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Abstract

Varroa mites (Varroa destructor) are parasitic mites that, combined with other factors, are

contributing to high levels of honey bee (Apis mellifera) colony losses. A Varroa-active

dsRNA was recently developed to control Varroa mites within honey bee brood cells. This

dsRNA has 372 base pairs that are homologous to a sequence region within the Varroa mite

calmodulin gene (cam). The Varroa-active dsRNA also shares a 21-base pair match with

monarch butterfly (Danaus plexippus) calmodulin mRNA, raising the possibility of non-target

effects if there is environmental exposure. We chronically exposed the entire monarch larval

stage to common (Asclepias syriaca) and tropical (Asclepias curassavica) milkweed leaves

treated with concentrations of Varroa-active dsRNA that are one- and ten-fold higher than

those used to treat honey bee hives. This corresponded to concentrations of 0.025–0.041

and 0.211–0.282 mg/g leaf, respectively. Potassium arsenate and a previously designed

monarch-active dsRNA with a 100% base pair match to the monarch v-ATPase A mRNA

(leaf concentration was 0.020–0.034 mg/g) were used as positive controls. The Varroa mite

and monarch-active dsRNA’s did not cause significant differences in larval mortality, larval

or pupal development, pupal weights, or adult eclosion rates when compared to negative

controls. Irrespective of control or dsRNA treatment, larvae that consumed approximately

7500 to 10,500-mg milkweed leaf within 10 to 12 days had the highest pupal weights. The

lack of mortality and sublethal effects following dietary exposure to dsRNA with 21-base pair

and 100% base pair match to mRNAs that correspond to regulatory genes suggest monarch

mRNA may be refractory to silencing by dsRNA or monarch dsRNase may degrade dsRNA

to a concentration that is insufficient to silence mRNA signaling.
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Introduction

Varroa mites are thought to be a significant stressor causing honey bee decline [1]. The mites

attach to bees, transmit viruses, and consume the honey bees’ fat bodies and, to a lesser extent,

hemolymph [2]. The fat body is integral for immune function, pesticide detoxification, hor-

mone regulation, and enhanced overwintering survival [3]. Impairment of fat body function

in a sufficient percentage of honey bees can contribute to colony declines [2]. Several control

methods are used to reduce Varroa mite populations. Currently, the most effective and eco-

nomical method is to employ chemical miticides [4]. In the U.S., there are currently 15 miti-

cides approved for controlling Varroa mites in beehives [5]. Due to the heavy reliance on these

products, Varroa mites have developed resistance to several compounds [6–9], primarily due

to enhanced metabolism and/or target site insensitivity [10]. Three of the miticides for which

there are no reported Varroa mite resistance—formic acid, oxalic acid, and thymol—could

harm bees by inducing toxicity [11–14], causing stress [15], and affecting brood development

[16–18]. Hence, there is a need to develop new miticides that specifically target Varroa mites

without negatively affecting honey bees.

The development of double-stranded (dsRNA) insecticides creates the means to selectively

target insect pest species. DsRNA insecticides employ RNA interference (RNAi) technology.

RNAi is a mechanism whereby specific messenger RNA (mRNA) transcripts are targeted by

small interfering RNAs (siRNAs) and silenced via nuclease activity or translational repression

[19, 20]. RNAi can be used to design insecticides that specifically target pest species by identi-

fying regions on the pest mRNA that have little or no overlap with mRNA of non-target spe-

cies [21]. For example, silencing critical genes in several pest insect species did not results in

adverse effects across a range of taxonomically dissimilar non-target species [22, 23]. It has

been hypothesized that a dsRNA could be efficacious only if it shares a minimum sequence of

19–21 nucleotides with the target insect mRNA [22–24].

Bayer Crop Science has developed a dsRNA to control Varroa mites (Varroa destructor)
within honey bee (Aphis mellifera) brood cells [25] (see S1 Fig). This dsRNA has 372 base pairs

that are homologous to a sequence region within the Varroa mite calmodulin gene (cam) [S2

Fig]. This gene encodes calmodulin (CaM), which is an essential calcium-binding protein that

regulates multiple protein targets. The prototype product is formulated as an 80% sucrose solu-

tion that is placed in the hive. Nurse bees consume the dsRNA sucrose solution and deliver it

to the brood cells. The mites could be exposed to the dsRNA through contact with the sucrose

solution deposited by adult honey bees, brood food made with the 80% sucrose solution, and/

or through consumption of larval or adult hemolymph [26].

The Varroa dsRNA has a 99% nucleotide match to the Varroa mite calmodulin mRNA (S2

Fig) and a 74% nucleotide match, which includes a contiguous sequence of 14 nucleotides, to

the honey bee calmodulin mRNA. There are no contiguous 21-nucleotide overlaps between

the Varroa-active dsRNA and the honey bee genome (S3 Fig). Previous studies have shown

that honey bees are mostly insensitive to orally delivered dsRNA [27], including dsRNA mole-

cules that have a 100% sequence match to their mRNA [28].

Exposure of the Varroa-active dsRNA product to non-target insects outside the hive,

including monarch butterfly (Danaus plexippus) larvae, is highly unlikely and supports a low

environmental risk determination. However, the Varroa-active dsRNA has a 21-base pair

match to monarch calmodulin mRNA (S4 Fig). Since dsRNA orthologs could be efficacious

against insect mRNA if they share a sequence length of at least 19 to 21 nucleotides [22–24],

the potential hazard to monarch larvae, if they are exposed to the Varroa-active dsRNA, can-

not be precluded.
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To assess risks of dsRNA insecticides to non-target arthropod species, the United States

Environmental Protection Agency (USEPA) uses a four-tiered testing scheme based on the

microbial pesticide data requirements published under 40 CFR 158.2150 and the associated

OCSPP Harmonized Guidelines 885 and 850 series [29, 30]. Tier I studies are designed to esti-

mate hazards to several non-target arthropod taxa under exposure concentrations several

times higher than the highest concentrations (� 10X when possible) expected to occur under

realistic field exposure scenarios. A lack of adverse responses under these exposure conditions,

presumably, provide sufficient certainty that there would not be unreasonable effects to the

environment if the product were registered, i.e., complex, higher Tier testing with realistic

exposure levels is not required.

Previous research by Pan et al. [31] explored the extent to which neonate monarch larvae

are sensitive to monarch and western corn rootworm specific dsRNAs that target the v-ATPase
A mRNA following a two-day dietary exposure (5 mg/mL of respective dsRNAs solutions

applied to 0.5 cm diameter honeyvine milkweed [Cynanchum laeve] leaf discs). V-ATPase A is

a proton pump that maintains pH equilibrium at the cellular and organismal level and plays an

important role in cellular function by interacting with a variety of proteins [32]. Given

V-ATPase A’s essential physiological function, it was expected monarch v-ATPase A mRNA

would be silenced by the monarch-active dsRNA, and potentially, the western corn rootworm

dsRNA as it shares a high sequence similarity with the monarch mRNA. In turn, silencing

monarch v-ATPase A mRNA should result in reduced growth leading to a high level of larval

mortality [33]; however, Pan et al. [31] reported no adverse effects for either dsRNA. The lack

of adverse effects to the rootworm- and monarch-active dsRNA could be due to a short dietary

exposure period that may have resulted in an insufficient internal dose and/or a peak internal

dose that did not overlap with key development events (i.e., larval molts, pupal formation,

and/or adult eclosion).

In the present paper, we expand our understanding of non-target effects of dsRNA insecti-

cides by undertaking chronic dietary studies with the Varroa calmodulin dsRNA, which has a

21-nucleotide overlap with the monarch calmodulin mRNA, and monarch v-ATPase A

dsRNA, which is assumed to have a 100% nucleotide match with the monarch v-ATPase
mRNA [31]. We assessed chronic toxicity of Varroa-active dsRNA to monarch larvae by

exposing them for approximately two weeks to concentrations 10-fold greater than would be

expected if the formulated product were inadvertently applied to milkweed. Given the shared

nucleotide sequence, we hypothesized that continuous dietary exposure of the Varroa and

monarch-active dsRNA through the entire larval stage could adversely affect larval survival

and growth; instar and pupal development; and/or eclosion of adult monarch butterflies.

Materials and methods

Rearing monarch butterflies and milkweed

Monarch butterfly eggs for four of the six bioassay runs were obtained from the 2016 colony

maintained by the U.S. Department of Agriculture (USDA), Corn Insects and Crop Genetics

Research Unit in Ames, Iowa (see [34]). The fifth and sixth bioassay runs were conducted

using eggs obtained from a colony maintained by the University of Kansas (Dr Orley Taylor,

Director of Monarch Watch). The first three bioassays were undertaken on common milkweed

(Asclepias syriaca), a native species found in U.S. Midwestern states, using the Iowa monarchs.

To see if a different milkweed species and/or a source of monarchs influenced sensitivity to

dsRNA, the last three bioassays (one with Iowa monarchs and two with Kansas monarchs)

were conducted on tropical milkweed (Asclepias curassavica).
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Young, non-senescent common milkweed leaves were collected from a restored prairie in

Ames, Iowa, in September and October of 2018. Tropical milkweed leaves were reared in Iowa

State University greenhouses as previously reported [34]. All milkweed leaves were washed

with 10% bleach solution and rinsed three times with water before use. Leaves were dried

using a salad colander and WypAll wiper tissues (Kimberly-Clark Professional) prior to use in

the bioassays.

Chemicals employed and preparation of treatment solutions

A 64 mg/mL aqueous solution of Varroa-active dsRNA (lot number: STG4-0038) was pro-

vided by Bayer Crop Science. The prototype dsRNA formulation contains 2.1 mg/mL Varroa-

active dsRNA in an 80% sucrose solution (J. Fischer, personal communication). In a prelimi-

nary assay, we provided fifth-instar monarchs common milkweed leaves coated with an 80%

sucrose aqueous solution (a formulation blank). The larvae did not consume the treated leaves.

Consequently, we prepared 2.1 mg/mL (1X environmental concentration) and 21 mg/mL

(10X concentration) Varroa-active dsRNA solutions for bioassays by diluting the 64 mg/mL

stock solution in deionized water, rather than a sucrose solution.

Bayer also synthesized and provided a 25.4-mg/mL aqueous solution of monarch butterfly

dsRNA (batch number: M1166) with a 100% base pair match to the monarch v-ATPase A
mRNA. This monarch-active dsRNA was synthesized from previously designed forward and

reverse primers [31]. The monarch V-ATPase A dsRNA was selected as a putative positive

dsRNA control. We prepared a 5-mg/mL monarch-active dsRNA solution in deionized water,

which is the same concentration used by Pan et al. [31] in their monarch bioassays with

neonates.

Potassium arsenate (CAS number: 7784-41-0; Lot number: SLBN3865V), purchased from

Sigma Aldrich, also was used as a positive control. We used an aqueous concentration of 1 mg/

mL in the bioassays, which corresponded to the LC100 based on a preliminary assay in which

larvae were fed treated tropical milkweed leaves.

Toxicity bioassays

Toxicity bioassay studies were conducted at 24 to 27˚C and 45 to 65% relative humidity, with a

16:8 light: dark cycle. Both common and tropical milkweed bioassays employed six treatments:

untreated leaves, deionized water-treated leaves, potassium arsenate-treated leaves, monarch-

active dsRNA-treated leaves, and Varroa-active dsRNA-treated leaves at two nominal concen-

trations of 2.1 and 21 mg/mL. Fifteen and 10 larvae were used per treatment group in the com-

mon and tropical milkweed bioassays, respectively. Both milkweed bioassays were conducted

three times, with each run employing a different larval generation. Thus, 45 and 30 larvae were

employed per treatment group (n = 6) in the common and tropical milkweed bioassays,

respectively. Water, monarch-active dsRNA, and the Varroa-active dsRNA solutions were

applied using a 59-mL fingertip sprayer bottle (Equate brand). Both sides of the leaves were

sprayed with the solutions (multiple sprays were carried out for bigger leaves) and manually

spread across the leaf surface using clean nitrile gloves (VWR International), as needed, to

ensure complete coating. The leaves were then hung on a wire and clamped with paper clips

until dry (10 to 20 minutes). The potassium arsenate solution was applied on one side of the

leaf using a micropipette (20 to 30 μL was spread over a 250 mg leaf). These leaves were placed

on a tray with absorbent bench paper and allowed to dry.

Monarch larvae were reared according to methods described Krishnan et al. [34]. Neonates

were plated on a treated or untreated leaf (220 to 280 mg) in individual petri plates (60 mm x

15 mm containing a thin layer of 2% agar: water) using a paintbrush. Freshly treated (1 or 10X
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Varroa-active dsRNA, monarch-active dsRNA, or deionized water) or untreated leaves were

provided every two days for the first six to eight days of a bioassay, and daily thereafter.

Increasing leaf mass (up to 2700 to 3300 mg per day) was provided as the larvae developed.

Every 24 hours, larval mortality, abnormal behavior, and leaf consumption (i.e., minimal con-

sumption vs. consumption of most or entire leaf mass provided) were recorded. Instar was

recorded every 96 hours. Days to pupation, pupal weights, and adult eclosion (i.e., adult emer-

gence) were recorded for the surviving larvae. Results were analyzed from individual bioassays

where both the negative controls (larvae fed untreated and water-treated leaves) produced less

than 35% mortality from neonate to pupation. This upper bound control mortality was based

on a maximum control mortality of 30% in 96-hour monarch larval dietary bioassays (see

[34]).

Three times during each bioassay, three additional leaf samples (mass range: 221 to 2192

mg) were randomly treated with water or one of the three dsRNA solutions. These leaves were

allowed to dry, then were wrapped in aluminum foil and stored in Ziploc1 bags at -20˚C for

QuantiGene analysis.

Sample extraction and processing

Prior to RNA extraction from treated leaves, the laboratory bench was wiped with RnaseZap

to ensure an RNAase-free environment. Each frozen leaf sample was weighed and placed in a

mortar with a small amount of liquid nitrogen. Each sample was ground, and the resultant

powder was transferred to a pre-chilled phase lock gel tube (Qiagen, Catalog# 129065 &

129073). One mL of TRIzol (Ambion Life Technologies) was added per 0.1 g of leaf tissue.

Samples were vortexed for three minutes and then incubated at room temperature (RT) for

one hour. Chloroform (Fisher Scientific) was then added to the samples (0.3 mL for every mL

of TRIzol). Samples were vortexed again for one minute and incubated at RT for 10 minutes.

Samples were then centrifuged at 9000 Relative Centrifugal Force (RCF) at 2 to 6˚C. The

upper aqueous phase was transferred to a 15-mL falcon tube. The RNA was precipitated by

adding 0.5 mL of isopropyl alcohol (Fisher Scientific) per ml of supernatant. The solutions

were then mixed by inverting the tubes multiple times. Samples were stored in either a -20˚C

or -80˚C freezer for 0.5 to 24 hours, and then centrifuged at 9000 RCF for 15 to 20 minutes at

2 to 6˚C. The supernatant was discarded, and the RNA pellet was washed with ~5 ml of 70%

ethanol prepared in nuclease-free Ultrapure Distilled Water (Invitrogen Lot#2063810). The

pellets were then centrifuged at ~9000 RCF for 10 minutes at 2 to 6˚C, and the supernatant

was discarded. Another centrifugation at ~9000 RCF for one minute at 2 to 6˚C was con-

ducted, and the residual liquid was removed with a pipette. The RNA pellets were briefly air

dried (�10 minutes) and dissolved in an appropriate volume of nuclease-free Ultrapure Dis-

tilled Water (100 to 250 μL per gram of starting tissue). The RNA was stored in a –20˚C or –

80˚C freezer until quantification. Prior to QuantiGene analysis, each milkweed leaf extract was

normalized with sample diluent to fall within the standard curve.

QuantiGene analysis

Total extracted RNA was quantified using a QuantiGene1 (QG) 2.0 Singleplex assay kit (Invi-

trogen Ref#13216). To begin, 1.2 mL of a custom QuantiGene probe set was combined with

90 μL of the appropriate sample (water background control, reference standards, or the test

samples) in a disposable PCR plate. The custom probes were designed by the manufacturer to

hybridize to the specific dsRNA sequences used in this study. Separate probes were used for

Varroa-active dsRNA and monarch butterfly dsRNA samples. After the addition of all stan-

dards and samples, the denaturing plate was sealed with plate foil (ThermoFisher
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Ref#AB0626) and heated at 98˚C (±5˚C) for 5 minutes and subsequently held at 55˚C (±5˚C)

for 30 minutes.

A premixed QG 2.0 working solution was prepared by adding nuclease-free water, lysis

mixture, and blocking reagent. Eighty μL of QG 2.0 working solution was added to each well

of the assay plate. For each well containing 80 μL of denatured standard/sample in the denatur-

ing plate, 20 μL was plated into the wells of the assay plate in triplicate. This resulted in 80 μL

QG 2.0 working solution and 20 μL denatured standard/sample per assay plate well. The plate

was sealed with foil and incubated at 55˚C (±5˚C) for 16 to 24 hours.

After overnight hybridization, the wells of each plate were washed three times with 300 μL

of QG 2.0 Wash Buffer. The plates were then inverted and tapped to dry. One hundred μL of

preamplifier solution was added to each well; plates were then sealed with a plate foil and incu-

bated at 55˚C (±5˚C) for 55 to 65 minutes. The previous step was repeated for the amplifier

solution and the label probe solution. QuantiGene solutions were prepared following the man-

ufacturer’s recommendations and are outlined in S1 Table. Following incubation with the

label probe solution, the plates were washed three times with 300 μL/well of QG 2.0 Wash

Buffer and allowed to dry for no more than five minutes.

After the last washes, 100 μL of QG 2.0 Substrate was added to each well and the plate was

sealed with foil and incubated for 5 to 15 minutes at room temperature. The median lumines-

cence of each well was captured by a Synergy-HTX Multi-mode Microplate Reader (BioTek).

The concentrations of Varroa-active dsRNA and monarch-active dsRNA were calculated from

a standard curve fit with a 4-parameter logistic regression model (S5 Fig). Each sample was

run in triplicate, and the mean concentrations were calculated.

Statistical methods

All statistical analyses were done in RStudio 1.1.383 (R version 3.5.2). Common and tropical

milkweed bioassay results were analyzed independently. In both milkweed species, potassium

arsenate treatments (positive control) caused 100% larval mortality within five days (Fig 1)

and were excluded from analyses. Generalized linear models (glm) accounted for both run

(three bioassay runs each for common and tropical milkweed) and treatment effects. There

was no run-by-treatment interaction (p> 0.05); consequently, the following equation was

used: response ~ run + treatment.

To analyze larval mortality (larvae alive/larvae dead) and adult eclosion (adults emerged/

adults not emerged), we fit a binomial or a quasibinomial (to account for overdispersion) glm

model and used type 3 ANOVA (obtained from the “car” package) to look for differences

between treatments. A quasipoisson (to account for underdispersion) glm model and type 3

ANOVA were used to evaluate days from neonate to pupation. Following the removal of a sin-

gle outlier in the common milkweed water treatment (this pupa’s weight was one-third the

weight of an average pupa in the same treatment group), the residual plots for the pupal

weights showed the data were normally distributed and had homogenous variances. Conse-

quently, a gaussian glm model and type 3 ANOVA were used to evaluate differences in pupal

weights between treatments. If significant treatment or run effects were identified (p< 0.05),

Dunnett’s test for multiple comparisons (emmeans package) was used to compare the control

response to the insecticide treatment responses.

Results

Sample extraction and QuantiGene analysis

In the common milkweed bioassays, a subset of two leaves from each treatment group (5 mg/

mL monarch-active dsRNA and 2.1 and 21 mg/mL Varroa-active dsRNA) and bioassay run
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were analyzed. Measured concentrations for 2.1 (1X) and 21 (10X) mg/mL Varroa-active

dsRNA ranged from 0.013 to 0.032 and 0.144 to 0.389 mg/g, respectively. The measured con-

centration of monarch-active dsRNA ranged from 0.020 to 0.021 mg/g (Table 1).

In the tropical milkweed bioassays, a subset of two to three leaves for each treatment group

and run were analyzed. Measured concentrations for 2.1 and 21 mg/mL Varroa-active dsRNA

ranged from 0.020 to 0.065 and 0.143 and 0.316 mg/g, respectively. The measured concentra-

tion of monarch-active dsRNA ranged from 0.030 to 0.037 mg/g (Table 1). The 21 mg/mL

treatment was 2- to 16-fold higher and 5- to 30-fold higher than the 2.1 mg/mL treatment in

the tropical and common milkweed bioassays, respectively.

Fig 1. Monarch mean percent mortality over time, from neonate larvae to pupae, with data combined over all

bioassay runs. Larvae were fed common (A) or tropical (B) milkweed leaves that were untreated (UN), treated with

deionized water (WT), 5 mg/mL monarch-active dsRNA solution (MB), 2.1 (VL) and 21 (VH) mg/mL Varroa-active

dsRNA solutions, or 1 mg/mL potassium arsenate solution (KA). Missing larvae (including 1 larva that was

accidentally killed and five that went missing) were excluded from analysis.

https://doi.org/10.1371/journal.pone.0251884.g001

Table 1. The mean concentration measured for each treatment group and the overall mean.

Milkweed species Treatment Concentration dsRNA (mg/g)

Run 1a Run 2a Run 3a Overallb

Common milkweed Monarch 0.020 (± 0.005) 0.020 (± 0.015) 0.021 (± 0.015) 0.020 (± 0.0004)

1X Varroa 0.013 (± 0.003) 0.030 (± 0.018) 0.032 (± 0.014) 0.025 (± 0.009)

10X Varroa 0.389 (± 0.32) 0.144 (± 0.138) 0.312 (± 0.274) 0.282 (± 0.102)

Tropical milkweed Monarch 0.036 (± 0.005) 0.037 (± 0.014) 0.030 (± 0.016) 0.034 (± 0.003)

1X Varroa 0.020 (± 0.013) 0.065 (± 0.049) 0.036 (± 0.021) 0.041 (± 0.019)

10X Varroa 0.316 (± 0.062) 0.143 (± 0.036) 0.173 (± 0.091) 0.211 (± 0.075)

a The mean dsRNA concentration and standard deviation (SD) per designated bioassay run.
b The mean dsRNA concentration and standard deviation (SD) over all bioassay runs.

Monarch-active dsRNA = 5 mg/mL monarch-active dsRNA solution concentration; 1X and 10X Varroa-active dsRNA = 2.1 and 21 mg/mL Varroa-active dsRNA

solution concentrations, respectively.

https://doi.org/10.1371/journal.pone.0251884.t001
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Toxicity bioassays

In the tropical milkweed bioassays, larvae provided untreated, water-treated, 5 mg/mL mon-

arch-active dsRNA-treated, and 2.1 and 21 mg/mL Varroa-active dsRNA-treated tropical

milkweed leaves had 20 (± 10), 23 (± 6), 33 (± 21), 17 (± 21), and 13 (± 6) mean (± SD) percent

mortality, respectively; no noticeable difference in toxicity was seen between Iowa and Kansas

colony larvae. In the common milkweed bioassays, the same treatments caused 18 (± 10), 27

(± 10), 33 (± 7), 40 (± 20), and 39 (± 12) mean percent mortality, respectively from neonate to

pupation (Table 2). When Abbott’s formula was used to account for mortality in the untreated

control group, the average larval percent mortality rates in the water, monarch-active, 1X Var-

roa-active, and 10X Varroa-active treatment groups ranged from 4–11%, 16–18%, 0–27%, and

0–26%, respectively, when considering both common and tropical milkweed bioassays. While

mortality occurred over multiple days for all treatments (excluding potassium arsenate, which

killed all treated larvae within five days), there were some temporal trends in mortality. In the

common milkweed bioassays, a greater proportion of larval mortality in the negative controls

and dsRNA groups occurred in the first eight days; the opposite was true in the tropical milk-

weed bioassays (Fig 1).

In general, across all assays, the rates of mortality in dsRNA groups were similar to those

observed in the two negative control groups. In both the tropical and common milkweed bio-

assays, there were no significant differences in larval mortality between treatment groups (χ2 =

4.18; df = 4; p = 0.382 and χ2 = 6.89; df = 4; p = 0.142, respectively). Combined mortality data

from both milkweed species also was not different (χ2 = 4.97; df = 4; p = 0.290).

With both milkweed species, the monarch and Varroa-active dsRNA treatments did not

delay larval development from first through fifth instar and fifth instar to pupae (Table 3). The

mean (± SD) developmental time from neonate to pupae ranged from 11.2 (± 0.95) to 11.6 (±

Table 2. Monarch larval percent mortality following treatment with Varroa-active dsRNA and two positive and two negative controlsa.

Milkweed species (# of larvae treated) Treatment Larval percent mortalityb

Run 1 Run 2 Run 3 Mean (± SD)c Mean corrected mortalityd

Common milkweed Untreated 20 7 27 18 (± 10) 0

Water 33 15 33 27 (± 10) 11

Monarch-active dsRNA 27 40 33 33 (± 7) 18

1X Varroa-active dsRNA 40 60 20 40 (± 20) 27

10X Varroa-active dsRNA 27 50 40 39 (± 12) 26

Potassium arsenate 100 100 100 100 (± 0) 100

Tropical milkweed Untreated 10 20 30 20 (± 10) 0

Water 30 20 20 23 (± 6) 4

Monarch-active dsRNA 10 40 50 33 (± 21) 16

1X Varroa-active dsRNA 10 40 0 17 (± 21) 0

10X Varroa-active dsRNA 10 20 10 13 (± 6) 0

Potassium arsenate 100 100 100 100 (± 0) 100

a Monarch larvae were fed untreated leaves and leaves treated with deionized water, 5 mg/mL monarch-active dsRNA solution, 2.1 (1X) and 21 (10X) mg/mL Varroa-

active dsRNA solutions, and 1 mg/mL potassium arsenate solution. All solutions were made in deionized water.
b The percentage of larvae that died from neonate to pupation in each bioassay run. Six missing larvae (including one accidental death) over all treatments were

excluded from analyses.
c The mean larval percent mortality and standard deviation (SD) over all bioassay runs.
d Abbott’s formula was employed to correct for untreated control mortality. Corrected percent mortality = [1- (number of larvae surviving in treatment group�

number of larvae surviving in untreated control group)] x 100.

https://doi.org/10.1371/journal.pone.0251884.t002
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1.1) days with common milkweed, with no differences between treatment groups (χ2 = 1.44;

df = 4; p = 0.838). For tropical milkweed, developmental times ranged from 11.2 (± 0.67) to

11.5 (± 1.2) days (χ2 = 4.96; df = 4; p = 0.292). Larvae took 10 to 15 days to pupate, with a

median of 11 days in all instances. Mean (± SD) monarch pupal weights between treatments in

the common and tropical milkweed bioassays ranged from 1140 (± 168) to 1218 (± 145) mg

and 936 (± 162) to 1006 (± 208) mg, respectively (Fig 2). There were no differences in pupal

weights between groups for both milkweed species (F = 1.36; df = 4; p = 0.250 and F = 0.521;

df = 4; p = 0.721 for common and tropical milkweed, respectively). The inclusion of a single

outlier in the common milkweed water treatment did not change the results (F = 1.75; df = 4;

p = 0.142).

Larvae that pupated within 10–11 days in the common milkweed bioassays and within 11–

12 days in the tropical milkweed bioassays generally consumed between 7500 to 10,500 mg

fresh leaves after reaching the third instar. These larvae generally had higher pupal weights

(Fig 3). In one of the tropical milkweed bioassays, fewer than 7 g of milkweed leaf tissue were

provided to larvae that had pupated on the tenth day—these pupae were smaller (Fig 3B). Lar-

vae that did not pupate within 12 and 13 days in the common and tropical milkweed bioassays,

respectively, did not consume most of the provided leaves. Thus, even though these larvae

were provided a greater mass of leaves (freshly treated leaves were provided daily starting on

or about Day 9), their pupal weights were often similar or lower than the pupal weights of lar-

vae that pupated earlier.

There was, however, a significant difference in pupal development time and pupal weights

between bioassay runs (p = 5.4 x 10−10 and 1.3 x 10−3, respectively, for common milkweed and

p = 7.2 x 10−4 and 6.3 x 10−4, respectively, for tropical milkweed). In the common milkweed

bioassays, the third bioassay run differed from the first two. The milkweed leaves in the third

run had started to senesce, and the larvae took longer to feed on the poorer quality leaves and

pupate (12.2 days vs. 11.3 days for each of the first two runs). The quality of the leaves also

could have resulted in the significantly lower pupal weights (1111 mg vs. 1215 and 1213 mg in

Table 3. Monarch larval development following treatment with Varroa-active dsRNA and one positive and two negative controlsa.

Milkweed species (# of larvae treated) Treatment % of monarch instar/stage observed over all bioassay runsb Mean (± SD) days to pupaec

Day 4: Third instar Day 8: Fifth instar Day 12: Pupae

Common milkweed UN 57 86 86 11.2 (± 1.0)

WT 68 68 87 11.6 (± 1.1)

MB 57 87 93 11.2 (± 0.95)

VL 70 67 93 11.3 (± 0.88)

VH 63 78 93 11.3 (± 0.96)

Tropical milkweed UN 63 92 92 11.5 (± 0.88)

WT 70 87 83 11.5 (± 1.2)

MB 55 90 100 11.2 (± 0.67)

VL 64 84 84 11.4 (± 1.1)

VH 65 92 85 11.4 (± 1.0)

a Monarch larvae were fed untreated leaves (UN) and leaves treated with deionized water (WT), 5 mg/mL monarch-active dsRNA solution (MB), and 2.1 (VL) and 21

(VH) mg/mL Varroa-active dsRNA solutions. All solutions were made in deionized water. Only data from larvae that successfully pupated were analyzed. Data were

combined over all bioassay runs.
b The percentage of surviving monarchs in a treatment that belonged to the third instar (Day 4), fifth instar (Day 8) and pupa (Day 12). Larvae that were molting to a

new instar were considered to have molted on the same day.
c The mean [and corresponding standard deviation (SD)] number of days it took surviving larvae in each treatment to form pupae. Larvae that were in “J” form were

considered to have pupated on the same day.

https://doi.org/10.1371/journal.pone.0251884.t003
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Fig 2. Average monarch pupal weight (in mg) in each treatment (data combined over all bioassay runs). Larvae were fed

common (A) or tropical (B) milkweed leaves that were untreated (UN), treated with deionized water (WT), 5 mg/mL

monarch-active dsRNA solution (MB), or 2.1 (VL) and 21 (VH) mg/mL Varroa-active dsRNA solutions. Bars represent the

mean ± one standard deviation. A single pupa in the common milkweed water treatment was excluded from analyses.

https://doi.org/10.1371/journal.pone.0251884.g002

Fig 3. Individual monarch pupal weights (mg) plotted against individual weights (mg) of common (A) and

tropical (B) milkweed leaf provided to each larva. Data were combined over all treatments and bioassay runs. The

different colored dots represent the range of days it took the monarchs to pupate (see legend). The vertical dotted lines

bound monarch pupae that were provided 7500 and 10,500 mg of milkweed leaf. The average weights of these pupae

are provided.

https://doi.org/10.1371/journal.pone.0251884.g003
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the first two runs), even though individual larvae in each run were provided a minimum of

7500 mg of leaf and the average leaf mass provided across runs was similar (range was 10,100

to 11,000 mg). In the tropical milkweed bioassays, individual larvae in the first run were pro-

vided fewer leaves on average (~7000 mg milkweed vs. ~9000 mg milkweed in the other two

runs). The lack of sufficient leaf mass might have triggered pupation at a slightly earlier time

(average was 11 days vs. 11.8 and 11.5 days for the last two runs) and also resulted in lower

average pupal weights (897 mg vs. 942 and 1068 mg in the second and third bioassay run,

respectively). Though larvae in the second and third bioassay runs were provided similar leaf

mass, pupae from the second run were also significantly smaller (p = 0.015). These analyses

show that, under the environmental conditions tested, monarch larvae need at least 7500 mg

of fresh milkweed leaf in the first 10–11 days to reach a healthy pupal weight.

In the first two common milkweed bioassays and the first tropical milkweed bioassay, there

were low levels of bacterial infection in the pupae that suppressed adult eclosion rates (the

overall infection rate in any of the treatment groups did not exceed 15%). These pupae were

excluded from eclosion analyses but were included in the other analyses as the infection had

no effect on the other measured endpoints. The mean (± SE) eclosion rate of uninfected pupae

ranged from 0.85 (± 0.07) to 0.97 (± 0.03) and 0.95 (± 0.05) to 1.0 (± 0.0) in common and trop-

ical milkweed bioassays, respectively (Fig 4). Again, there were no treatment differences in

either milkweed species (χ2 = 7.07; df = 4; p = 0.132 and χ2 = 3.57; df = 4; p = 0.467 for com-

mon and tropical milkweed, respectively).

Discussion

Some studies have hypothesized that a dsRNA that shares a minimum sequence of 19–21

nucleotides with an insect mRNA could cause mortality or adverse sublethal effects [22–24].

Hence, we expected chronic larval exposure to Varroa-active dsRNA and monarch-active

dsRNA would cause high rates of mortality and sublethal effects; however, we observed no

Fig 4. Average monarch adult eclosion rates of uninfected pupae in each treatment (data combined over all bioassay

runs). Larvae were fed common (A) or tropical (B) milkweed leaves that were untreated (UN), treated with deionized

water (WT), 5 mg/mL monarch-active dsRNA solution (MB), or 2.1 (VL) and 21 (VH) mg/mL Varroa-active dsRNA

solutions. Bars represent the mean ± standard error.

https://doi.org/10.1371/journal.pone.0251884.g004
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significant adverse effects. These results suggest bioinformatic analyses (e.g., 21 base pair

matches) alone cannot predict potential dsRNA sensitivity to target species (and insensitivity

to non-target species). Other factors including refractory genes, presence of high levels of

dsRNase, and exposure to low environmental concentrations may prevent RNAi-mediated

effects [23, 35, 36].

In the present study, monarch larvae were chronically exposed to nominal environmental

concentrations of a Varroa-active dsRNA one to ten times greater than what would be applied

in honey bee hives to control Varroa mites. Quantification of dsRNA concentrations on

treated common and tropical milkweed leaves indicated mean leaf concentrations of 0.025 to

0.041 (1X treatment) and 0.211 to 0.282 mg/g leaf (10X treatment). In the common milkweed

bioassays, overall larval mortality was higher in the Varroa-active dsRNA treatments (ca. 40%)

compared to untreated (ca. 20%) and water-treated controls (ca. 30%), but the differences in

toxicity were not statistically significant. The higher mortality in water and Varroa-active

dsRNA treatments could have been caused by water retention in common milkweed. Com-

mon milkweed leaves are thick and even if their surfaces are air-dried following treatment,

water within the leaves may not completely evaporate. Increased internal water content could

reduce the nutritional value of the leaves and lead to slightly increased, but statistically insignif-

icant, larval mortality. In the tropical milkweed bioassays, higher larval mortality was seen in

the negative controls (ca. 20% for untreated and water-treated leaves) than in the 2.1 and 21

mg/mL Varroa-active dsRNA solutions (ca. 15%), however, this too was statistically insignifi-

cant. These mortality rates are also consistent with the historical control mortality rate of the

Iowa State University monarch butterfly colony, which is 20 to 25% from neonate to pupa.

There were also no significant differences when mortality was averaged across both milk-

weed species. While monarch-active dsRNA-treated leaves had the highest combined mortal-

ity (33% vs 30% for Varroa treatments and 22% for control treatments), its effect on mortality

was also not significant. The average larval mortality, when combined across milkweed species

and control and dsRNA treatments was 27%. Given the historical morality rate and compari-

sons of mortality rates between control and dsRNA-treated leaves, the Varroa-active dsRNA at

a dietary concentration 10X higher than would be expected in the environment is essentially

non-toxic. Finally, larvae feeding on tropical and common milkweed had similar responses to

dsRNA treatment, suggesting that different levels of cardenolides in common and tropical

milkweed [37] seemingly do not alter the toxicity of dsRNA molecules through differential

metabolic capability of the larvae.

Findings with Varroa-active dsRNA could indicate more than 21 base pair matches are

required to elicit adverse effects. The monarch-active dsRNA, having a 100% match with mon-

arch mRNA, was expected to serve as positive control; however, we observed only a marginal,

non-significant, increase in mortality. To ascertain if individual cohorts of larvae were

uniquely resistant to stomach poisons, we employed potassium arsenate as a positive control

with each dsRNA bioassay. A 1 mg/mL solution consistently killed all larvae within 5 days.

There was no correlation between measured leaf concentration and average mortality rate

for any of the treatments (p� 0.19; S6 Fig). Across common and tropical milkweed bioassays,

we observed up to a 3.3-fold difference in measured dsRNA concentrations for replicates

across dsRNA treatments. Across both milkweed species, the average dsRNA leaf concentra-

tions for the 5 mg/mL monarch-active dsRNA and the 2.1 and 21 mg/mL Varroa-active

dsRNA treatments were 0.027, 0.033, and 0.246 mg/g leaf, respectively. Assuming a monarch

larva consumed approximately 7500 mg of milkweed leaf tissue, we estimate internal doses of

0.20 mg of monarch-active dsRNA and 0.25 and 1.8 mg of Varroa-active dsRNA, respectively,

for the 1X and 10X Varroa-active dsRNA treatments.
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In four other lepidopteran species, diamondback moth (Plutella xylostella), legume pod

borer (Maruca vitrata), spotted stalk borer (Chilo partellus), and tobacco cutworm (Spodoptera
litura), larvae feeding on fresh plant tissue and provided either 1.2 x 10−4 mg ß1 integrin

dsRNA or 3 x 10−3 mg chitin synthase dsRNA (both dsRNA molecules targeted the individual

species’ mRNA) had 50 to 100% mortality [38, 39]. These results suggest that monarch larvae

are less sensitive to dsRNA molecules and/or the v-ATPase mRNA could be recalcitrant to

silencing. Lower levels (ca. 10%) of mortality via V-ATPase silencing were also seen in cotton

bollworm (Helicoverpa armigera) larvae that were provided 0.01 mg/cm2 treated leaves (dose

not provided) for 10 days [40]. More data across species and genes are needed to make more

conclusive comparisons.

In both tropical and common milkweed bioassays, the majority (55 to 70%) of monarchs

that successfully pupated were third-instar larvae on the fourth day of observation; of the

remaining monarchs, 95% were fourth instars and 5% were second instars. On Day 8, 67 to

92% of monarchs were fifth instars, and the rest were fourth instars. On Day 12, 83 to 100% of

monarchs were pupae, and the rest were fifth instars. There were no differences in larval or

pupal developmental time between treatments; the mean number of days it took larvae to

pupate ranged from 11.2 to 11.6 days. Previous studies reported a mean neonate to pupal

developmental time of about 12 and 13 days for monarch larvae reared at 27 and 25˚C, respec-

tively [41, 42]. There were also no differences in pupal weights across treatments in both com-

mon and tropical milkweed bioassays. The average pupal weight in the common milkweed

bioassays was greater (1176 vs. 970 mg) likely because the larvae were, on average, provided

more milkweed leaves than larvae in the tropical milkweed bioassays (Fig 3). Finally, there was

no effect of Varroa or monarch-active dsRNA on the eclosion rate across treatments or runs.

The average eclosion rates in the common and tropical milkweed runs were 0.93 and 0.97,

respectively.

Our results provide evidence that chronic monarch larval exposure to monarch V-ATPase

dsRNA has no biologically significant effect on monarch survival, growth, development, or

eclosion rates. The results are consistent with Pan et al. [31] who fed first-instar monarchs

dsRNA derived from monarch v-ATPase A mRNA for two days and then provided the larvae

untreated honeyvine milkweed leaves (the first-instar stage lasted 4 to 5 days in this experi-

ment). These researchers observed no effects on survival and overall development time; signifi-

cant differences in development times for some instars between treatments may have been an

artifact of using honeyvine milkweed leaves, which in some cases, can delay larval development

[43, 44]. The lack of significant effects observed by Pan et al. [31] could have been due to the

abbreviated length of dsRNA exposure, which may have resulted in an internal dose that was

insufficient to elicit a toxic response and/or the peak dsRNA internal dose did not correspond

to a critical developmental window (e.g., pupation and metamorphosis to the adult). In the

present study, we chronically exposed monarch larvae to 0.020 to 0.034 mg/g monarch-active

dsRNA milkweed leaf concentration and did not detect an adverse impact on survival, devel-

opment, growth, or eclosion, as compared to larvae reared on untreated milkweed leaves.

These findings are broadly consistent with the conclusions of Terenius et al. [35], who

reviewed more than 150 RNAi experiments in the insect order Lepidoptera. The authors

reported that the technology seemed particularly efficacious at targeting immune genes in the

family Saturniidae (species in the family Nymphalidae, to which monarchs belong, were not

studied at the time of review). However, genes from the protein binding group, e.g., V-APTase

and calmodulin, were refractory to silencing. Shukla et al. [45] also found that while Lepidop-

teran cell lines absorbed V-ATPase dsRNA, they did not process it to siRNA, which is neces-

sary for gene silencing.
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We are aware of only three chronic studies with Lepidopteran larvae that employed dietary

dsRNA exposure methods without a bacterial or polymer vehicle. These studies used dsRNA

molecules with a 100% base pair match to the mRNA of the target insect. Choi et al. [46] fed

dsRNA encoding the pheromone biosynthesis activating neuropeptide (PBAN) gene to corn

earworm (Helicoverpa zea) and tobacco budworm (Heliothis virescens); treated larvae experi-

enced delayed growth, failed pupal development, and increased mortality. Cotton bollworm

larvae that were fed artificially synthesized siRNA that targeted their acetylcholine esterase

enzyme had higher mortality, diminished growth, smaller pupal weights, and reduced fecun-

dity compared to control larvae [47]. Whyard et al. [22] found that tobacco hornworm (Man-
duca sexta) larvae that were fed dsRNA targeting their V-ATPase transcripts had a LC50 of

0.011 mg/g diet. These three studies employed dsRNA-treated artificial diets rather than

treated-host plant leaves. Of note, tobacco cutworm larvae that fed on cabbage leaves had

greater dsRNA-degrading activity than larvae that were reared on an artificial diet [36]. These

authors suggest that artificial diet could potentially influence dsRNase expression, dsRNA sta-

bility, and RNAi efficiency. As our study employed fresh host plant leaves, a comparison of

our results with chronic studies that employed an artificial diet may not be appropriate.

The recalcitrant response of monarch larvae also could be due to high gut pH and/or the

presence of dsRNases in the gut. For example, RNA is most stable at a pH of 4.0 to 5.0 and lepi-

dopterans have a gut pH greater than 8.0, which suggests dsRNA molecules may be unstable in

this environment [48]. In addition, multiple dsRNases have been found in the gut or hemo-

lymph of several lepidopteran larvae, including tobacco cutworm, fall armyworm (Spodoptera
frugiperda), silkworm (Bombyx mori), and tobacco hornworm [36, 48, 49]. If the monarch gut

contains ribonucleases, it could further reduce the internal dsRNA dose below a level needed

to silence mRNA signaling. Low dietary dsRNA concentrations, combined with high gut pH

and dsRNase activity, could be another potential factor responsible the lack dsRNA effects in

Lepidoptera. For example, Terenius et al. [35] observed that dietary dsRNA insecticides

silenced genes at only high concentrations. We used a 5 mg/mL monarch-active dsRNA sus-

pension in the present study, which represents a practical upper limit of exposure given the

solubility of the material. Given these factors, it is not surprising that Lepidopterans demon-

strate low sensitivity to dsRNA products, with LC50s often exceeding 1.0 mg/g [48, 49].

While our results show that monarch larvae exposed to dsRNA through their diet are

unlikely to show adverse effects, application of foliar dsRNA insecticides could result in cuticu-

lar exposure. Penetration and absorption of dsRNA through the cuticle could bypass gut nucle-

ases and alkalinity [49]. For example, Lepidoptera Asian corn borer (Ostrinia furnacalis) had

100% larval mortality five days after the larvae and their diet were topically sprayed with

dsRNA encoding the chymotrypsin-like serine protease C3 gene [50]. Although there are no

currently registered foliar dsRNA products, the technology has shown promise and could be

further developed in the near future [51]. For example, Miguel and Scott [52] applied a dsRNA

derived from Colorado potato beetle (CPB) to leaves of potato plants. CPB larvae feeding on

the treated plants had high mortality. They also found that dsRNA was stable for at least 28

days under greenhouse conditions, which indicates long-term exposure to the insecticide is

possible. Future commercial production and application of foliar dsRNA insecticides could

result in spray drift exposure to non-target organisms near agricultural fields [48], including

monarch larvae.

Monarch butterfly populations have declined in the last two decades [53, 54], and the U.S.

Fish and Wildlife Services recently listed it as a candidate species under the Endangered Spe-

cies Act [55]. Other non-target Lepidopteran populations are also declining [56–58]. Effective

conservation practices involve understanding risks of pesticides, including new technologies

such as dsRNA insecticides. In this regard, our study adds to the growing evidence that some
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Lepidopteran species may not be adversely impacted by dsRNA products, particularly by those

that target protein binding groups.

Supporting information

S1 Table. Preparation of solutions used in the QuantiGene1 Singleplex Assay Kit.

(DOCX)

S1 Fig. Sequence of the Varroa-active dsRNA (Inberg and Mahak 2016).

(DOCX)

S2 Fig. Varroa-active dsRNA closest predicted sequence match and location in Varroa

mite genome. A: Closest predicted sequence match. B: Varroa-active dsRNA (query) overlap

in the Varroa mite genome (subject).

(DOCX)

S3 Fig. Varroa-active dsRNA comparison to honeybee sequences. A: Varroa-active dsRNA

(query) overlaps in honeybee genome (subject). B: Varroa-active dsRNA (query) overlap in

the honeybee calmodulin mRNA (subject).

(DOCX)

S4 Fig. Varroa-active dsRNA comparison to monarch butterfly sequences. A: Varroa-active

dsRNA (query) overlaps in monarch butterfly genome (subject). B: Varroa-active dsRNA

(query) overlap in the monarch butterfly calmodulin mRNA (subject).

(DOCX)

S5 Fig. Representative QuantiGene calibration curves for monarch-active dsRNA (A) and

Varroa-active dsRNA (B).

(DOCX)

S6 Fig. Correlation between measured leaf concentration and mortality for monarch but-

terfly (MB) dsRNA, 1X Varroa (VL) dsRNA, and 10X Varroa (VH) dsRNA treatments.

Data were analyzed separately for common and tropical milkweed. Each point on the graph

indicates a bioassay run.

(DOCX)

Acknowledgments

The authors thank Keith Bidne, insect rearing specialist at Corn Insects and Crop Genetics

Research Unit, U.S. Department of Agriculture, Ames, Iowa, and Chip Taylor and Ann Ryan,

professor and research assistant at University of Kansas, for providing monarch butterfly eggs.

Audrey McCombs, graduate student in the Statistics Department at Iowa State University

(ISU), helped with the statistical analyses. The authors are also grateful for the technical assis-

tance of current and former ISU undergraduate students: Amanda Kiehl, Taylor Boysen, Mela-

nie Aust, and Kara Weber. This research was supported in part by the U.S. Department of

Agriculture (USDA), Agricultural Research Service. Mention of trade names or commercial

products in this publication is solely for the purpose of providing specific information and

does not imply recommendation or endorsement by ISU or the USDA. ISU and USDA are

equal opportunity providers and employers.

PLOS ONE Varroa mite dsRNA: Toxicity to monarch butterflies

PLOS ONE | https://doi.org/10.1371/journal.pone.0251884 June 2, 2021 15 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0251884.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0251884.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0251884.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0251884.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0251884.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0251884.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0251884.s007
https://doi.org/10.1371/journal.pone.0251884


Author Contributions

Conceptualization: Niranjana Krishnan, Maura J. Hall, Richard L. Hellmich, Joel R. Coats,

Steven P. Bradbury.

Data curation: Niranjana Krishnan, Maura J. Hall.

Formal analysis: Niranjana Krishnan, Maura J. Hall.

Funding acquisition: Richard L. Hellmich, Joel R. Coats, Steven P. Bradbury.

Investigation: Niranjana Krishnan, Maura J. Hall.

Methodology: Niranjana Krishnan, Maura J. Hall.

Project administration: Steven P. Bradbury.

Resources: Richard L. Hellmich, Joel R. Coats, Steven P. Bradbury.

Supervision: Joel R. Coats, Steven P. Bradbury.

Validation: Niranjana Krishnan, Maura J. Hall.

Visualization: Niranjana Krishnan, Maura J. Hall.

Writing – original draft: Niranjana Krishnan.

Writing – review & editing: Niranjana Krishnan, Maura J. Hall, Richard L. Hellmich, Joel R.

Coats, Steven P. Bradbury.

References
1. Rosenkranz P, Aumeier P, Ziegelmann B. Biology and Control of Varroa Destructor. J Invertebr Pathol.

2010; 1. 103 Suppl 1 (1): S96–119. https://doi.org/10.1016/j.jip.2009.07.016 PMID: 19909970

2. Ramsey SD, Ochoa, R Bauchan G, Gulbronson C, Mowery JD, Cohen A, et al. Varroa Destructor

Feeds Primarily on Honey Bee Fat Body Tissue and Not Hemolymph. Proc Natl Acad Sci. 2019; 1. 116

(5): 1792–1801. https://doi.org/10.1073/pnas.1818371116 PMID: 30647116

3. Arrese EL, Soulages JL. Insect Fat Body: Energy, Metabolism, and Regulation. Annu Rev Entomol.

2010; 1. 55: 207–225.

4. Rinkevich FD, Danka RG, Healy KB. Influence of Varroa Mite (Varroa Destructor) Management Prac-

tices on Insecticide Sensitivity in the Honey Bee (Apis Mellifera). Insects. 2017; 3. 8 (1): 9.

5. US Environmental Protection Agency. EPA-Registered Pesticide Products Approved for Use Against

Varroa Mites in Bee Hives. 2018 [cited 2020 Nov 19]. Available from: https://www.epa.gov/pollinator-

protection/epa-registered-pesticide-products-approved-use-against-varroa-mites-bee-hives

6. Milani N. The Resistance of Varroa Jacobsoni Oud to Pyrethroids: A Laboratory Assay. Apidolo-

gie.1995; 11. 26 (5): 415–429.

7. Milani N. The Resistance of Varroa Jacobsoni Oud to Acaricides. Apidologie. 1999; 30 (2–3): 229–234.

8. Elzen PJ, Baxter JR, Spivak M, Wilson WT. Control of Varroa Jacobsoni Oud. Resistant to Fluvalinate

and Amitraz Using Coumaphos. Apidologie. 2000; 5. 31 (3): 437–441.

9. Spreafico M, Francesca RE, Bernardinelli I, Colombo M. First Detection of Strains of Varroa Destructor

Resistant to Coumaphos. Results of Laboratory Tests and Field Trials. Apidologie. 2001; 1. 32 (1): 49–

55.

10. Kanga LHB, Marshall K, Legaspi JC. Mechanisms of Insecticide Resistance in Field Populations of the

Varroa Mite (Acari: Mesostigmata: Varroidae) in Florida. Fla Entomol. 2016; 6. 99 (2): 324–326.

11. Mattila HR, Otis GW, Daley J, Schulz T. Trials of Apiguard, a Thymol-Based Miticide. 2. Non-Target

Effects on Honey Bees. Ame Bee J. 1999; 12. 140(1): 68–70.

12. Aliano NP, Ellis MD, Siegfried SD. Acute Contact Toxicity of Oxalic Acid to Varroa Destructor (Acari:

Varroidae) and Their Apis Mellifera (Hymenoptera: Apidae) Hosts in Laboratory Bioassays. J Econ

Entomol. 2006; 10. 99 (5): 1579–1582. https://doi.org/10.1603/0022-0493-99.5.1579 PMID: 17066785
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28. Vélez AM, Jurzenski J, Matz N, Zhou X, Wang H, Ellis M, Siegfried BD. Developing an in Vivo Toxicity

Assay for RNAi Risk Assessment in Honey Bees, Apis Mellifera L. Chemosphere. 2016; 2. 144 (2):

1083–1090.

29. US Environmental Protection Agency. Microbial Pesticide Test Guidelines: OPPTS 885.4340 Nontarget

Insect Testing, Tier I. 2009 [cited 2020 Nov 19]. Available from: https://www.regulations.gov/document?

D=EPA-HQ-OPPT-2009-0159-0036.

30. US Environmental Protection Agency. OCSPP 850.3000: Background and Special Considerations-

Tests with Terrestrial Beneficial Insects, Invertebrates and Microorganisms. 2012 [cited 2020 Nov 19].

Available from: https://www.regulations.gov/document?D=EPA-HQ-OPPT-2009-0154-0015.

31. Pan H, Yang X, Bidne KG, Hellmich RL, Siegfried BD, Zhou X. Dietary Risk Assessment of V-ATPase A

DsRNAs on Monarch Butterfly Larvae. Front Plant Sci. 2017; 8: 242. https://doi.org/10.3389/fpls.2017.

00242 PMID: 28275381

32. Marshansky V, Hosokawa H, Merkulova M, Bakulina A, Dip PV, Thaker YG, et al. Structural Model of

A2-Subunit N-Terminus and Its Binding Interface for Arf-GEF CTH2: Implication for Regulation of V-

ATPase, CTH2 Function and Rational Drug Design. Curr Top Membr. 2019; 3. 83: 77–106. https://doi.

org/10.1016/bs.ctm.2019.01.008 PMID: 31196611

33. Bolognesi R, Ramaseshadri P, Anderson A, Bachman PM, Clinton W, Flannagan R, et al. Characteriz-

ing the Mechanism of Action of Double-Stranded RNA Activity against Western Corn Rootworm (Dia-

brotica Virgifera Virgifera LeConte). PLOS ONE. 2012; 10. 7 (10): e47534. https://doi.org/10.1371/

journal.pone.0047534 PMID: 23071820

PLOS ONE Varroa mite dsRNA: Toxicity to monarch butterflies

PLOS ONE | https://doi.org/10.1371/journal.pone.0251884 June 2, 2021 17 / 19

https://doi.org/10.1007/s10493-011-9447-3
http://www.ncbi.nlm.nih.gov/pubmed/21442305
https://doi.org/10.1603/0022-0493-97.5.1500
http://www.ncbi.nlm.nih.gov/pubmed/15568335
https://doi.org/10.1016/j.jinsphys.2011.12.011
http://www.ncbi.nlm.nih.gov/pubmed/22212860
https://doi.org/10.1016/s0168-9525%2801%2902624-5
https://doi.org/10.1016/s0168-9525%2801%2902624-5
http://www.ncbi.nlm.nih.gov/pubmed/11932009
https://doi.org/10.1128/mmbr.67.4.657-685.2003
https://doi.org/10.1128/mmbr.67.4.657-685.2003
http://www.ncbi.nlm.nih.gov/pubmed/14665679
https://doi.org/10.1007/s12298-017-0443-x
http://www.ncbi.nlm.nih.gov/pubmed/28878489
https://doi.org/10.1016/j.ibmb.2009.09.007
https://doi.org/10.1016/j.ibmb.2009.09.007
http://www.ncbi.nlm.nih.gov/pubmed/19815067
https://doi.org/10.1007/s11248-013-9716-5
http://www.ncbi.nlm.nih.gov/pubmed/23748931
https://doi.org/10.1371/journal.ppat.1003035
http://www.ncbi.nlm.nih.gov/pubmed/23308063
https://doi.org/10.1002/etc.3075
http://www.ncbi.nlm.nih.gov/pubmed/26011006
https://www.regulations.gov/document?D=EPA-HQ-OPPT-2009-0159-0036
https://www.regulations.gov/document?D=EPA-HQ-OPPT-2009-0159-0036
https://www.regulations.gov/document?D=EPA-HQ-OPPT-2009-0154-0015
https://doi.org/10.3389/fpls.2017.00242
https://doi.org/10.3389/fpls.2017.00242
http://www.ncbi.nlm.nih.gov/pubmed/28275381
https://doi.org/10.1016/bs.ctm.2019.01.008
https://doi.org/10.1016/bs.ctm.2019.01.008
http://www.ncbi.nlm.nih.gov/pubmed/31196611
https://doi.org/10.1371/journal.pone.0047534
https://doi.org/10.1371/journal.pone.0047534
http://www.ncbi.nlm.nih.gov/pubmed/23071820
https://doi.org/10.1371/journal.pone.0251884


34. Krishnan N, Zhang Y, Bidne KG, Hellmich RL, Coats JR, Bradbury SP. Assessing Field-Scale Risks of

Foliar Insecticide Applications to Monarch Butterfly (Danaus Plexippus) Larvae. Environ Toxicol Chem.

2020; 4. 39 (4): 923–941. https://doi.org/10.1002/etc.4672 PMID: 31965612

35. Terenius O, Papanicolaou A, Garbutt JS, Eleftherianos I, Huvenne H, Kanginakudru S, et al. RNA Inter-

ference in Lepidoptera: An Overview of Successful and Unsuccessful Studies and Implications for

Experimental Design. J Insect Physiol. 2011; 2. 57 (2): 231–245. https://doi.org/10.1016/j.jinsphys.

2010.11.006 PMID: 21078327

36. Peng Y, Wang K, Zhu G, Han Q, Chen J, Elzaki MEA, et al. Identification and Characterization of Multi-

ple DsRNases from a Lepidopteran Insect, the Tobacco Cutworm, Spodoptera Litura (Lepidoptera:

Noctuidae). Pestic Biochem Physiol. 2020; 1. 162 (1): 86–95.

37. Petschenka G, Agrawal AA. Milkweed Butterfly Resistance to Plant Toxins Is Linked to Sequestration,

Not Coping with a Toxic Diet. Proc Royal So B. 2015; 11. 282 (1818): 20151865.

38. Mohamed AAM, Kim Y. A Target-Specific Feeding Toxicity of Β1 Integrin DsRNA against Diamondback

Moth, Plutella Xylostella. Arch Insect Biochem Physiol. 2011; 78 (4): 216–230. https://doi.org/10.1002/

arch.20455 PMID: 22105667

39. Rana S, Rajurkar AB, Kumar KK, Mohankumar S. Comparative Analysis of Chitin SynthaseA DsRNA

Mediated RNA Interference for Management of Crop Pests of Different Families of Lepidoptera. Front

Plant Sci. 2020; 11: 427. https://doi.org/10.3389/fpls.2020.00427 PMID: 32362904

40. Mao J, Zhang P, Liu C, Zeng F. Co-Silence of the Coatomer β and v-ATPase A Genes by SiRNA Feed-

ing Reduces Larval Survival Rate and Weight Gain of Cotton Bollworm, Helicoverpa Armigera. Pesti-

cide Biochemistry and Physiology. 2015; 118: 71–76. https://doi.org/10.1016/j.pestbp.2014.11.013

PMID: 25752433

41. Rawlins J, Lederhouse R. Developmental Influences of Thermal Behavior on Monarch Caterpillars

(Danaus Plexippus): An Adaptation for Migration (Lepidoptera: Nymphalidae: Danainae). J Kans Ento-

mol Soc. 1981; 4. 54 (2): 387–408.

42. Zalucki MP. Temperature and Rate of Development in Danaus Plexippus L. and D. Chrysippus L. (Lepi-

doptera:Nymphalidae). Aust. J Entomol. 1982; 11. 21 (4): 241–246.

43. Pocius VM, Debinski DM, Pleasants JM, Bidne KG, Hellmich RL, Brower LP. Milkweed Matters: Mon-

arch Butterfly (Lepidoptera: Nymphalidae) Survival and Development on Nine Midwestern Milkweed

Species. Environ Entomol. 2017a; 10. 46 (5): 1098–1105.

44. Pocius VM, Debinski DM, Bidne KG, Hellmich RL, Hunter FK. Performance of Early Instar Monarch But-

terflies (Danaus Plexippus L.) on Nine Milkweed Species Native to Iowa. J Lepid Soc. 2017b; 9. 71 (3):

153–161.

45. Shukla JN, Kalsi M, Sethi A, Narva KE, Fishilevich E, Singh S, et al. Reduced Stability and Intracellular

Transport of DsRNA Contribute to Poor RNAi Response in Lepidopteran Insects. RNA Biol. 2016; 7. 13

(7): 656–669. https://doi.org/10.1080/15476286.2016.1191728 PMID: 27245473

46. Choi MY, Vander Meer RK. Phenotypic Effects of PBAN RNAi Using Oral Delivery of dsRNA to Corn

Earworm (Lepidoptera: Noctuidae) and Tobacco Budworm Larvae. J Econ Entomol. 2019; 2. 112 (1):

434–439. https://doi.org/10.1093/jee/toy356 PMID: 30508147

47. Kumar M, Gupta GP, Rajam MV. Silencing of acetylcholinesterase gene of Helicoverpa armigera by

siRNA affects larval growth and its life cycle. J Insect Physiol. 2009; 3. 55 (3): 273–278. https://doi.org/

10.1016/j.jinsphys.2008.12.005 PMID: 19135057

48. Romeis J, Widmer F. Assessing the Risks of Topically Applied DsRNA-Based Products to Non-Target

Arthropods. Front Plant Sci. 2020; 4. 11: 679. https://doi.org/10.3389/fpls.2020.00679 PMID:

32582240

49. Baum JA, Roberts JK. Progress towards RNAi-mediated insect pest management. Adv Insect Physiol.

2014; 47: 249–295.

50. Wang Y, Zhang H, Li H, Miao X. Second-Generation Sequencing Supply an Effective Way to Screen

RNAi Targets in Large Scale for Potential Application in Pest Insect Control. PLOS ONE. 2011; 4. 6(4):

e18644. https://doi.org/10.1371/journal.pone.0018644 PMID: 21494551

51. Taning CNT, Arpaia S, Christiaens O, Dietz-Pfeilstetter A, Jones H, Mezzetti B, et al. RNA-based bio-

control compounds: current status and perspectives to reach the market. Pest Manag Sci. 2020; 76:

841–845. https://doi.org/10.1002/ps.5686 PMID: 31743573

52. Miguel KS, Scott JG. The Next Generation of Insecticides: DsRNA is Stable as a Foliar-Applied Insecti-

cide: DsRNA is Stable as a Foliar Applied Insecticide. Pest Manag Sci. 2016; 4. 72 (4): 801–809.

https://doi.org/10.1002/ps.4056 PMID: 26097110

53. Brower LP, Taylor OR, Williams EH, Slayback DA, Zubieta RR, Ramı́rez MI. Decline of Monarch Butter-

flies Overwintering in Mexico: Is the Migratory Phenomenon at Risk? Decline of Monarch Butterflies in

Mexico. Insect Conserv Divers. 2011; 3. 5 (2): 95–100.

PLOS ONE Varroa mite dsRNA: Toxicity to monarch butterflies

PLOS ONE | https://doi.org/10.1371/journal.pone.0251884 June 2, 2021 18 / 19

https://doi.org/10.1002/etc.4672
http://www.ncbi.nlm.nih.gov/pubmed/31965612
https://doi.org/10.1016/j.jinsphys.2010.11.006
https://doi.org/10.1016/j.jinsphys.2010.11.006
http://www.ncbi.nlm.nih.gov/pubmed/21078327
https://doi.org/10.1002/arch.20455
https://doi.org/10.1002/arch.20455
http://www.ncbi.nlm.nih.gov/pubmed/22105667
https://doi.org/10.3389/fpls.2020.00427
http://www.ncbi.nlm.nih.gov/pubmed/32362904
https://doi.org/10.1016/j.pestbp.2014.11.013
http://www.ncbi.nlm.nih.gov/pubmed/25752433
https://doi.org/10.1080/15476286.2016.1191728
http://www.ncbi.nlm.nih.gov/pubmed/27245473
https://doi.org/10.1093/jee/toy356
http://www.ncbi.nlm.nih.gov/pubmed/30508147
https://doi.org/10.1016/j.jinsphys.2008.12.005
https://doi.org/10.1016/j.jinsphys.2008.12.005
http://www.ncbi.nlm.nih.gov/pubmed/19135057
https://doi.org/10.3389/fpls.2020.00679
http://www.ncbi.nlm.nih.gov/pubmed/32582240
https://doi.org/10.1371/journal.pone.0018644
http://www.ncbi.nlm.nih.gov/pubmed/21494551
https://doi.org/10.1002/ps.5686
http://www.ncbi.nlm.nih.gov/pubmed/31743573
https://doi.org/10.1002/ps.4056
http://www.ncbi.nlm.nih.gov/pubmed/26097110
https://doi.org/10.1371/journal.pone.0251884


54. Semmens BX, Semmens DJ, Thogmartin WE, Wiederholt R, López-Hoffman L, Diffendorfer JE, et al.
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