. Then, we can use the mar-
ginal distribution of the joint estimate in study i is Yi*MVNp(β, Σ + Si) to estimate the
parameter Σ and then compute the estimate of β. Here, Σ, the between-study covariance matrix
represents population variation in the studies’ true underlying effects, while Si, the within-
study covariance matrix represents variation in the ith study’s results due to repeated sampling
or chance. For instance, in bivariate problem:

Linear model for IPD in studyi :
y�i1k

y�i2k

 !
¼ ai1

ai2

 !
þ bi1

bi2

 !
xik þ

εi1k

εi2k

 !
ð3Þ

Summary data in studyi : Yi ¼
Yi1

Yi2

 !
¼ b̂ i1

b̂ i2

 !
;Si ¼

s2i1 rwisi1si2

rwsi1si2 s2i2

 !
ð4Þ

Parameters to be estimated : β ¼ b1

b2

 !
;Σ ¼ t21 rbt1t2

rbt1t2 t22

 !
ð5Þ

Marginal model :
Yi1

Yi2

 !
� MVN2

b1

b2

 !
;

t21 þ s2i1 rbt1t2 þ rwisi1si2

rbt1t2 þ rwisi1si2 t22 þ s2i2

 ! !
ð6Þ

Here, t21 and t
2
2, known as between-study variances, are the variances of βi1 and βi2 across stud-

ies, and s2i1 and s
2
i2, known as the within-study variances, are the variances of Yi1 and Yi2 within
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study i, respectively. The between-study correlation, ρb, is the correlation between βi1 and βi2
across studies (or populations) and the within-study correlation, ρwi, is the correlation between
Yi1 and Yi2 within study i.

In a meta-analysis, the within-study covariance matrix Si (i.e., rwi; s2i1and s2i2 for p = 2) is
assumed to be known in all studies (i = 1,2,. . .,m). However, in real meta-analysis it is typically
estimated from individual participant data, if accessible, by fitting the Eq 2 in each study. If
IPD is not available in all studies, then the estimates of ρwi’s might not be available in the corre-
sponding published studies for the reasons: some of the published studies might report the
aggregate data on ðYij; s2ijÞ; j ¼ 1; . . . ; p; that were obtained by fitting Eq 1 separately for

each trait, and some might report only ðYij; s2ijÞ; but not r̂wi 's even if those aggregate data

were obtained by fitting Eq 2 jointly on all traits. In such case, ρwi’s might have to be inferred or
estimated indirectly for multivariate meta-analysis [6] or different multivariate meta-analytic
technique that does not require r̂wi 's can be employed [8]. For a RE meta-analysis, Σ (e.g., three
parameters t21; t22, and ρb if p = 2) is estimated before computing the estimate of β (i.e., two
more parameters β1 and β2 for p = 2). But, in univariate analysis only one parameter t2j ðj ¼
1; 2; . . . ; pÞ is first estimated separately for the jth endpoint before computing the estimate of
βj. Restricted maximum likelihood (REML) method is commonly used for estimation of Σ,
assuming multivariate normality of random effects (i.e., βi *MVNp(β,Σ)). REML generally
produces smaller variance estimates within the realistic parameter space compared to the
method of maximum likelihood [3,4]. However, when multivariate normality is not met or is
questionable, multivariate method of moment (MMM) [17] or a method based on the theory
of U statistics may provide more unbiased estimate of Σ [18]. Then the estimate of β and its
variance are obtained as

β̂ ¼
Xm

i¼1
Wi

� ��1 Xm

i¼1
WiYi

� �
; and varðβ̂Þ ¼

Xm

i¼1
Wi

� ��1

whereWi ¼ ðSi þ Σ̂Þ�1

Under multivariate fixed-effect (FE) meta-analysis model, the between study heterogeneity is
assumed to be absent, i.e., Σ = 0 is assumed.

Simulation and estimation methods
Meta-analysis of estimated aggregate data from IPD data generation. We first gener-

ated the IPD data for a range of scenarios varying the study level parameters such as average
sample sizes, number of studies, etc. and estimated the summary data (i.e., effects estimates
and their variances and correlation(s) within a study) in each study to ensure that we pool real-
istic summary data typical of genetic association studies. We then pooled them over all studies,
thus performing a two-stage IPD meta-analysis. Estimating aggregate data by generating IPD
in individual studies (rather than directly sampling aggregate data using some distributions)
has another advantage that it also allows us to vary study level parameters such as sizes of indi-
vidual studies, and MAF of a genetic variant across studies and maintain the Hardy-Weinberg
Equilibrium (HWE) within each study, etc. This in turn allows us to assess the impact of such
study level parameters on the performance of methods. However, we also compared the perfor-
mance of two approaches by directly generating (sampling) aggregate data from some reason-
able distributions.

In the first stage of IPD meta-analysis, we considered a meta-analytic problem of estimating
the effect of X (x = 0,1,2), with two traits (p = 2) and three traits (p = 3). We considered the
minor allele frequency (MAF), f = 0.20 at the locus. We considered different scenarios with a
set of number of studies (m), and total meta-analysis size (N), asm = 5 and N = 5000;m = 5
and N = 10000;m = 10 and N = 10000;m = 15 and N = 20000;m = 30 and N = 30000, with the
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average study size, n = N/m. To approximate the practical situation where all studies will not
be of equal size and the distribution of minor allele will not be the same across all populations,
we considered variable study size (Ni) around n and slightly variable MAF (fi) around f across
studies. The distribution of Xmaintained HWE at p-value� 0.001 in HWE test in each study.

The study-wise effect vector βi = (βi1,βi2,. . .,βip)
t were simulated from Np(β,Σ), where β =

(β1,β2)
t for p = 2 and β = (β1,β2,β3)

t for p = 3. We considered small to modest genetic effect size
βj for trait j from a pool = {0.10,0.15,0.20,0.25,0.30,0.40}. For instance, β1 = 0.10 and β2 = 0.10
in a scenario with p = 2, and β1 = 0.20, β2 = 0.30 and β3 = 0.30 in another scenario with p = 3
was considered. Since the vast majority of causal SNPs might contribute only little and only a
few of them contribute considerably to heritability of a quantitative complex trait, this pool of
βj represents a reasonable spectrum of heritability, h2

j � {0.003 to 0.050} due to an individual

causal SNP with f = 0.20 and small to modest effect (where bj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
j =2fð1� fÞ

q
, under addi-

tive genetic risk model [19]). For such effect sizes and average study size, it is critical to choose
realistic values of Σ for simulation. We first calculated an approximate value of average within-
study variance, s2j ¼ s2 (for all j = 1,2. . .,p) of the estimate of βj in a study with the average

size n = N/m and MAF distribution strictly under HWE for f = 0.20 (see S1 File for details).
Then we obtained t2j as t

2
j ¼ s2j =3; s2j ; 3s2j (for all j) for the between-study heterogeneity, I

2

= 25%,50%, and 75%, respectively. Here, I2 ¼ t2j =ðt2j þ s2j Þ is the proportion of total vari-

ance due to true (between-study) heterogeneity [20]. The covariance elements of Σ are obtained

as tjj0 ¼ rbjj0tjtj0 ; ðj 6¼ j
0 ¼ 1; 2; . . . ; pÞ, where we chose a ρbjj, from a pool

{0.20,0.50,0.60,0.70,0.75}.
In the first stage of IPD meta-analysis, we simulated IPD trait values

y�ik ¼ ðy�i1k; y�i2k; . . . ; y�ipkÞt , for the kth subject (k = 1,2,. . .,Ni) with genotype x = xik (x = 0,1,

or 2) from study i (i = 1,2,. . .,m) for p = 2 or p = 3 scenario as in [21,22,23]

y�
ik � Npðαi þ βixik; ΨiÞ;

where, αi is a p × 1 vector of intercepts (baseline effects on j traits when x = 0), βi is the p × 1
vector of the true effect of x andΨi is a p × p residual variance matrix with p diagonal elements
as the error variances (s2

εij
) of individual observations on each of p traits and off-diagonal ele-

ments as corresponding covariances (sεijj0
¼ rwijj0

sεij
sεij0

), in study i. We chose a within-study

correlation, rwjj0
from the pool {0,0.3,0.5,0.75}. We fixed αi = (1,5)t for p = 2 and αi = (1,5,10)t

for p = 3 for all x andm, and let s2
εij
ffi 1 for all x genotypes, p traits andm studies to ensure the

identifiability of the model for comparison purpose in our simulation [21,22,23]. (See 'Ade-
quacy of chosen simulation parameters and accuracy of estimation' section in S1 File for how
Ψi was constructed.).

The study-wise estimates Yi ¼ β̂ i and their variances matrix Si (within-study variances s2ij
and covariances sijj0 ¼ r̂wijj0

sijsij0 ; j 6¼ j
0 ¼ 1; 2; . . . ; p) in study i (i = 1,2,. . .,m) were simulta-

neously obtained by fitting multivariate linear regression of y�ik on x in each study.
Simulation methods and scenarios for two-stage IPD meta-analysis are summarized in

Table 1. Adequacy of the choice of simulation parameters mimicking the setting of genetic
studies was assessed based on GWAS catalogue [24] and provided in Section A in S1 File. The
steps in the first stage of IPD meta-analysis are summarized in Section B in S1 File.

In the second stage of IPD meta-analysis, we meta-analyzed the estimated summary data
Yi’s and Si’s across all studies in each scenario performing both multivariate and univariate
meta-analyses under random-effects assumption. For each combination of parameters, we
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Table 1. Simulation scenarios andmethods for IPD data generation.

Parameters Assumed values

Suffix i = 1,2,. . .,m studies; j,j’ = 1,. . .,p endpoints; k = 1,. . .,Ni subjects in study i

No. of replications R = 5000

No. of end points p = 2, 3

No. of studies (m) and total
subjects (N)

m = 5 and N = 5000; m = 5 and N = 10000; m = 10 and N = 10000; m = 15
and N = 10000; m = 30 and N = 30000

MAF f = 0.20

Size of study i Ni * uniform(N/m − N/2m, N/m + N/2m), Ni ’ s were proportionally adjusted so
that

Pm
i ¼ 1 Ni ¼ N.

MAF in study i fi*N(mean = f, sd = f/5), fi
0 s were adjusted so that

Pm
i ¼ 1 fi=m ¼ f.

No. of minor allele x = 0,1,2

Genotype distribution In study i, for a SNP with MAF fi the genotype of Ni subjects were sampled for
Ni times with replacement from x = {0,1,2} with corresponding probabilities as
the frequencies {ð1� fiÞ2; 2fið1� fiÞ; f2i } (of genotypes distribution strictly
under HWE). HWE in each study was assessed through HWE exact test, and
sample was redrawn if HWE was not met (i.e., if P-value < 0.001) in the
study.

Heritability h2
j ¼ f0:003 to 0:05g for a causal SNP

SNP effects bj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
j =2fð1� fÞ

q
� {0.1 to 0.4} for f = 0.20 and range of h2

j

SNP joint effect β = (β1,. . .,βp)
t; e.g., β = (0.1,0.1)t for p = 2, and β = (0.20,0.30,0.30)t for p = 3

Between-study correlation ρbjj, = {0.2,0.5,0.6,0.7,0.75}; e.g., ρb = .5 for p = 2, and ρb12 = .7, ρb13 = .5,
ρb23 = .6 for p = 3

Heterogeneity I2 = 25%,50%,75% (low, moderate, and high heterogeneity)

Between study variance, t2j First, an average of within-study variance s2j of the estimate of βj was obtained
by generating IPD data in an average size study N/m with the distribution of x
strictly under HWE for a MAF f = 0.20 and then fitting the linear regression
model y�

ijk ¼ aþ bjx þ εik ðεik � Nð0; s2¼
ε 1Þa ¼ 1Þ 1000 times. (It would

roughly be s2j � ðXtXÞ�1s2
ε � ms2

ε=NvarðXÞ in a data). Then, a rough value of
t2j ¼ s2j I

2=ð1� I2Þ (for all j) was obtained for each level of I2 and finally Σ to
be used in the scenario was constructed from ρbjj,’s and t2j ’s.

Study-wise effects βi were sampled from Np(β,Σ)

Within-Study correlation rwjj0
¼ f0; 0:3; 0:5; 0:7g. In study i, we considered ρwijj, = ρwjj,. E.g., ρwi = .3

for p = 2, and ρwi12 = .3, ρwi13 = .3,ρwi23 = .5, for p = 3 for all i.

Baseline effect (when
x = 0)

αi = (1,5)t for p = 2 and αi = (1,5,10)t for p = 3 for all i.

Residual variance matrix Diagonal element of Ψi are close to 1 (s2
εij
ffi 1) and off-diagonal element

sεijj0
¼ rwjj0

sεij
sεij0

:

IPD data generation y�
ik were sampled from Np(αi + βix,Ψi)

Summary data in study i yi ¼ β̂ i and Si are estimated by fitting multivariate linear regression of y�
ik on

x in study i.

Abbreviations: IPD, individual participant data; MAF, minor allele frequency; HWE, Hardy-Weinberg

Equilibrium; SNP, single nucleotide polymorphism.

doi:10.1371/journal.pone.0133243.t001
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considered four scenarios related to the availability of aggregate data: 1) complete data sce-
nario, 2) complete data scenario but r̂w

ijj
0 were ignored, 3) missing at random scenario, 4) miss-

ing informatively scenario. Under complete data scenario, we utilized all summary data
including rw

jj
0 when applicable for all end points. Under complete data scenario with ignoring

r̂w
ijj
0 , we set r̂w

ijj
0 ¼ 0 (assuming r̂w

ijj
0 to be 0’s for all possible j 6¼ j0 pairs) and re-meta-ana-

lyzed under MV framework. This allows us to assess the impact of ignoring within-study corre-
lation when they are missing (not reported) in some or all studies and investigators choose to
ignore such correlation rather than inferring them indirectly [6] or using alternative techniques
[8] in multivariate meta-analysis. Undermissing at random (MAR) scenario, we assumed that
about 30% (m0 = 0.3m, rounded to the nearest integer) of studies had randomly missing sum-
mary data for end point 2 and chose those studies randomly. Randommissing is likely in a
meta-analysis of genetic studies if investigators in some studies do not consider estimating and
reporting the risk of a genetic variant on some trait(s) that are of interest in the meta-analysis.
Under sing informatively (MIF) scenario, we assumed that about 30% (m0 = 0.3m) of the studies
had informatively missing (for some reason) summary data for end point 2. This is a typical
scenario representing ‘publication bias’ in a meta-analysis of genetic studies, where investiga-
tors might not report or journal might not publish insignificant genetic association of a variants
with some trait in some studies, whereas significant genetic association in any direction (irre-
spective whether it is protective or risk) is still more likely to be reported and published. Under

this scenario, we identified the firstm0 smallest w21 ¼ ðyi2=si2Þ2 out ofm studies for end point
2 and considered them to be missing.

In each data availability scenario, summary data for all end points were jointly meta-ana-
lyzed by MV approach, where the missing summary data for end point 2 were imputed in both
MAR and MIF scenario before the meta-analysis. For each of them0 missing studies
(l = 1,2,. . .,m0), we considered yl2 = 0, yl2j0 = 0 for j0 6¼ 2 (i.e., setting r̂w

l2j
0 ¼ 0) and s2l2 ¼ 10.

This is a conservative imputation strategy that gives a too small weight to the missing (and
imputed) within-study estimate of 0 compared to non-missing end point(s) in a study in order
to utilize all non-missing end point data in MV approach. In both missing data scenarios, we
utilized r̂wijj0

’s available from all non-missing studies. Under UV approach, summary data for

each end point were meta-analyzed separately, where all data for non-missing end point and
available data for missing end point 2 were used. Estimation steps for different data availability
scenarios are summarized in Section B in S1 File.

We fitted the multivariate RE meta-analysis model usingmvmeta package and separate uni-
variate RE meta-analysis model for each end point) usingmetafor package in R language. The
estimates of Σ in MVmeta-analysis and t2j in UV meta-analysis were obtained by REML

approach. We used tmj�1; :025 value to construct the 95% confidence interval of each effect

parameter, βj (j = 1,. . .,p) [3,25]. We repeated each scenario for R = 5000 times (number of rep-
lications). (See Section B in S1 File for summary of estimation steps for the meta-analysis of
IPD data.)

We compared the performance of MV and UV approaches with respect to of mean bias, rela-

tive mean biases percentage (% bias), and RMSE in of each of b̂ j; t̂2j and r̂bjj0 , and coverage prob-

ability of 95% confidence intervals of βj (j = 1,. . .,p). We also compared the percentage of times t̂2j
was estimated at parameter boundary (i.e., t̂2j ¼ 0) by both UV andMV approaches and r̂bjj0

estimated at the boundary of parameter space (i.e., r̂bjj0 ¼ � 1; þ 1, |1|) by the MVmethod,

where we defined t̂2j ¼ 0 if t̂2j < :00005 and r̂bjj0 ¼ j1j if jr̂bjj0 j > :9995 [17,18]. We also
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defined under and over estimations of r̂bjj0 as r̂bjj0 < �0:95 and r̂bjj0 > 0:95 since ^jrbjj0 j > 0:95 is

an indication of unstable estimation [8].
Meta-analysis of directly sampled aggregate data. Additionally, we compared the perfor-

mance of multivariate and univariate approaches via simulation in a few specific scenarios by
directly generating (sampling) aggregate data (Yi and Si) in each study (as opposed to estimat-
ing them in the first-stage of the IPD meta-analysis described above). For this, we considered
bivariate case with β = (β1 = 0.1, β2 = 0.1)t. We used the same Σ (i.e., t2j 's and ρb) and average s

2
j

as t2j for I
2 = 50% as in two-stage IPD meta-analysis for the similar scenario. To facilitate the

direct generation of realistic Si, we relied on the distribution of summary estimates (i.e., average
SD of Sij's (j = 1, 2) and r̂wi ’s, and correlation(Si1, Si2) across studies) observed in the analysis of
IPD data. (See Section C in S1 File for details). Then we directly generated Yi = (Yi1, Yi2)

t from
its marginal distribution Yi*N2(β, Σ + Si) provided in Eq 6. Thus, our data generation process
is slightly different and more realistic than previous simulation study (e.g., [6]) comparing the
multivariate and univarite approaches in clinical setting in that we maintained the likely corre-
lation between within-study variances between two end points (as they are likely to be similar
from the same study) and also considered variable within-study correlations across studies.

The directly generated summary data were then meta-analyzed using multivariate and uni-
variate approaches with RE assumption as in the second stage of IPD meta-analysis described
above.

Simulation Results
Comparative performance of multivariate and univariate RE meta-analytic methods in certain
key scenarios based on estimation of summary data through IPD data generation and analysis
are presented on Tables 2–5 and Fig 1. More results are presented on Tables A-F in S2 File and
S1–S5 Figs. Comparative results based on the directly sampled aggregate data are presented in
Tables G-J in S2 File. In the supplementary tables in S2 File, the results at low heterogeneity
(i.e., when I2 = 25%) at which multivariate approaches are thought to offer no clear benefit, are
also presented.

Impact of summary data (un)availability

Complete data scenario, where within-study correlations, ρ̂wi’s, were utilized. The per-

centage of times ρb’s were estimated at the parameter boundary ði:e:; r̂b ¼ 1 or � 1Þ were
quite high for small meta-analysis (Table 2 and Fig 1), which in general decreased asm or N or

I2 increased (Tables 2–5). Also, the relative mean bias and RMSE of t̂
2
j ’s by both approaches

decreased as N orm or I2 increased, but those by MV approach become more similar to or
smaller than those by UV approach. The mean estimates of effects parameters produced by
both approaches were unbiased and very similar (mean bias< .0001 and relative mean bias

percentage< 0.1%), where RMSE of b̂ j ’s were also very similar up to 4 decimal points. In

almost all scenarios, there was virtually no difference in the coverage probabilities of the 95%
CI by both methods (coverage probability difference< 1%) where both methods almost main-
tained 0.95 probability.

Complete data scenario, where all within-study correlations, ρ̂wi’s, were missing or

ignored. Ignoring r̂w in MVmethod when ρw � 0.3 resulted in the higher percentage of r̂b at

upper parameter boundary as compared to when r̂w’s were utilized (Tables 2–5). Also, for

larger ρw, ignoring r̂w resulted in mean t̂
2
j ’s more upwardly biased compared to MV analysis

when r̂w’s were available and utilized and compared to UV analysis (Tables 2–5). However,
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ignoring r̂w’s resulted in no increase of mean bias and RMSE of the effect parameters b̂ j’s in

MV analysis. Also, there was no or only little impact on the coverage probabilities of βj’s.

Missing at random (MAR) scenario, where all ρ̂wi’s, were utilized. Mean bias on r̂b was

slightly higher and more frequently estimated at the parameter boundary, and mean bias on t̂
2
j

was slightly higher for non-missing end point and much higher for missing end point in MAR
scenario compared to complete data scenarios (Tables 2–5). However, both the UV and MV

approaches introduced no or negligible bias in mean b̂j s (mean bias� 0.0002, relative mean

bias� 0.2%) for both non-missing and missing end points. Also, the RMSE by both
approaches were similar for non-missing end point, but those by MV were similar or smaller
for randomly missing end point. However, note that the estimates by both methods were quite
dispersed (S1 and S4 Figs) resulting in high RMSEs (not shown in tables) for the missing end

point. Coverage probabilities of b̂ j’s between MV and UV methods were similar for non-miss-

ing end point, and almost always maintained 0.95 level. Coverage probability by MV was simi-
lar or smaller by about 1~2% than that of UV in general for missing end point.

Missing informatively (MIF) scenario, where all ρ̂wi’s were utilized. The t̂
2
2 (for missing

end point) were often underestimated at low or moderate heterogeneity (I2 � 50%) by both
approaches form� 10, where UV tended to underestimate more severely and more frequently
produced the estimates at the parameter boundary (Tables 2–5, Tables A-J in S2 File, S2 and S5

Figs). Form� 15 and I2 � 50%, RMSE of t̂
2
j ’s were in general similar or smaller by MV

approach. Both the UV and MVmethods introduced no or very little bias in b̂j s for

Table 2. Relative mean bias percentage, RMSE and coverage probability when N = 10000, m = 10, β1 = 0.1, β2 = 0.1, ρb = 0.5, ρw = 0.3.

Summary Effects Heterogeneity Correlation

data % Bias RMSEb Coverage % Bias RMSEb % Bias %(ρ̂ bÞ
Method scenario I2,a β̂ 1 β̂ 2 β̂ 1 β̂ 2 β̂ 1 β̂ 2

τ̂ 2
1 τ̂ 2

2 τ̂ 2
1 τ̂ 2

2 (ρ̂ b) -1 +1 |1|

MV COM 50% 0 1 0 0 95.7 96.2 6 3 -3 -3 -17 11.8 30.5 42.3

UV COM 0 1 0 0 95.3 95.8 3 0 0 0 — — — —

MV COMc 0 1 0 0 95.9 96.2 8 8 -3 -3 31 6.1 49.3 55.4

MV MAR 0 0 0 0 95.9 95.0 6 8 -3 0 -22 15.7 38.6 54.3

UV MAR 0 0 0 0 95.3 96.3 3 3 0 0 — — — —

MV MIF 0 27 0 -5 95.7 80.7 6 -19 -3 -3 -34 21.3 41.9 63.3

UV MIF 0 31 0 0 95.3 81.5 3 -25 0 0 — — — —

MV COM 75% 0 0 0 0 95.0 94.9 0 -1 0 0 -9 2.1 7.7 9.8

UV COM 0 0 0 0 95.0 94.8 0 -1 0 0 — — — —

MV COMc 0 0 0 0 95.0 94.8 1 0 0 0 14 1.3 15.6 16.9

MV MAR 0 0 0 0 95.0 93.2 1 1 0 1 -12 4.8 15.9 20.7

UV MAR 0 0 0 0 95.0 95.4 0 0 0 0 — — — —

MV MIF 0 29 0 -4 95.1 79.1 1 6 0 0 -14 7 18.1 25.1

UV MIF 0 35 0 0 95.0 79.9 0 5 0 0 — — — —

Abbreviation: RMSE, root mean square error; MV, multivariate meta-analysis; UV, Univariate meta-analysis; COM, complete data scenario; MAR, end

point 2 missing at random for 30% studies; MAR, end point 2 missing informatively for 30% studies.
aThe between-study variances for both end-points t2j ; j ¼ 1; 2 are: t2j = 0.0036 for I2 = 50%, t2j = 0.0108 for I2 = 75%.
bRMSE of estimates by MV method are expressed as % smaller (-) or larger (+) of corresponding estimates by UV method.
cr̂w ignored.

doi:10.1371/journal.pone.0133243.t002
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non-missing end point (relative mean bias� .2%), and also the RMSE of b̂j s by two

approaches were in general similar. For the missing end point 2, the UV approach that pooled

b̂2i ’s from significant studies only in general produced similar or greater estimates of β2 than
did MV (where we considered only positive β2’s in our simulation) in individual replicated

data sets (S2 and S5 Figs). The mean bias and RMSE of b̂2 by MV method was almost always
smaller, and the difference was much pronounced as N orm or I2 increased (e.g., Table 2 and
Table F in S2 File). Coverage probabilities for non-missing end points were similar by both
methods; but that for missing end point 2 was much less than 0.95 for UV method while MV
method produced much better coverage for m� 10. However, coverage probability of UV
approach was in general higher than MVmethod even for randomly or informatively missing
end point for small meta-analysis (i.e., form� 5, where 2 studies were assumed to have miss-
ing summary data for end point 2, with UV pooling the end point over just 3 remaining stud-
ies) (Tables A and B in S2 File), as expected.

Impact of varying parameters sizes

Varying genetic effects sizes, βj’s. There was no bias on b̂j ’s irrespective of the sizes of the

true βj’s except in MIF scenarios for missing end point 2, for which the relative mean bias per-
centage was much higher when the effect sizes were small, e.g., when βj = 0.1, compared to
larger effect size, e.g., when bj � 0:3. However, this difference seems to be an artifact of the

Table 3. Relative mean bias percentage, RMSE and coverage probability when N = 20000, m = 15, β1 = 0.1, β2 = 0.1, ρb = 0.6, ρw = 0.3.

Summary Effects Heterogeneity Correlation

data % Bias RMSEb Coverage % Bias RMSEb % Bias %(ρ̂ bÞ
Method scenario I2,a β̂ 1 β̂ 2 β̂ 1 β̂ 2 β̂ 1 β̂ 2

τ̂ 2
1 τ̂ 2

2 τ̂ 2
1 τ̂ 2

2 (ρ̂ b) -1 +1 |1|

MV COM 50% 0 0 0 0 94.8 95.2 0 4 0 -5 -5 5 27 32

UV COM 0 0 0 0 94.7 95.1 0 4 0 0 — — — —

MV COMc 0 0 0 0 95.2 95.4 7 7 0 -5 34 1.6 52.4 53.9

MV MAR 0 0 0 -3 95.0 94.7 4 7 0 0 -12 8.4 35.7 44.1

UV MAR 0 0 0 0 94.7 95.6 0 4 0 0 — — — —

MV MIF 0 27 0 -9 94.9 66.2 4 -41 0 -4 -26 16.2 45.2 61.4

UV MIF 0 32 0 0 94.7 63.1 0 -48 0 0 — — — —

MV COM 75% 0 0 0 0 94.7 94.5 0 1 0 0 -3 0.3 3.2 3.5

UV COM 0 0 0 0 94.8 94.5 0 1 0 0 — — — —

MV COMc 0 0 0 0 94.8 94.5 1 2 0 0 15 0.1 10 10.1

MV MAR 0 0 0 -3 94.7 93.4 1 2 0 0 -4 1.1 10 11.1

UV MAR 0 0 0 0 94.8 95.0 0 2 0 0 — — — —

MV MIF 0 30 0 -11 94.7 71.4 1 -5 0 -3 -11 3.7 13.2 16.9

UV MIF 0 39 0 0 94.8 69.4 0 -5 0 0 — — — —

Abbreviation: RMSE, root mean square error; MV, multivariate meta-analysis; UV, Univariate meta-analysis; COM, complete data scenario; MAR, end

point 2 missing at random for 30% studies; MAR, end point 2 missing informatively for 30% studies.
aThe between-study variances for both end-points t2j ; j ¼ 1; 2 are: t2j = 0.0027 for I2 = 50%, t2j = 0.0082 for I2 = 75%.
bRMSE of estimates by MV method are expressed as % smaller (-) or larger (+) of corresponding estimates by UV method.
cr̂w ignored.

doi:10.1371/journal.pone.0133243.t003
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way relative mean bias is calculated (by dividing the absolute bias by true effect size), where
absolute mean biases were very similar in both smaller and larger βj’s when other parameters
(e.g.,m or ρb) were the same.

Varying levels of heterogeneity (I2’s). When I2 � 50%), MV approach performed similar

or better (similar or smaller relative mean bias and RMSE of b̂2 for the missing end point) than
univariate approach for MAR and MIF scenarios.

Varying meta-analysis size (m). Multivariate approach in general performed similar or
better than UV for the estimation of effects parameters whenm� 10 for I2 � 50% and
ρb’s� 0.5 or ρw’s� 0.5 in MAR and MIF scenarios for missing end point. Form = 5, MV
approach in general performed similar or worse than UV approach even in high heterogeneity,
even in N = 10000 or N = 20000, and even for missing end point in MAR and MIF scenarios
(Tables A and B in S2 File). The coverage probability of UV approach for smallm was quite
high, as expected.

Varying within- and between-study correlations (ρw’s and ρb’s). Multivariate approach
in general performed similar or better than UV for the estimation of effects parameters when
ρb’s� 0.5 or ρw’s� 0.5 andm� 10 at I2 � 50% in MAR and MIF scenarios for missing end
point.

Varying dimension of multivariate analysis (p = 2 vs. p = 3). For both p = 2 and p = 3,
the above comparative result seem to hold. However, the estimation of ρb12, ρb13, ρb23 at the
parameter boundary was slightly more frequent for p = 3 due to complexities in estimation,

Table 4. Relative mean bias percentage, RMSE and coverage probability when N = 30000, m = 30, β1 = 0.1, β2 = 0.2, ρb = 0.6, ρw = 0.3.

Summary Effects Heterogeneity Correlation

data % Bias RMSEb Coverage % Bias RMSEb % Bias %(ρ̂ bÞ
Method scenario I2,a β̂ 1 β̂ 2 β̂ 1 β̂ 2 β̂ 1 β̂ 2

τ̂ 2
1 τ̂ 2

2 τ̂ 2
1 τ̂ 2

2 (ρ̂ b) -1 +1 |1|

MV COM 50% 0 0 0 0 95.1 95.2 0 3 0 0 1 0.7 9.4 10.1

UV COM 0 0 0 0 95.1 95.3 0 3 0 0 — — — —

MV COMc 0 0 0 0 95.3 95.4 6 6 0 0 40 0.1 39.5 39.6

MV MAR 0 0 0 -2 95.1 94.8 0 3 0 0 -2 1.9 16.3 18.2

UV MAR 0 0 0 0 95.1 95.3 0 3 0 0 — — — —

MV MIF 0 27 0 -12 95.2 57.8 0 -31 0 -4 -9 6.4 26.8 33.2

UV MIF 0 32 0 0 95.1 49.7 0 -33 0 0 — — — —

MV COM 75% 0 0 0 0 94.8 94.5 1 0 0 0 -2 0 0.1 0.1

UV COM 0 0 0 0 94.9 94.4 1 0 0 0 — — — —

MV COMc 0 0 0 0 94.9 94.4 1 1 0 0 15 0 1.7 1.7

MV MAR 0 0 0 -3 94.8 94.1 1 1 0 2 -2 0 0.7 0.7

UV MAR 0 0 0 0 94.9 94.5 1 1 0 0 — — — —

MV MIF 0 26 0 -16 94.8 76.1 1 6 0 -4 -1 0.1 1 1.1

UV MIF 0 36 0 0 94.9 69.9 1 6 0 0 — — — —

Abbreviation: RMSE, root mean square error; CI, confidence interval; MV, multivariate meta-analysis; UV, Univariate meta-analysis; COM, complete data

scenario; MAR, end point 2 missing at random for 30% studies; MAR, end point 2 missing informatively for 30% studies.
aThe between-study variances for both end-points t2j ; j ¼ 1; 2 are: t2j = 0.0036 for I2 = 50%, t2j = 0.0109 for I2 = 75%.
bRMSE of estimates by MV method are expressed as % smaller (-) or larger (+) of corresponding estimates by UV method.
cr̂w ignored.

doi:10.1371/journal.pone.0133243.t004
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where a 3-variate RE meta-analysis requires estimating 6 between-study variance/covariance
parameters while a 2-variates requires estimating only 3 such parameters. However, such esti-
mation at the boundary did not seem to impact much on the mean biases and RMSE of the
effect parameter estimates and coverage probabilities of the parameters in 3-variate analysis.
For example, for N = 20000 andm = 30 where 3-variate RE meta-analysis requires estimating 6
between-study variance/covariance parameters, multivariate approach seemed performing
similarly or better than univariate counterpart in MAR and MIF scenarios with respect to rela-
tive mean bias, RMSE and coverage probability for missing end point even when heterogeneity
was low (I2 � 25%) (Table F in S2 File). This might be because 3-variate meta-analysis can bor-
row more reliable information for missing end point from two non-missing endpoints. On the
other hand, 2-variate analysis does not seem to offer similar degree of advantage in these miss-
ing data scenario.

Impact of unrealistic estimation of nuisance parameters

Estimation of ρb and τ2j at the parameters boundaries. Tables 2–5 and Tables A-J in S2

File show how frequently the ρb were estimated at the parameter boundary in MV analysis. Fig
1 and S1–S5 Figs show more detail picture of this estimation problem of MV approach in all
5000 replications when true ρb = 0.75 in a moderate sized meta-analysis (m = 10, N = 10000
with an average of 1000 subjects per study) at p = 2 and I2 = 50%). These figures also show how

smaller, similar or larger the t̂
2
j and standard errors of b̂ j are by MV compared to UV approach.

Table 5. Relative mean bias percentage, RMSE, and coverage probability when N = 10000, m = 10, β1 = 0.2, β2 = 0.3, β3 = 0.3, βb12 = 0.6, βb13 = 0.7,
ρb23 = 0.6, ρw12 = ρw13 = ρw23 = 0.

Summary Effects Heterogeneity Correlation

data % Bias RMSEb Coverage % Bias RMSEb % Bias %(ρ̂ bjj0 Þ ¼ j1j

Method scenario I2,a β̂ 1 β̂ 2 β̂ 3 β̂ 1 β̂ 2 β̂ 3
β1 β2 β3 τ̂ 2

1 τ̂ 2
2 τ̂ 2

3 τ̂ 2
1 τ̂ 2

2 τ̂ 2
3

ρ̂ b12 ρ̂ b13 ρ̂ b23 ρ̂ b12 ρ̂ b13 ρ̂ b23

MV COM 50% 0 0 0 0 0 0 96.6 96.1 96.7 11 8 13 -3 -3 -3 -14 -17 -12 16.7 16.9 16.8

UV COM 0 0 0 0 0 0 95.8 95.3 95.4 3 0 3 0 0 0 — — — — — —

MV COMc 0 0 0 0 0 0 96.7 96.1 96.6 11 8 11 -3 -3 -3 -14 -17 -12 16.7 16.8 16.7

MV MAR 0 0 0 0 1 0 96.7 95.8 96.6 11 18 13 -3 3 0 -22 -18 -20 21.8 21.8 21.9

UV MAR 0 0 0 0 0 0 95.8 96.6 95.4 3 3 3 0 0 0 — — — — — —

MV MIF 0 9 0 0 -3 0 96.5 86.1 96.4 11 -32 11 -3 -7 0 -29 -17 -28 26.1 25.8 26.2

UV MIF 0 10 0 0 0 0 95.8 87.2 95.4 3 -47 3 0 0 0 — — — — — —

MV COM 75% 0 0 0 0 0 0 95.2 94.7 95.6 0 1 2 -1 0 -1 -4 -2 -3 2.9 3.5 2.9

UV COM 0 0 0 0 0 0 95.0 94.7 95.1 -2 -1 0 0 0 0 — — — — — —

MV COMc 0 0 0 0 0 0 95.3 94.7 95.5 0 0 2 -1 0 -1 -4 -2 -3 2.7 3.3 2.9

MV MAR 0 0 0 0 0 0 95.3 93.3 95.6 0 6 2 -1 5 -1 -9 -2 -8 5.1 4.9 5.1

UV MAR 0 0 0 0 0 0 95.0 94.5 95.1 -2 1 0 0 0 0 — — — — — —

MV MIF 0 13 0 0 -7 0 95.3 78.3 95.7 0 -39 2 -1 1 -1 -18 -2 -19 7.5 6.4 6.8

UV MIF 0 16 0 0 0 0 95.0 78.1 95.1 -2 -48 0 0 0 0 — — — — — —

Abbreviation: RMSE, root mean square error; MV, multivariate meta-analysis; UV, Univariate meta-analysis; COM, complete data scenario; MAR, end

point 2 missing at random for 30% studies; MAR, end point 2 missing informatively for 30% studies.
aThe between-study variances for both end-points t2j ; j ¼ 1; 2; 3 are: t2j = 0.0036 for I2 = 50%, t2j = 0.0108 for I2 = 75%.
bRMSE of estimates by MV method are expressed as % smaller (-) or larger (+) of corresponding estimates by UV method.
cr̂w ignored.

doi:10.1371/journal.pone.0133243.t005
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When r̂b � 1, or r̂b � � 1 (as can be seen in Fig 1 and S1 and S2 Figs for moderate hetero-

geneity), the MV produced much larger t̂
2
j (i.e., t̂

2
j; MV=t̂

2
j; UV >> 1) and consequently larger

SE(b̂j) (i.e., SE b̂ j;MVÞ / SE(b̂ j;UVÞ > 1) in many replicated data sets. However, note that these

large ratios were because UV analysis severely underestimated t̂
2
j (including much frequently

producing t̂
2
j; UV � 0) in those data sets, whereas corresponding t̂

2
j; MV were much less biased

(i.e., biases closer to 0). For largerm or weaker ρb or greater I
2, estimation of ρb or t2j at the

parameter boundary were much less frequent. Also note that both the methods tended to either

Fig 1. Biases in the estimates of τ2, and biases and SEs of the pooled estimates of β2 frommultivariate vs. univariate approaches by whether or
not ρb is estimated at parameter boundary in 5000 replications in complete summary data scenario. Scenario:
N ¼ 10000; m ¼ 10; MAF ¼ 0:20; b1 ¼ 0:3; b2 ¼ 0:4; t21 ¼ t22 ¼ 0:0033; I2 ¼ 50%, ρb = 0.75, ρw = 0.5. Symbols and abbreviations: N, total
subjects;m, number of studies, β2 and τ2, average effect and between-study standard deviation of true study-wise effects for end point 2, respectively; I2 =
degree of between-study heterogeneity; ρb and ρw, true between-and within-study correlations, respectively; MAF, minor allele frequency; SE, standard
error; MV, multivariate approach; UV, univariate approach.

doi:10.1371/journal.pone.0133243.g001
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underestimate or overestimate t2j in the same direction (i.e., t̂
2
j from two approaches were posi-

tively correlated) (Fig 1 and S1–S5 Figs).
However, such estimations in the parameter boundaries did not result in higher mean biases

or RMSE of pooled estimates in MV than in UV analysis (Tables 2–5 and Tables C-J in S2

File). The average biases on t̂
2
j ’s and b̂ j’s were smaller in each of MV and UV analyses among

the replications where |r̂bj < 1 or |r̂bj � 0:95 than among replications where |r̂bj � 1 or

|r̂bj > 0:95.

Performance evaluation using direct sampling of aggregate data
The results of the meta-analysis of sampled aggregate data were consistent with two-stage IPD
meta-analysis. Tables G-J in S2 File show that the benefit of multivariate approach over univar-
iate analysis are pronounced for the missing end point in MAR and MIF scenario in high het-
erogeneity and largem and moderate to large within- or between- study correlation. For
example, for p = 2,m = 15,ρb = 0.75,ρw = 0.75, β1 = β2 = .1, and I2 ¼ 75% ðt2j ¼ :0075Þ,
and s2j ¼ t2j =3 ¼ 0:0025 ðsj ¼ :05 for both j = 1,2) under MIF scenario, MV produced

much smaller mean bias (b̂2 overestimated by 19% in MV vs. 39% in UV analysis) and 25%

smaller RMSE of b̂2 for the missing end point (Table J in S2 File). Also, the coverage probability
for the corresponding parameter in MV analysis was much better (77.2% in MV vs. 68.2% in
UV analysis), although both approaches resulted in lower coverage than nominal level.

Discussion
We compared the performance of multivariate and univariate approaches to meta-analysis of
genetic association studies for the correlated traits via simulation. When all summary data
were available from individual studies, MV offered no clear advantage. Also, MV did not offer
noticeable advantage even when summary data for some end points were missing randomly
(for which MV analysis was seen to offer remarkable benefit [6]) for moderate sized (m = 10)
meta-analysis or when there is little variation between studies (I2 = 25%). Reason might be that
MV requires estimating more parameters (including between-study correlation in between-
study variance matrix) simultaneously than univariate one. The estimation of between-study
correlation at the parameter boundary was quite often for small or moderatem or I2, in which
univariate approach much severely and frequently underestimated the between study variances
(as seen in Fig 1 form = 10), and consequently produced smaller standard errors of the pooled
estimates. Also, there were only 3 studies with randomly missing summary data whenm = 10,
which might not be sufficient to produce noticeable benefit of MV over UV approach for such
moderate sized meta-analysis. UV analysis offering in general similar or slightly higher cover-
age for randomly missing end point for small or moderatemmight be because it relies on
fewer available studies, consequently, producing wider confidence interval (as the pooled esti-
mate is expected to be unbiased but both the standard error of pooled estimate and critical
value from t-distribution would be larger for UV meta-analysis of fewer studies, even when it
usually more severely underestimated between-study variance). However, for larger meta-anal-
ysis (m� 15) with moderate to large heterogeneity (I2 � 50%), such estimation problem were
minimal and MV estimates were in general similar or better (i.e., smaller bias and RMSE) for
the randomly missing end point.

The biggest advantage of MVmethod is seen for informatively missing end point for
m� 15 with I2 � 50%, where the relative mean bias, RMSE and the coverage probability for
missing end point were better, confirming the previous finding in clinical studies setting [7].
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For informatively missing scenario, pooling the summary data from only the significant studies
results in upwardly biased pooled estimate when β2 > 0 (and would be downwardly biased if β2
< 0 was considered) for the missing end point, a phenomenon known as 'publication bias', in
univariate analysis. But, multivariate analysis that assigned null effect for missing summary
data (with practically negligible weight for them) might have borrowed the strength of correla-
tion structure to bring otherwise upwardly biased pooled estimate somewhat towards 0, thus
decreasing the degree of both mean bias and RMSE, hence somewhat correcting the impact of
publication bias. Despite producing wider confidence interval with using fewer studies, UV
method might still have lower coverage than MVmethod for informatively missing end point,
perhaps because the pooled estimate in UV analysis was usually much more biased.

A previous study [6] suggested that when between-study correlation are estimated in the

parameter boundary (i.e., when r̂b ¼ � 1 or +1), estimates of between-study variances in
multivariate approach are generally upwardly biased. We also noted that mean t̂2j ’s can (but not

necessarily) be upwardly biased when r̂b ¼ þ 1 (which was more frequent when ρb � 0.5).
However, we noticed that t̂2j ’s were more frequently downwardly biased (i.e., median t̂2j down-

wardly biased) in multivariate analysis when r̂b ¼ þ 1 for moderate heterogeneity (e.g.,

when t2j ¼ 0:0033 for I2 = 50% in complete data scenario as seen in Fig 1). when r̂b ¼ � 1,

MV analysis quite frequently underestimated t2j , where even the mean t̂2j 's were almost always

downwardly biased. In such situation, corresponding univariate estimates of t2j 's were likely to

be biased towards the same directions, where UV analysis underestimated t2j 's much severely

and produced the estimates at the parameter boundary more frequently when MV analysis

underestimated t2j 's. Given that univariate approach (that does not condition on r̂b while esti-

mating between-study variance) tended to underestimate or overestimate between-study vari-
ances in the same direction as of multivariate approach, overestimation or underestimation of

t2j 's in MV analysis might not be due to conditioning on r̂b ¼ � 1 or +1. When t̂2j 's are

underestimated, the pooled estimates would be more précised in UV analysis, and this might
explain why MV analysis that less severely underestimated t2j 's was unable to produce much bet-

ter estimates form� 10 or I2 = 25% at which r̂b ¼ � 1 or +1 was much frequent.
Despite the complexities of the model and parameters estimation, multivariate approach in

general can be useful in moderate to large meta-analysis (m� 10, and preferablym� 15 stud-
ies) with large between-study heterogeneity (I2 � 50%) and moderate to large correlations (|ρw|
� 0.5 or |ρb|� 0.5) for an end point with missing summary data in some studies (irrespective
of whether it was randomly or informatively missing). However, these results are yet to be seen
in real genetic data applications. Also, in real meta-analysis of genetic data, IPD data might not
be accessible in one or more studies. Therefore, considering additional data (un)availability
scenarios might provide further insights about the performance of these approaches in various
real data applications. Comparing these as well as other emerging techniques under univariate
and multivariate meta-analysis frameworks in various scenarios mimicking real data applica-
tions will be even more helpful for genetic and clinical investigators when they are interested in
meta-analyzing two or more correlated end points from genetic association studies.

Supporting Information
S1 Fig. Biases in the estimates of τ2, and biases and SEs of the pooled estimates of β2 from
multivariate vs. univariate approaches by whether or not ρb is estimated at parameter
boundary in 5000 replications in randomly missing summary data scenarioa. Scenario:
N ¼ 10000;m ¼ 10;MAF ¼ 0:20; b1 ¼ 0:3; b2 ¼ 0:4; t21 ¼ t22 ¼ 0:0033; I2 ¼ 50%, ρb = 0.75,
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ρw = 0.5. Symbols and abbreviations: N, total subjects;m, number of studies, β2 and τ2, average
effect and between-study standard deviation of true study-wise effects for end point 2, respec-
tively; I2 = degree of between-study heterogeneity; ρb and ρw, true between-and within-study
correlations, respectively; MAF, minor allele frequency; SE, standard error; MV, multivariate
approach; UV, univariate approach. aSummary data for end point 2 from 3 studies were miss-
ing randomly.
(TIFF)

S2 Fig. Biases in the estimates of τ2, and biases and SEs of the pooled estimates of β2 from
multivariate vs. univariate approaches by whether or not ρb is estimated at parameter
boundary in 5000 replications in informatively missing summary data scenarioa. Scenario:
N ¼ 10000;m ¼ 10;MAF ¼ 0:20; b1 ¼ 0:3; b2 ¼ 0:4; t21 ¼ t22 ¼ 0:0033; I2 ¼ 50%, ρb = 0.75,
ρw = 0.5. Symbols and abbreviations: N, total subjects;m, number of studies, β2 and τ2, average
effect and between-study standard deviation of true study-wise effects for end point 2, respec-
tively; I2 = degree of between-study heterogeneity; ρb and ρw, true between-and within-study
correlations, respectively; MAF, minor allele frequency; SE, standard error; MV, multivariate
approach; UV, univariate approach. aSummary data for end point 2 from 3 least significant
studies were missing (either not reported or unpublished).
(TIFF)

S3 Fig. Comparison of the estimates of βj’s, biases in the estimates of βj’s and τj’s, and stan-
dard errors of estimates of βj’s frommultivariate and univariate approaches in 5000 repli-
cations in complete summary data scenario. Scenario:
N ¼ 10000;m ¼ 10;MAF ¼ 0:20; b1 ¼ 0:3; b2 ¼ 0:4; t21 ¼ t22 ¼ 0:0033; I2 ¼ 50%, ρb = 0.75,
ρw = 0.5. Symbols and abbreviations: N, total subjects;m, number of studies, βj and τj, average
effect and between-study standard deviation of true study-wise effects for end point j, respec-
tively; I2 = degree of between-study heterogeneity; ρb and ρw, true between-and within-study
correlations, respectively; MAF, minor allele frequency; SE, standard error; MV, multivariate
approach; UV, univariate approach.
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S4 Fig. Comparison of the estimates of βj’s, biases in the estimates of βj’s and τj’s, and stan-
dard errors of estimates of βj’s frommultivariate and univariate approaches in 5000 repli-
cations in randomly missing summary data scenarioa. Scenario:
N ¼ 10000;m ¼ 10;MAF ¼ 0:20; b1 ¼ 0:3; b2 ¼ 0:4; t21 ¼ t22 ¼ 0:0033; I2 ¼ 50%, ρb = 0.75,
ρw = 0.5. Symbols and abbreviations: N, total subjects;m, number of studies, βj and τj, average
effect and between-study standard deviation of true study-wise effects for end point j, respec-
tively; I2 = degree of between-study heterogeneity; ρb and ρw, true between-and within-study
correlations, respectively; MAF, minor allele frequency; SE, standard error; MV, multivariate
approach; UV, univariate approach. aSummary data for end point 2 from 3 studies were miss-
ing randomly.
(TIFF)

S5 Fig. Comparison of the estimates of βj’s, biases in the estimates of βj’s and τj’s, and stan-
dard errors of estimates of βj’s frommultivariate and univariate approaches in 5000 repli-
cations in informatively missing summary data scenarioa. Scenario:
N ¼ 10000;m ¼ 10;MAF ¼ 0:20; b1 ¼ 0:3; b2 ¼ 0:4; t21 ¼ t22 ¼ 0:0033; I2 ¼ 50%, ρb = 0.75,
ρw = 0.5. Symbols and abbreviations: N, total subjects;m, number of studies, βj and τj, average
effect and between-study standard deviation of true study-wise effects for end point j, respec-
tively; I2 = degree of between-study heterogeneity; ρb and ρw, true between-and within-study
correlations, respectively; MAF, minor allele frequency; SE, standard error; MV, multivariate
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