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Abstract

Background: The release of cytochrome c from the mitochondria following cerebral ischemia is a key event leading to cell
death. The goal of the present study was to determine the mechanisms involved in post-ischemic activation of protein
kinase c delta (dPKC) that lead to cytochrome c release.

Methods/Findings: We used a rat model of cardiac arrest as an in vivo model, and an in vitro analog, oxygen glucose
deprivation (OGD) in rat hippocampal synaptosomes. Cardiac arrest triggered translocation of dPKC to the mitochondrial
fraction at 1 h reperfusion. In synaptosomes, the peptide inhibitor of dPKC blocked OGD-induced translocation to the
mitochondria. We tested two potential pathways by which dPKC activation could lead to cytochrome c release:
phosphorylation of phospholipid scramblase-3 (PLSCR3) and/or protein phosphatase 2A (PP2A). Cardiac arrest increased
levels of phosphorlyated PLSCR3; however, inhibition of dPKC translocation failed to affect the OGD-induced increase in
PLSCR3 in synaptosomal mitochondria suggesting the post-ischemic phosphorylation of PLSCR3 is not mediated by dPKC.
Inhibition of either dPKC or PP2A decreased cytochrome c release from synaptosomal mitochondria. Cardiac arrest results in
the dephosphorylation of Bad and Bax, both downstream targets of PP2A promoting apoptosis. Inhibition of dPKC or PP2A
prevented OGD-induced Bad, but not Bax, dephosphorylation. To complement these studies, we used proteomics to
identify novel mitochondrial substrates of dPKC.

Conclusions: We conclude that dPKC initiates cytochrome c release via phosphorylation of PP2A and subsequent
dephosphorylation of Bad and identified dPKC, PP2A and additional mitochondrial proteins as potential therapeutic targets
for ischemic neuroprotection.

Citation: Dave KR, Bhattacharya SK, Saul I, DeFazio RA, Dezfulian C, et al. (2011) Activation of Protein Kinase C Delta following Cerebral Ischemia Leads to Release
of Cytochrome C from the Mitochondria via Bad Pathway. PLoS ONE 6(7): e22057. doi:10.1371/journal.pone.0022057

Editor: Christoph Kleinschnitz, Julius-Maximilians-Universität Würzburg, Germany

Received March 29, 2011; Accepted June 14, 2011; Published July 15, 2011

Copyright: � 2011 Dave et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by National Institutes of Health grants NS34773, NS045676 and NS054147 (MAPP), and AHA grant 0735106N (KRD). The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: MPerez18@med.miami.edu

Introduction

The release of mitochondrial cytochrome c into the cytosol

following cerebral ischemia was first observed in the late 1990’s

[1,2], and is a key event that initiates the apoptotic cell death

pathway while indirectly participating in the necrotic pathway

leading to neuronal death [3]. Besides activating the apoptotic

cascade, release of mitochondrial cytochrome c can also contribute

to mitochondrial dysfunction including lower activity of mito-

chondrial respiratory chain complex IV [4]. The factors that

contribute to mitochondrial cytochrome c release following

cerebral ischemia include activation of pro-apoptotic Bcl-2 family

of proteins (e.g Bad Bax, and Bak), opening of the mitochondrial

permeability transition pore, activation of heat shock proteins, and

increases in calcium levels, among others (see recent reviews for

details: [5]). However, the precise mechanism by which cyto-

chrome c is released from the mitochondria following cerebral

ischemia is not fully understood [6].

Protein kinase c delta (dPKC) can initiate pro-apoptotic

pathways by direct effects on the mitochondria [7,8]. For example,

dPKC phosphorylates mitochondrial phospolipid scramblase 3

(PLSCR3), resulting in increased cardiolipin expression on the

mitochondrial outer membrane which facilitates apoptosis in

HeLa cells [9]. Increased cardiolipin presence on the mitochon-

drial outer membrane recruits t-Bid (truncated BH3 interacting

domain death agonist) which in turn results in formation of Bax/

Bak pores through which cytochrome c release may occur

[9,10,11]. Another target of dPKC phosphorylation is protein

phosphatase 2A (PP2A) which may contribute to apoptosis by

dephosphorylating Bad resulting in heterodimer formation and

inactivation of Bcl-2 and Bcl-xL [12]. The inactivation of Bcl-2

and Bcl-xL permit the release of Bax which, when dephosphor-
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ylated by PP2A, can form a mitochondrial pore with Bak

permitting cytochrome c release [11,13]. Thus dPKC activation

may result in phosphorylation of targets both within and outside

the mitochondria resulting in cytochrome c release and apoptosis.

By utilizing in vivo and in vitro models of cerebral ischemia, we

and others have demonstrated that dPKC is activated (translocat-

ed from soluble to the particulate membrane fraction) following

cerebral ischemia [14,15,16]. When activation of dPKC is

attenuated with a dPKC-specific peptide inhibitor (dV1-1), the

brain is protected from ischemic neuronal damage [14,15]. dPKC

activation has been implicated in ischemia/reperfusion-induced

injuries such as oxidative stress, apoptosis, and inflammation

[7,8,17]. In previous studies, we observed that release of

cytochrome c and activation of dPKC following cerebral ischemia

were closely correlated [14,15]. However, whether ischemia-

induced dPKC translocation participates in the release of

cytochrome c from mitochondria has not been defined.

The goal of the present study was to first test the hypothesis that

dPKC translocation/activation after cerebral ischemia could result

in cytochrome c release. We next tested two mechanistic

hypotheses whereby dPKC may mediate cytochrome c release

by: 1) phosphorylation/activation of PLSCR3 leading to targeting

of t-Bid and downstream cytochrome c release, and 2) activation of

dPKC phosphorylates PP2A leading to de-phosphorylation of pro-

apoptotic factors Bad and Bax. Finally, we used proteomics to

identify additional mitochondrial targets of dPKC which may be

phosphorylated upon its translocation.

Results

dPKC translocates to the mitochondria following in vivo
and in vitro cerebral ischemia

We first tested the hypothesis that cerebral ischemia results in

dPKC translocation from the cytosol to the mitochondria.

Previously, we had observed in this model of cardiac arrest (CA)

that cytochrome c is released at 1 h of reperfusion. Therefore, we

examined dPKC translocation to hippocampal mitochondria at

this time [15]. After 8 min of CA, hippocampal mitochondrial

fraction of dPKC was enhanced by 99% (n = 4, p,0.05) as

compared to sham-operated animals (Figure 1A). To test whether

CA induced dPKC translocation is recapitulated in our in vitro

system, we induced OGD in synaptosomes in the presence of tat

carrier peptide (control vehicle for the dPKC inhibitor peptide)

and compared it with control (no ischemia) synaptosomes

(Figure 1B). OGD in synaptosomes doubled dPKC protein levels

in the mitochondrial fraction (n = 5, p,0.05). This increase in

dPKC translocation was reversed by 85% (n = 5, p,0.05) upon

OGD induction in the presence of dV1-1. Thus, dPKC

translocates to the mitochondria during the first hour of

reperfusion following in vivo and in vitro hippocampal neuronal

ischemia. The translocation was abolished in vitro using dV1-1.

dPKC mediates the release of cytochrome c following
OGD

Since we demonstrated dPKC translocation at 1 h of reperfu-

sion when cytochrome c release plateaus, we next sought to

determine if inhibition of translocation prevents cytochrome c

release. Rat hippocampal synaptosomes underwent 60 min of

OGD in the presence of dV1-1 or tat peptide with subsequent

measurements of cytosolic cytochrome c. These levels were

normalized to the cytosolic cytochrome c levels of control

synaptosomes incubated in glucose containing solution with room

Figure 1. dPKC translocates to the mitochondria following CA
and dPKC activation following OGD increases cytochrome c
release. A) Immunoblot of dPKC in hippocampal mitochondria of a rat
subjected to 8 min of CA and 1 h of reperfusion. Levels of dPKC
normalized against COXIV for loading control are expressed as
percentage from sham-operated (control) group. B) Immunoblots of
dPKC in mitochondria isolated from hippocampal synaptosomes
without ischemia or following 1 h oxygen glucose deprivation (OGD)
in presence of tat (control) or dPKC inhibitor (dV1-1). Levels of dPKC
normalized against COXIV for loading control are expressed as
percentage of control dPKC protein expression. C) Immunoblot of
cytochrome c in the soluble fraction of hippocampal synaptosomes
subjected to oxygen glucose deprivation (OGD) in the presence of tat,
dV1-1 or okadaic acid. Levels of cytochrome c normalized against b-
actin for loading control are expressed as percentage of OGD in the
presence of tat (control) group. *, p,0.05 v. sham or tat treated group.
doi:10.1371/journal.pone.0022057.g001
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air insufflation. OGD of the synaptosomes in the presence of tat

peptide resulted in a 268% increase in cytochrome c release from

the mitochondria (n = 5) as compared to control. Inhibition of

dPKC translocation (via dV1-1) resulted in cytochrome c release

similar to control and significantly less than untreated OGD

synaptosomes (n = 5, p,0.05; Figure 1C). Thus, dPKC inhibition

prevents cytochrome c release favoring neuronal survival.

Phospholipid scramblase 3 (PLSCR3) phosphorylation
following cerebral ischemia is not due to dPKC
activation/translocation

We hypothesized that post-ischemic dPKC phosphorylation of

PLSCR3 could increase cardiolipin availability on the outer

membrane of the mitochondria facilitating cytochrome c release

through targeting of t-Bid and subsequent activation of Bax and

Bak [10]. Indeed, CA led to a 56% (n = 4, p,0.05) increase in

phospho-PLSCR3 (p-PLSCR3) in mitochondrial fraction as

compared to sham-operated rats (Figure 2A) and an even larger

increase in PLSCR3 phosphorylation (110% compared to control,

p,0.05; Figure 2B) was noted in vitro. However, PLSCR3

phosphorylation did not change significantly when dPKC was

inhibited during OGD (Figure 2B). Thus, dPKC activation/

translocation was dissociated from phosphorylation of PLSCR3

and fails to mechanistically explain the increase in cytochrome c

release following cerebral ischemia (Figure 1C).

Protein Phosphatase 2A activation leads to release of
cytochrome c
dPKC activates PP2A via phosphorylation [12] although it is

unclear whether this is due to dPKC translocation to yet

uncharacterized cytoskeletal receptors in close proximity to

PP2A. PP2A has a number of known downstream targets, which

we hypothesized could modulate cytochrome c release. To test this

hypothesis, synaptosomes were subjected to 60 min of OGD in the

presence of two protein phosphatase inhibitors in separate

experiments: okadaic acid 0.1 nM) and calyculin (10 nM), which

are potent inhibitors of both PP1 and PP2A [18]. The Ki of

okadaic acid is 0.1 nM for PP2A vs. 10 nM for PP1, making it

more specific for PP2A, whereas the Ki of calyculin is 10-fold

higher for PP1 as compared to PP2A [18,19]. Okadaic acid

lowered OGD-induced cytochrome c release by 52% (n = 5,

p,0.05) (Figure 1C) as compared to vehicle OGD group. In

contrast, calyculin lowered OGD-induced cytochrome c release by

an insignificant 15% (n = 5) (Figure 1C) as compared to vehicle

OGD group. These results suggest that cerebral ischemia-induced

PP2A activation triggers cytochrome c release most likely via

dephosphorylation of downstream targets.

PP2A activation leads to release of cytochrome c via Bad
and Bax pathway

We next hypothesized that PP2A activation following dPKC-

mediated phosphorylation could result in dephosphorylation of

pro-apoptotic proteins Bad and Bax, both of which would be

expected to result in increased cytochrome c release [20,21]. The

level of Bad and Bax phosphorylation was determined at 1 h of

reperfusion in rat hippocampal homogenates subjected to CA

(Figure 2C and D). We observed that the levels of phospho-Bad

and phospho-Bax were decreased by 46% (n = 4, p,0.01) and

49% (n = 4, p,0.05), respectively as compared to sham-operated

rats. To test whether the Bad and Bax de-phosphorylation

observed in vivo resulted from dPKC induced phosphorylation/

activation of PP2A, we tested the impact of synaptosomal OGD in

the presence of either dV1-1 or the PP2A inhibitor okadaic acid

(0.1 nM). Both inhibitors (dV1-1 and okadaic acid) decreased

OGD-induced Bad de-phosphorylation (i.e. led to increased

phosphorylation) by 170% (n = 5, p,0.05) and 101% (n = 5),

respectively as compared to OGD in the presence of tat peptide

group (Figure 3A). Calyculin had a less significant (54%) effect on

Bad de-phosphorylation. However, the effect of all inhibitors on

Bax phosphorylation was marginal and insignificant (Figure 3B).

These results suggest that dPKC activation following cerebral

ischemia phosphorylates PP2A resulting in subsequent Bad, but

not Bax, de-phosphorylation ultimately resulting in increased

release of cytochrome c.

Additional substrates for dPKC within the mitochondria
Although it is established that dPKC initiates apoptosis via the

mitochondrial pathway [15,22,23], until now only four mitochon-

drial substrates (d subunit of Fo-F1 ATPase, pyruvate dehydro-

genase kinase -2, phospholipid scramblase 3 and acid sphingomy-

elinase) for dPKC have been identified. Since PLSCR3 did not

appear to be an important mitochondrial target of translocated

dPKC, we sought to identify additional potential mitochondrial

substrates for dPKC. Additional phospho-proteins were identified

in mitochondria isolated from synaptosomes treated with dPKC

activator peptide (ydRACK) or tat carrier peptide (control). dPKC

can translocate to membrane/particulate fraction by ydRACK

induced dPKC activation [24]. Using the Pro-Q Diamond

phospho-protein gel stain, we noticed distinct bands of molecular

weight ,45, 30 and 7 kDa which were enriched by 48% (p,0.05),

45% (p,0.05) and 199% (p,0.001) (n = 4 each) with ydRACK

treatment as compared to control (Figure 4). Protein identification

was performed using MS/MS analysis which identified numerous

mitochondrial proteins in the first two bands (,45 and 30 kDa)

which are listed in Table 1. Owing to technical challenges we were

unable to identify proteins present in the third band (,7 kDa).

This list serves as a source for future investigations regarding

mitochondrial targets of dPKC activated by cerebral ischemia.

Discussion

The precise signaling pathways that lead to cyotochrome c

release from mitochondria after ischemia have not been fully

elucidated. In the present study, we demonstrate that cerebral

ischemia induces mitochondrial translocation of dPKC associated

with cytochrome c release and that inhibition of dPKC

translocation prevents this pro-apoptotic event. We next evaluated

4 distinct mechanistic hypotheses to explain this finding as

summarized in Figure 5.

We had initially hypothesized that activated mitochondrial

dPKC would phosphorylate PLSCR3 thereby increasing outer

membrane cardiolipin which would recruit t-Bid and subsequently

Bax and Bak, permitting pore formation and cytochrome c

extrusion [10]. However, our results do not support this mechanism.

Rather, we have identified a number of additional mitochondrial

targets of dPKC translocation/activation which may explain the

mechanism of cytochrome c release and apoptosis. Since dPKC is

capable of targeting additional proteins outside the mitochondria,

we chose to examine a pathway known to be regulated in neurons

by dPKC and important in the control of apoptosis. Our results

demonstrate that cerebral ischemia dephosphorylates Bad and Bax,

events that promote apoptosis through formation of a mitochondrial

pore to permit the release of cytochrome c. We demonstrate that the

dephosphorylation of Bad but not Bax appears to be under the

control of dPKC and PP2A activation.

In the present study, we used asphyxial CA in rats to model

cerebral ischemia and demonstrated at each step that in vitro OGD

PKC Delta and Post-Ischemic Cytochrome C Release
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using the synaptosome preparation recapitulates our in vivo results.

Synaptosomes are considered to be the simplest possible

anucleated, neuronally derived mammalian ‘‘mini-cell’’ (see review

for details [25]). Synaptic mitochondria play a significant role in

neurotransmitter release by regulation of cytosolic calcium [26]

and thus would be expected to be highly susceptible to cerebral

ischemia/reperfusion. In the present study, we observed that

dPKC translocated to the synaptic mitochondria with in vitro

ischemia and that this process could be efficiently inhibited with

dV1-1. Since synaptic mitochondria are neuronally derived

(excluding mitochondria from glia and neuronal body), we are

limited in our ability to extrapolate our findings to the whole brain.

In earlier studies we reported that dPKC is activated

(translocated from soluble to particulate fraction) following

cerebral ischemia [14,15]. In the present study, we demonstrate

that mitochondria are one of the particulate fractions to which

dPKC translocates following cerebral ischemia. This translocation

may be initiated by the formation of reactive oxygen species,

Figure 2. Phospholipid scramblase 3 (PLSCR3), Bad and Bax phosphorylation following cerebral ischemia. A) Immunoblot of p-PLSCR3
and PLSCR3 in hippocampal mitochondria of a rat subjected to 8 min of CA and 1 h of reperfusion. B) Immunoblot of p-PLSCR3 and PLSCR3 in
synaptosomes subjected to oxygen glucose deprivation (OGD) in the presence of tat or dV1-1. Immunoblots (representative images are shown at the
top of each bar) were subjected to densitometric analyses, and levels of p-PLSCR3 were normalized against PLSCR3 for loading control is expressed as
percentage of OGD in the presence of tat (control) group. Immunoblot of (C) p-Bad and (D) p-Bax in hippocampal homogenate of a rat subjected to
8 min of CA and 1 h of reperfusion. Levels of p-Bad and p-Bax normalized against total-Bad and total-Bax, respectively are expressed as percentage of
sham operated (control) group. *, p,0.01 v. sham. *, p,0.05 v. sham or tat treated group.
doi:10.1371/journal.pone.0022057.g002
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reactive nitrogen species and diacylglycerol formation [27]. Non-

specific translocation of dPKC to mitochondria as a result of the

isolation procedure may be ruled out due to the presence of lower

levels of dPKC in shams in vivo and control synaptosomes in vitro.

Oxidative stress-induced translocation of dPKC to mitochondria

has been shown to be associated with loss of mitochondrial

membrane potential and mitochondrial cytochrome c release

[8,28,29,30]. In the heart, ischemia/reperfusion results in

diminished mitochondrial respiration which is restored by

reperfusion in the presence of dPKC inhibitor. This contention

is supported by our earlier study where we found that suppressed

rate of respiration in presence of complex IV substrates at early

reperfusion (30 min) following global cerebral ischemia was due to

the release of mitochondrial cytochrome c [4]. We observed

similar results using a rat model of asphyxial cardiac arrest, where

we found that mitochondrial cytochrome c was released at 1 h of

reperfusion following 8 min of cardiac arrest [15]. The present

study thus provides potential targets for dPKC whose translocation

to mitochondria early after ischemia is associated with mitochon-

drial dysfunction and mitochondrial cytochrome c release.

Since we observed that OGD-induced cytochrome c release was

prevented by inhibition of dPKC, we explored possible pathways

by which cerebral ischemia-induced dPKC activation led to the

release of cytochrome c. First we determined whether dPKC

exerted its effect by direct interaction with mitochondrial targets.

Our first candidate was the phospholipid scramblase – 3

(PLSCR3), a known mitochondrial target of dPKC phosphoryla-

tion [31,32]. PLSCR3, a member of phospholipid scramblase

family of proteins, transports cardiolipin from the inner to the

outer membrane of the mitochondria. Cytochrome c is bound to

the outer surface of the inner mitochondrial membrane by

associating with cardiolipin [33]. PLSCR3 had also been identified

as a regulator of cardiolipin de novo biosynthesis [34]. Previous

studies demonstrated that cardiolipin and cytochrome c interaction

is a critical factor determining the amount of cytochrome c release

during apoptotic stimuli [35,36]. It is possible that following

cerebral ischemia, PLSCR3, modified by dPKC, may result in

impaired cardiolipin – cytochrome c interaction leading to

cytochrome c release.

We observed that PLSCR3 phosphorylation was indeed

increased following in vivo cerebral ischemia. However, in our

synaptosomal model, we were unable to block OGD-induced

increase in PLSCR3 phosphorylation by dV1-1 (dPKC-specific

inhibitor peptide) at the same dose that inhibited cytochrome c

release. Although previous studies concluded that PLSCR3 can be

phosphorylated by dPKC; however, these studies used either

general PKC activators (phorbol ester) or CMV promoter-driven

dPKC overexpression (supra-physiological levels of dPKC)

[31,32]. No information is available on the effect of dPKC on

PLSCR3 phosphorylation under physiological levels of dPKC or

specific activation of dPKC without affecting other PKC isoforms.

It is plausible that dPKC phosphorylates PLSCR3 in other cell

types or neuronal compartments outside the synaptosome, as

suggested by these studies, or that other PKC isoforms participate

in PLSCR3 phosphorylation with ischemia. Our results suggest

that PLSCR3 phosphorylation does occur in hippocampus in vivo

but that dPKC inhibition does not block this process based on our

in vitro data. Limitations exist when extrapolating an in vitro model

results to in vivo findings, even when the in vitro model correlates

well with the in vivo findings as we have already demonstrated.

Because dPKC-induced cytochrome c release was independent

of mitochondrial PLSCR3 phosphorylation, we next examined

Figure 3. dPKC activation following OGD decreases Bad
phosphorylation via PP2A activation. A) Immunoblot of p-Bad in
hippocampal synaptosomes subjected to oxygen glucose deprivation
(OGD) in the presence of tat, dV1-1 or okadaic acid. Immunoblots
(representative images are shown at top of each bar) were subjected to
densitometric analyses, and levels of p-Bad were normalized against
total-Bad for loading control is expressed as percentage of OGD in the
presence of tat (control) group. B) Immunoblot of p-Bax in hippocampal
synaptosomes subjected to oxygen glucose deprivation (OGD) in the
presence of tat, dV1-1 or okadaic acid. Immunoblots (representative
images are shown at top of each bar) were subjected to densitometric
analyses, and levels of p-Bax were normalized against total-Bax for
loading control is expressed as percentage of OGD in the presence of
tat (control) group. * p,0.05 v. tat treated group.
doi:10.1371/journal.pone.0022057.g003
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other mitochondrial targets for dPKC phosphorylation. We

demonstrated that the phospho-protein signal of three protein

bands were increased in mitochondria isolated from synaptosomes

treated with ydRACK. Proteomics analyses of these bands

revealed the presence of the following phosphoproteins: ubiquinol

cytochrome c reductase core protein 2, Fe-S protein 2, 3 and

Figure 4. dPKC induced increased protein phosphorylation. Mitochondria were isolated from hippocampal synaptosomes treated with tat or
ydRACK. Mitochondrial proteins were separated on a 4–20% polyacrylamide gel. (A) Images of gels stained with ProQ diamond or Coomassie blue to
detect phosphoproteins or total proteins, respectively. (B) Gel images were subjected to densitometric analysis for 5 bands (50 kDa, 45 kDa, 30 kDa,
25 kDa, and 7 kDa). Phosphoprotein signal was normalized against Coomassie blue stained gel signal. The results are expressed as percent of tat
treated group. *, p,0.05 v. tat treated group.
doi:10.1371/journal.pone.0022057.g004

Table 1. List of proteins identified in the proteomics study.

Accession NCBI NR Protein MW kDa Peptides identified Score Xcalibur

Band 45 kDa 55741544 Ubiquinol cytochrome c reductase core protein 2 48 30 100.19

58865384 NADH dehydrogenase (ubiquinone) Fe-S protein 2 53 14 70.26

60678254 Creatine kinase, mitochondrial 1, ubiquitous 47 14 40.24

158749584 Succinate-Coenzyme A ligase, beta subunit 50 7 40.21

57657 Pyruvate dehydrogenase E1 alpha form 1 subunit 43 7 40.19

54792127 Mitochondrial ATP synthase beta subunit 56 3 20.17

149029485 ATP synthase, alpha subunit, 50 2 20.15

18543177 Citrate synthase 52 3 10.15

Band 30 kDa 32189350 Solute carrier family 25, member 5 33 33 100.22

6679299 Prohibitin 30 19 80.27

47718004 Slc25a3 protein 40 11 60.20

1580888 2116232A 2-oxoglutarate carrier protein 34 10 52.24

157817227 NADH dehydrogenase (ubiquinone) Fe-S protein 3 30 10 40.21

9507245 Tyrosine 3-monooxygenase 28 3 20.24

157817027 Coiled-coil-helix-coiled-coil-helix domain containing 3 26 4 20.19

59808764 Nipsnap1 protein 33 4 20.18

51092268 NADH dehydrogenase (ubiquinone) flavoprotein 2 27 3 20.17

89573817 Succinate dehydrogenase complex subunit B 27 3 20.13

doi:10.1371/journal.pone.0022057.t001
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flavoprotein 2 of NADH dehydrogenase, creatine kinase, beta

subunit of succinate-coenzyme A ligase, E1 alpha form 1 subunit

of pyruvate dehydrogenase (PDH), alpha and beta subunits of

ATP synthase, citrate synthase, and prohibitin [37,38].

An earlier study using in vivo models of cardiac ischemia/

reperfusion demonstrated that dPKC activation (translocation to

mitochondria) was responsible for decreased pyruvate dehydroge-

nase (PDH) activity following ischemia/reperfusion [39]. Their

results support the hypothesis that activated dPKC interacts with

and phosphorylates pyruvate dehydrogenase kinase (PDK)-2,

which in turn phosphorylates the alphaE1 subunit of PDH,

resulting in lower PDH activity. Based on our results and the

earlier study, we hypothesize that the E1 alpha subunit of PDH is

phosphorylated after ischemia/reperfusion-induced dPKC activa-

tion resulting in lower PDH activity in the brain [40,41,42].

Earlier studies demonstrated that ischemia/reperfusion resulted in

lower ATP synthase and citrate synthase activities in the brain

[43,44,45]. It is possible that ischemia/reperfusion-induced

phosphorylation of ATP synthase (alpha and/or beta subunit)

and citrate synthase via dPKC activation may be responsible for

lower activities of these two enzymes. However, further investiga-

tion is required to support this hypothesis.

Our results suggest that prohibitin could be one of the

mitochondrial substrates for dPKC [46]. Prohibitins are present

in inner membrane of the mitochondria and forms multimeric ring

complexes. Prohibits regulates mitochondrial fusion by regulating

processing of the dynamin-like GTPase OPA1 [46,47]. It is

possible that dPKC-induced prohibitin phosphorylation may be

responsible for cerebral ischemia-induced mitochondrial fission

and suppressed mitochondrial respiration.

Mitochondrial cytochrome c release and apoptosis are also

modulated by proteins located outside the mitochondrion. A

prime example are the bcl-2 family proteins such as Bad and Bax

whose activation and mitochondrial translocation are shown to

induce cytochrome c release following apoptotic stimuli after

cerebral ischemia [48,49,50,51,52,53]. One potential pathway by

which these molecules are activated is by de-phosphorylation via

phosphatase [20,21] such as PP2A. Zhang and colleagues

demonstrated that PP2A activity is enhanced up to 3.4 fold

following cerebral ischemia [54]. PP2A can also be activated by

dPKC-induced phosphorylation [12]. PP2A is present in cytosol,

membrane, cytoskeleton, and nuclear compartments, while dPKC

is present in cytosol and translocates to particulate/membrane/

cytoskeleton fraction following activation [55,56,57]. In which

sub-cellular compartments dPKC interacts with PP2A is not

known. In the present study, we were able to inhibit cerebral

ischemia-induced Bad dephosphorylation as well as cytochrome c

release by inhibiting dPKC or PP2A but not PP1 during ischemia.

The slight inhibition observed with calyculin may be the result of

PP2A effects, although 10-fold less than PP1. Our findings,

therefore, support our proposed mechanism that dPKC activation

via phosphorylation of PP2A results in cytochrome c release

through the dephosphorylation of Bad.

In conclusion, our study demonstrated that dPKC translocated to

mitochondria following cerebral ischemia/OGD. Post-ischemic

activation of dPKC was not responsible for increased PLSCR3

phosphorylation but may target other mitochondrial proteins

resulting in mitochondrial dysfunction and/or cytochrome c release.

dPKC activation following cerebral ischemia led to the release of

mitochondrial cytochrome c via the PP2A – Bad pathway.

Figure 5. Schematic diagram of the mechanism by which cerebral ischemia-induced dPKC activation leads to cytochrome c release.
Post-ischemic dPKC activation leads to activation of PP2A. Activated PP2A dephosphorylates Bad, but not Bax, which in turn release cytochrome c
from mitochondria. In addition, dPKC can also contribute to mitochondrial dysfunction by phosphorylating other mitochondrial target proteins.
doi:10.1371/journal.pone.0022057.g005
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Materials and Methods

Animals and Induction of cardiac arrest
All animal procedures were carried out in accordance with the

Guide for the Care and Use of Laboratory Animals published by

the National Institutes of Health and approved by the Animal

Care and Use Committee of the University of Miami (protocol #
09-050). For experiments with hippocampus from naı̈ve animals,

male Sprague Dawley rats weighing 250–300 g were used. They

were sacrificed under isoflurane anesthesia and the hippocampi

were dissected out for further analyses. Asphyxial cardiac arrest

was induced as described earlier [58,59]. Head and body

temperature, and blood gases were maintained in the normal

range throughout the experiment. Sham animals were exposed to

isoflurane identical to the experimental groups. Rats were

sacrificed at 1 h post-ROSC and the hippocampus was dissected

out and used for further analysis.

Preparation of homogenate and isolation of
mitochondria from rat hippocampus

Hippocampal mitochondria were isolated as described earlier

with minor modifications [4]. Total mitochondria were isolated

from the last pellet using nitrogen compression [60]. All

mitochondrial isolation procedures were carried out at 4uC.

Hippocampal synaptosomes were isolated as described earlier

[60,61]. Percoll density gradient was used to separate synapto-

somes. Oxygen glucose deprivation (an in vitro model of ischemia)

was induced by incubating synaptosomes in glucose deprived

medium as described earlier [60,62]. During standardization, we

induced OGD of 30, 60 and 90 min and measured cytochrome c.

We used 60 min of OGD for all experiments since cytochrome c

release reached plateau at 60 min (80%, 114% and 110% at 30,

60 and 90 min of OGD, respectively). At the end of 60 min of

OGD, mitochondria were isolated from synaptosomes using a

nitrogen bomb [63]. Control synaptosomes were incubated in

glucose medium containing bubbled with air at 30uC.

Ex vivo dPKC activation and inhibition
Inhibition of dPKC was induced by pre-incubating synapto-

somes with either tat carrier peptide or dV1-1 (dPKC inhibitor)

(1 mM final concentration) for 15 min at room temperature (KAI

Pharmaceuticals Inc., South San Francisco, CA, USA) [64,65].

Tat carrier peptide or dV1-1 was also present during OGD.

Activation of dPKC was induced by pre-incubating synaptosomes

with either tat carrier peptide or ydRACK (dPKC activator)

(1 mM final concentration) for 15 min at room temperature.

Immunoprecipitation and Western blotting
Immunoprecipitation was carried out using rabbit polyclonal

anti-PLS3 (Imgenex, San Diego, CA, USA) or rabbit polyclonal

anti- Bax (Santa Cruz biotechnology, Santa Cruz, CA, USA) and

protein A sepharose beads (Sigma, St. Louis, MO, USA) as per

manufacturer’s instructions. The resulting immunoprecipitate was

used for immunoblotting (see below) with subsequent probing

using mouse monoclonal anti-phosphothreonine (Cell Signaling

Technology, Danvers, MA, USA) with normalization to total

protein levels using the primary antibody. Antibodies used were

rabbit polyclonal anti-dPKC (Calbiochem, Gibbstown, NJ, USA),

mouse monoclonal anti-cytochrome c (BD Pharmingen, San Jose,

CA, USA), mouse monoclonal anti-cytochrome c oxidase subunit

IV (Invitrogen, Carlsbad, CA, USA), or mouse monoclonal anti-b-

actin (Sigma, St. Louis, MO, USA) antibodies and species specific

secondary antibodies. The digitized immunoblots were subjected

to densitometric analyses [60].

Phosphoprotein staining, sample extraction from gel,
and mass spectrometry

Proteins were separated from mitochondrial samples on a 4–

20% acrylamide gel (Invitrogen Corporation, Carlsbad, CA).

Phosphoproteins in the gradient gel were identified using Pro-Q

Diamond Phosphoprotein Gel Stain (Molecular Probes Inc.,

Carlsbad, CA) as per manufacturer’s instructions and subsequently

stained with Coomassie blue (Pierce Biotechnology, Rockford, IL)

to confirm equal protein loading. For protein identification, gel

slices were excised and digested in situ with sequencing-grade

trypsin (Promega Biosciences, Inc., Madison, WI). Samples were

then processed for protein identification as described earlier [66].

Statistical analysis
The results are expressed as mean 6 SEM. Statistical

significance was determined with Student’s t-test when there were

two experimental groups. For more than two groups, statistical

evaluation of the data was performed using ANOVA test, followed

by Dunnett’s post hoc test with p,0.05 considered significant.
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