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Abstract: People attach greater importance to the physical health of teenagers because adolescence is
a critical period for the healthy development of the human body. With the progress of biosensing
technologies and artificial intelligence, it is feasible to apply wearable devices to continuously record
teenagers’ physiological signals and make analyses based on modern advanced methods. To solve
the challenge that traditional methods of monitoring teenagers’ physical fitness lack accurate com-
putational models and in-depth data analyses, we propose a novel evaluation model for predicting
the physical fitness of teenagers. First, we collected 1024 teenagers’ PPGs under the guidance of the
proposed three-stage running paradigm. Next, we applied the median filter and wavelet transform
to denoise the original signals and obtain HR and SpO2. Then, we used the Pearson correlation
coefficient method to finalize the feature set, based on the extracted nine physical features. Finally, we
built a 1D-CNN with LSTM model to classify teenagers’ physical fitness condition into four levels: ex-
cellent, good, medium, and poor, with an accuracy of 98.27% for boys’ physical fitness prediction, and
99.26% for girls’ physical fitness prediction. The experimental results provide evidence supporting
the feasibility of predicting teenagers’ physical fitness levels by their running PPG recordings.

Keywords: teenager physical fitness monitoring; wearable bracelets; noninvasive biosensors; wireless
biosensors; Photoplethysmography (PPG); Pearson correlation coefficient (PCC); deep learning;
Convolutional Neural Network (CNN); Long Short-Term Memory (LSTM)

1. Introduction

People are attaching greater importance to personal health monitoring, especially in
the context of the global COVID-19 pandemic background [1]. With the development of
modern technologies, Artificial Intelligence (AI) is widely implemented in Healthcare 4.0
for producing early and accurate results [2]. The Internet of Things (IoT) is working as a
catalyst to enhance the power of AI applications in human healthcare [3–5]. Increasing
attention is being paid to the physical fitness of teenagers because adolescence is a crucial
period of physical and health development, from the aspect of the whole life cycle [6]. The
physical fitness condition of teenagers correlates not only to the happiness of their families,
but also the future of the country and the nation. Researchers in the field of healthcare,
psychology, and education should make a great effort to study teenagers’ physical fitness
to give them a healthier and brighter future.

Referring to ‘The Second National Physical Fitness Monitoring Report’ published
by the State Sports General Administration of China, the physical fitness condition of
Chinese teenagers has been declining continuously since 1985 [7]. Nowadays, teenagers are
spending more time on their smartphones and computers and are less likely to go out for
exercise, leading to a decline in their physical health [8–10]. In addition to strengthening
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teenagers’ physical exercise, from the aspect of the teenagers themselves, governments
and researchers should study the mechanisms for physical fitness evaluation to get the
physical health of teenagers under control. For example, the ‘National Students’ Physical
Health Standard’, published in 2014, requires all schools in China to carry out regular
physical fitness tests for students of all grades, from primary school to college. Regular
monitoring can indeed contribute to a better understanding of adolescent health, but it is
not convenient enough.

With the rapid development of biosensors and biosensing technologies, people have
more convenient and flexible means to monitor health conditions, for example, wireless
and noninvasive signal collecting biosensors, such as bracelets and brain rings [11–15].
Smart wearable wireless biosensors, based on IoT framework, make it feasible to col-
lect continuous physiological recordings in neural scenarios, such as sports, games, and
classrooms [16–20]. Li Xiaoqing proposes an IoT platform for smart maternal healthcare
services with wearable devices and cloud computing, and the key technologies, which
can mitigate the workload of medical staff, increase work efficiency, facilitate pregnant
women going to doctors, and improve the quality of obstetrical treatment [21]. Marian
Ion creates a wearable flexible pressure sensor that could be integrated into a clinically
approved blood pressure monitoring device for healthcare purposes [22]. In Takafumi’s
research, they monitored health and diagnosed disease in the early stage with the help of
a wrist flexible heart pulse sensor, integrated with a soft pump and a pneumatic balloon
membrane [23]. We can apply wearable devices like smart bracelets to continuously record
teenagers’ physiological signals and analyze their physical fitness condition with the aid of
modern advanced methods.

There is a trend whereby the methodology of data mining transforms gradually from
simple statistical means and conventional machine learning methods to deep learning
algorithms. Ling Chen applied the Statistical Program for Social Sciences (SPSS) to study
teenager physical health-promoting strategies in 2014 [24]. Crouter’s team applied conven-
tional receiver operating characteristic (ROC) curves and regression analyses in 2015 to
develop prediction equations for energy expenditure, to develop and validate methods for
analyzing wrist accelerometer data in youth [25]. While, in recent years, the deep learn-
ing method has been much more popular with researchers for its powerful data analysis
skills. According to Bolhasani reviews, deep learning is the most popular topic having a
wide range of applications, such as computer vision, natural language processing, disease
prediction, drug discovery, bioinformatics, biomedicine, etc. [26]. Of these applications,
healthcare and medical science-related applications are dramatically on the rise. In Dang’s
research, they developed an end-to-end framework which is based on physical features
embedded in raw data and a 1D-CNN-LSTM model for smart structural health monitoring
purposes [27]. Focusing on obesity problems in adolescents, Lee Sungchul’s team used
feedforward deep learning models and CNN models to distinguish walking movements
between nonobese and obese groups, at a rate of 90.5% [28]. The deep learning method can
analyze the huge and complicated physical health data of teenagers more efficiently and
quickly. However, at present, research on the analyses of the physical health of ordinary
teenagers is still relatively lacking.

Taken together, researchers have made great efforts in the field of health monitoring
of teenagers, and research methods are transforming gradually from traditional artificial
statistics to computer sciences. However, experts and scholars have focused more on the
healthcare of patients than on the physical development of normal adolescents. Although
deep learning algorithms are growing rapidly, there are few health monitoring models for
the average teenager. In order to monitor the physical health fitness condition of normal
teenagers and help their teachers, families, and themselves know better about adolescents’
health, in the present research, we collected one thousand and twenty-four fourteen-year-
old middle school students’ photoplethysmography signals under the guidance of our
proposed three-stage running experiment paradigm. Then we applied the median filter
and wavelet transform to denoise the original signals to make signals available to obtain
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heart rate and blood oxygen saturation. We used the Pearson correlation coefficient method
to finalize the feature set based on our extracted nine physical features. Finally, we built a
1D-CNN with LSTM model to classify teenagers’ physical fitness condition into four levels:
excellent, good, medium, and poor.

We organized the remainder of the paper as follows. Section 2 introduces materials
and methods, including the framework system (Section 2.1), the experimental paradigm
(Section 2.2), and participants’ composition (Section 2.3). We also introduce the methods
of preprocessing the original physiological signals (Section 2.4), extracting key features
(Section 2.5), and constructing evaluation models (Section 2.6). The finalized feature set
(Sections 3.1 and 3.2) and the evaluation metrics used to measure the performance of the
proposed model (Section 3.3) are given in Section 3. Section 4 discusses the advantages and
disadvantages of the proposed framework and presents the main contributions of the work.
Finally, Section 5 concludes the paper.

2. Materials and Methods
2.1. System Framework
2.1.1. Self-Designed Smart Bracelet System

Our self-designed smart bracelet system is applied to achieve a bulk transmission of
PPG recordings from the smart bracelets to the personal computer (PC), as displayed in
Figure 1. The embedded sensors in the smart bracelets we designed collect PPG voltage
value recordings 25 times per second. The effective operation of the whole system is
shown below.
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Figure 1. Self-designed smart bracelet system.

(1) Enable wireless connection. Bracelets keep on, and connect with, the Bluetooth-WiFi
router via embedded Bluetooth modules wirelessly. Personal computers connect with
the router through WiFi to ensure that the bracelets, the router, and the PC are all in
the same WiFi environment.

(2) Data upload cloud. PPGs can be bulk transmitted automatically to the cloud database
via Bluetooth.

(3) Gain data. If the PC sends a request to the cloud database to obtain the data stored
there, we receive original signals collected by all used bracelets locally.

In this research, we first collected teenagers’ PPG recordings with the aid of smart
bracelets and then applied the self-designed system to transmit the PPGs to computers for
further analyses.
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2.1.2. Framework of the Proposed Evaluation System

To classify teenagers’ physical fitness condition into four levels, categorized as ex-
cellent, good, medium, and poor, we analyzed their physiological recordings, and we
developed the framework of teenager physical fitness evaluation system shown in Figure 2.
Firstly, we recorded 1024 fourteen-year-old middle school students’ PPGs under the guid-
ance of the designed experimental paradigm. Secondly, we applied an MF-WT method
to preprocess the original PPGs to ensure that the signals were clean enough for further
analyses. Then, we calculated HR and SpO2 from the preprocessed signals and extracted
nine available features. We applied PCC to finalize the feature set. Finally, a 1D-CNN with
LSTM evaluation model was developed to classify the teenagers’ physical fitness condition
into four levels.
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2.2. Experimental Paradigm

The principles of the experimental paradigm to collect effective PPGs can be summa-
rized into the following three considerations:

(1) The whole process should be based on the ‘National Students’ Physical Health Stan-
dard’ and the regular health test standard for teenage students, so that we can score
students’ physical fitness condition with the aid of official principles, which will be
used to guide us in labelling the running PPG features. Taking into account differences
in muscle mass, respiratory development, and exercise duration between boys and
girls during adolescence, the official documents state that boys run 1000 m, and girls
run 800 m, so that the physical test can better monitor every person’s physical fitness.
In this research, we evaluated boys’ and girls’ fitness conditions separately.

(2) Our participants were all middle school students aged 14, so it required the testing
procedures to be convenient and easy, so as to avoid students being unable to wear
our smart bracelets comfortably, and to ensure that we could collect available PPGs.

(3) The whole procedure ought to be scientific and complete so that we can extract as
many vital physiological features as possible from the original signals.

According to the three aspects above, we designed the following experimental paradigm.
Volunteers wore smart bracelets and did three-minute warm-up exercises before the official
run. Then they were divided into two groups based on their gender, and the boys ran
1000 m while the girls ran 800 m, respectively. One experiment allowed attendance of
ten students maximum. After running, students needed to have a rest to let their rapid
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breathing and heartbeats slow down until they recovered to normal fitness condition. The
flowchart of the experimental paradigm is shown in Figure 3.
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2.3. Volunteer Participants

One thousand and twenty-four middle school students (576 boys and 448 girls) volun-
teered to participate in the teenager fitness evaluation experiment. We required all students
to have adequate sleep the night before the experiment and to be in good health. This
research was conducted under China’s law, and all volunteers were informed that the
biosensing recordings collected would only be used for the scientific study and would
not be used for other purposes. We conducted the experiment with the subjects’ consent.
The collected data was processed by means of anonymity, which guaranteed that the
participants’ privacy would not be divulged.

2.4. Signal Preprocessing

Photoplethysmography (PPG) was first proposed in 1938 by Hertzman [29]. It is a
non-invasive method to detect change of blood volume in living tissues, which requires the
help of photoelectric means [29]. During movement, PPGs are highly susceptible to light in
the environment, electromyography noise [30], and baseline drift [31]. The last two factors
seriously interfere with the accuracy of heartbeat and blood pressure monitoring, which
are both involved in the original PPGs collected during the experiment.

Baseline drift occurs because of noise with a frequency below 1 Hz caused by respira-
tion and the relative friction between the human skin surface and the PPG sensor. The PPG
signal with baseline drift is the superposition of the characteristic waveform and baseline
drift signal. The baseline drift signal can be eliminated by appropriate filtering [32]. The
median filter (MF) is a nonlinear digital filter technology, which can be applied to eliminate
noise in images or other signals [33]. The design idea of MF is to check the sampling in
the input signal and judge whether it represents the signal, which can be realized with the
aid of the observation window composed of odd samples. The values in the observation
window are sorted, and the median in the middle of the observation window is output.
Then, the earliest value is discarded, a new sample obtained, and the above calculation
process repeated.

Electromyography noise generates because of muscle tremors, which is also the main
reason for motion artifacts [34]. Although the action time of muscle tremors is short, it can
lead to wide frequency distribution similar to white noise in the frequency domain, which
will affect the reliability of PPGs. Wavelet transform (WT) is a new transform analysis
method, which can analyze the localization of time or space frequency, and gradually refine
the signal or function through expansion and translation operation [35]. WT can achieve
time subdivision at high frequency and frequency subdivision at low frequency, and can
automatically adapt to the requirements of time-frequency signal analysis. WT protects
useful signal spikes and abrupt signals. It is suitable for denoising the transient signal, as
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well as restraining the interference of high-frequency noise. The fundamental definition
formula is as follows:

WT(α, τ) =
1√
α

∫ ∞

−∞
f(t)∗Ψ

(
t− τ

α

)
dt, (1)

α means scale and controls the scaling of the wavelet function, τ means translation and
controls the migration of the wavelet function. Ψ (t) is the mother wavelet function.

2.5. Feature Engineering

Heart rate (HR) and blood oxygen saturation (SpO2) are two vital indexes extracted
from preprocessed PPGs. The value of HR of healthy people is between 60 to 100, and
the percentage of SpO2 is generally more than 94% [36]. The two indexes are applied to
judge many vital functions of the human body. HR is one of the most important factors
for monitoring the status of human hearts. As for SpO2, if the blood oxygen content of
the human body is insufficient, it easily causes many complications, such as headaches.
Real-time monitoring of HR and SpO2 helps people better know their health condition.

2.5.1. Feature Estimation

Direct current (DC) signals generate if no large-scale movement is in the human body
because the light absorption of bones, muscles, and veins is unchanged. While alternating
current (AC) signals are produced because light absorption naturally changes because of
blood flow in the arteries. We applied Fast Fourier Transformation (FFT) to obtain HR from
the original PPGs. We obtained the signal with a prominent amplitude near 1 Hz on the
frequency spectrum. If the frequency is recorded as f, HR can be calculated as:

HR = f ∗ 60 (bpm). (2)

When we apply the photoplethysmography method to obtain SpO2, the skin of the
human wrist is the transparent container containing hemoglobin. Both the red light with
wavelength of 660 nm and the near-infrared light with wavelength of 940 nm are the
incident light sources. We can measure light conduction intensity through the tissue
bed to calculate SpO2. It provides a continuous non-invasive blood oxygen measuring
instrument for the clinic. SpO2 and the relative light intensity of 660 nm and 940 nm on the
photodetector have a linear relationship if the oxygen content in the blood changes. The
calculation formula is:

SpO2 = a + b ∗ R, R =
AC660/DC660

AC940/DC940
, (3)

a and b are calibration constants:110 and 25, AC660 and DC660 mean the alternating and
direct current generated in the human wrist tissue bed under red light with wavelength
of 660 nm, AC940 and DC940 represent alternating and direct current generated under
near-infrared light with wavelength of 940 nm.

2.5.2. Feature Extraction

To extract as many features which may relate to the physical fitness levels of teenagers
as possible, we defined an initial feature set, including resting heart rate, heart rate descent
rate, heart rate increase rate, maximum heart rate, heart rate reserve, mean blood oxygen
saturation, standard deviation of blood oxygen saturation, instant heart rate, and time
duration. The definitions are shown as follows:

(1) Resting heart rate (HRrest) [37] refers to the number of heartbeats every minute when
people are resting or in a peaceful state.

(2) Heart rate increase rate (HRincrease) [38] refers to the rate of increase of the heart rate.
Concerning that, our bracelets can collect energy consumption (EC) simultaneously
while recording HR. We calculate the incremental quantity of the HR in the first 20 s
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of the running period divided by the incremental quantity of EC over the same time
period as the HRincrease.

(3) Maximum heart rate (HRmax) [39] refers to the maximum value of the HR at the
maximum load intensity. We can use HRmax to monitor teenagers’ exercise intensity.

(4) Heart rate reserve (HRreserve) [40] refers to the difference between HRmax and HRrest.
The higher the value of HRreserve is, the better the cardiopulmonary function is.

(5) Mean blood oxygen saturation (SpO2mean), SpO2 shows significant changes for neither
the average person nor professional athletes under normal conditions, but it will
apparently decrease when there is a quantity load of exercise. To extract as many
adequate features as possible, which may be correlated with the teenagers’ physical
fitness levels, we add SpO2mean into our initial feature set.

(6) Standard deviation of blood oxygen saturation (SpO2SD) [41], SpO2SD shows little
variation. However, we also add this feature into the original set to verify whether it
makes sense to monitor teenagers’ physical fitness condition.

(7) Time duration (TD) refers to the minus value between the time of finishing running
(Tend)and the time of starting running (Tstart). According to the regular health test
standard for teenage students, TD decides the results of the running process. The
shorter TD is, the better the score is. Referring to TD, we can distribute the teenagers’
fitness levels into four degrees: excellent, good, medium, and poor.

(8) Instant heart rate (HRinstant) [42] refers to the immediate HR after exercise. Zhou’s
research finds that HRinstant has a strong negative correlation with cardiopulmonary
functions, which shows that HRinstant may have a strong correspondence with pre-
dicting teenagers’ fitness levels.

(9) Heart rate descent rate (HRdescent) [43] refers to the rate of recovery of heart rate after
exercise, especially the minute immediately after exercise. The faster the HR drops,
the better the cardiopulmonary function may be.

The definition formulae of the extracted features are shown in Table 1.

Table 1. Definition formulae of the 9 features.

Measurement Period Feature Formulae

3-min warm-up exercise Resting heart rate (HRrest) HRrest =
1

3∗60

Tstart+3∗60

∑
t=Tstart

HRt (4)

Running

Heart rate increase rate (HRincrease) HRincrease =
HRTstart+20−HRTstart
ECTstart+20−ECTstart

(5)

Maximum heart rate (HRmax) HRmax = max(HRt), t = Tstart . . . Tend (6)
Heart rate reserve (HRreserve) HRreserve = HRmax −HRrest (7)

Mean blood oxygen saturation (SpO2mean) SpO2mean =
∑

Tend
t=Tstart

(SpO2)t
Tend−Tstart

(8)

Standard deviation of blood oxygen
saturation (SpO2SD) SpO2SD =

√
1

Tend−Tstart

Tend−Tstart

∑
t=Tstart

(
HRt − SpO2mean

)2 (9)

Time duration (TD) TD = Tend − Tstart (10)

Recovery Heart rate descent rate (HRdecent) HRdescent =
∑

Tend+10
t=Tend

HRt−∑
Tend+120
t=Tend+110

HRt

10
(11)

Instant heart rate (HRinstant) HRinstant = HRTend (12)

2.5.3. Feature Selection

We extracted nine features that may correlate with levels of teenagers’ physical fitness.
However, we made a first-round selection among these features to make sure that the
selected features were key features, really contributing to evaluating physical fitness levels.
The principles used to choose key features were as follows:

(1) They had a strong correlation with physical fitness levels. For example, we found
SpO2mean and SpO2SD do not have apparent changes, so we are not sure whether
these two features can evaluate teenagers’ fitness condition. It was necessary to take
some measures to remove useless features.
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(2) They did not have redundancy information between each other. Take SpO2mean and
SpO2SD for example, they are both extracted from SpO2, so there may be redundancy
information between them. We needed to find a way to remove the redundant features
to make the selected dataset as clean as possible.

Based on the two principles above, we needed to analyze the correlation among
extracted features to finalize the feature set. The final purpose of our research was to
classify the teenagers’ physical fitness levels based on the PPGs, so it was necessary that
we considered the correlated relationship between the feature and the fitness level when
we made correlation analyses.

In the field of natural science, the Pearson correlation coefficient (PCC) is widely
applied to measure correlation between two variables, and its value ranges from −1 to
1 [44]. It evolved from a similar, but slightly different, idea put forward by Francis Galton,
in the 1880s.

PCC between two variables is defined as the quotient of covariance and standard deviation:

ρX,Y =
cov(X, Y)
σXσY

=
E[(X− µX)(Y− µY)]

σXσY
. (13)

The above formula defines the overall correlation coefficient, which is usually repre-
sented by ρ. ρX and ρY to represent the standard deviation of two variables, respectively.
Cov(X,Y) represents the covariance of two variables.

PCC can also be obtained by estimating the covariance and standard deviation of the
sample, which is commonly represented by r:

r =
∑n

i=1
(
Xi − X

)(
Yi − Y

)√
∑n

i=1
(
Xi − X

)2
√

∑n
i=1
(
Yi − Y

)2
. (14)

The value of PCC varies from −1 to 1. Value ‘1’ means that X and Y can be well
described by linear equation. All data points fall on a straight line, and Y increases with the
increase of X. Value ‘−1’ means that all data points fall on a straight line, while Y decreases
with increase of X. Value ‘0’ means that the two variables have no relationship. Table 2
shows the relationship between the absolute value of PCC and correlation degrees.

Table 2. The relationship between PCC and correlation degrees.

PCC 0.8~1.0 0.6~0.8 0.6~0.4 0.2~0.4 0.0~0.2

Relationship Very strong Strong Moderate Weak Irrelevant

2.6. A Deep Learning Method: 1D-CNN with LSTM

Professor Lecun first proposed the LeNet model based on Convolutional Neural
Network (CNN) to solve the visual task of handwritten numeral recognition in 1998. In
recent years, researchers have applied CNN and other CNN-based variant models to
image processing, object detection, signal processing, and so on [45]. Considering the
multi-dimensions of the features, and the computing and dimension reduction processing
ability of deep learning algorithms, we applied 1D-CNN to build the evaluation model.
A fundamental CNN is mainly composed of input layer, convolution layer, pooling layer,
full connection layer, and activation layer. The function of each layer is briefly described
as follows.

(1) The input layer is a layer for the network to receive input samples. Its shape is
consistent with that of the input samples. It serves to receive and transmit data for
the network behind this layer.

(2) The function of the convolution layer is to obtain features of input data through con-
volution operation, extract multiple features by using convolution kernels of different
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scales, and increase the number of effective features. The number of convolution ker-
nels can change the depth of the input matrix. The convolution operation is such that
the convolution kernel traverses the input matrix and convolutes with the elements at
the corresponding position in the input matrix. A new output matrix starts from the
operation result.

(3) The pooling layer reduces the length and width of the matrix, which can reduce the
size of the matrix, as well as the number of network parameters. The pooling layer
usually discards the part with less information and retains its vital information, which
not only speeds up calculation efficiency, but also ensures accuracy.

(4) The full connection layer is a hierarchy that connects all nodes between previous
features and final output.

(5) The Softmax layer maps the input to real numbers between 0 and 1 and then normal-
izes these real numbers to ensure that the sum is 1; that is, to ensure the probability
of mapping the input to the corresponding category. Through the transformation
of the Softmax layer, the output of the previous layer is transformed into the prob-
ability that the samples belong to each class, so that the network can complete the
multi-classification task.

Long Short-Term Memory (LSTM) was first proposed by Hochreiter and Schmid-
huber in 1997 [46]. The original design intention was to solve the problem of long-term
dependence in neural networks and make remembering long-term information the default
behavior of neural networks, rather than requiring much effort to learn [47]. LSTM controls
discarding or adding information through a ‘gate’ to realize the function of forgetting or
remembering. A ‘gate’ is a structure that allows information to pass selectively, which is
composed of a sigmoid function and a dot multiplication operation. The output value
of the sigmoid function is between 0 and 1. ‘0’ represents complete discarding, while ‘1’
represents complete passing. An LSTM unit has three such gates: forget gate, input gate,
and output gate.

Recurrent neural network (RNN) is suitable for processing time-series data, like one-
channel physiological recordings. However, the original RNN has the problem of gradient
disappearance, or gradient explosion. LSTM and layered RNN are all solutions to this
problem. The essence of LSTM is to introduce the concept of cell state. Unlike RNN, which
only considers the recent state, the cell state of LSTM will determine which states should
be left and which should be forgotten [47]. Basic RNN can deal with some short-term
dependence, but it cannot deal with long-term dependence, while LSTM has this capability.

Considering that the physiological characteristics we screen out are one-dimensional
time-allowed sequences, we propose a 1D-CNN with an LSTM evaluation model to achieve
the classified task. In the proposed model, the Conv1D layer refers to one-dimensional
convolution calculation, which is usually used to process one-dimensional data, such as
physiological signals. ReLU (Rectified Linear Unit), also known as modified linear unit, is
an activation function that refers to the nonlinear functions represented by slope function
and its variants. Batch normalization is a method to unify the scattered data, and also to
optimize the neural network. The dropout layer prevents overfitting and improves the
generalization ability of the model. The dense layer can aggregate network information for
classification or other purposes.

3. Experiment Results
3.1. Signal Preprocessing Results

We applied MF and WT to preprocess the original PPGs to ensure the signals were
clean enough for feature estimation. Figure 4 is an example of simulated physiological
recordings with the preprocessing methods. The preprocessed signals with non-baseline
draft and little noise welcomed further analysis.
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3.2. Feature Engineering Results

Values and correlated degrees of the Pearson correlation coefficient between teenagers’
physiological features and their physical fitness levels are displayed in Tables 3 and 4. The
values of PCC among physiological features are shown in Figure 5, in which image (a) on
the left is for boys, and image (b) on the right is for girls.

Table 3. Values of the Pearson correlation coefficient between teenagers’ initial features and their
fitness levels.

Feature HRrest HRincrease HRmax HRreserve SpO2mean SpO2SD TD HRdescent HRinstant

PCC
Boy 0.392 0.598 0.440 0.113 −0.136 −0.493 0.370 0.492 0.625

Girl 0.826 0.676 0.699 −0.119 0.082 −0.529 0.299 0.450 0.830

Table 4. Features distributed by degrees of correlation to physical fitness levels.

Correlation Very Strong
(PCC: 0.8~1.0)

Strong
(PCC: 0.6~0.8)

Moderate
(PCC: 0.4~0.6)

Weak
(PCC: 0.2~0.4)

Irrelevant
(PCC: 0.0~0.2)

Gender
Boy None HRinstant

HRmax HRrest HRreserveSpO2SD
HRdescent TD SpO2meanHRincrease

Girl
HRrest HRincrease SpO2SD TD

HRreserve
HRinstant HRmax HRdescent SpO2mean

As regards boys’ features, there is no very strong correlation between physiological
features and fitness levels. But HRincrease (PCC = 0.598), HRmax (PCC = 0.440), SpO2SD
(PCC = −0.493), HRdescent (PCC = 0.492), and HRinstant (PCC = 0.625) show a moderate
or strong correlation. We added those features to our selected feature set. HRrest and
TD’s PCC is between 0.2 and 0.4, representing a weak relationship between them and
fitness levels. From image (a) in Figure 5, we find that HRrest has a strong correlation with
SpO2SD (PCC = −0.72). SpO2SD is already in the selected feature set, so we eliminated
HRrest. TD was the only scoring criteria for scoring students’ running in middle schools,
although the PCC between TD and fitness levels is 0.370, we chose to persist with TD.
HRreserve (PCC = 0.113) and SpO2mean (PCC = −0.136) have an irrelevant correlation to
fitness levels, so we removed them directly.



Biosensors 2022, 12, 202 11 of 19

Biosensors 2022, 12, x FOR PEER REVIEW 11 of 19 

 

3 and 4. The values of PCC among physiological features are shown in Figure 5, in which 
image (a) on the left is for boys, and image (b) on the right is for girls. 

Table 3. Values of the Pearson correlation coefficient between teenagers’ initial features and their 
fitness levels. 

Feature HRrest HRincrease HRmax HRreserve SpO2mean SpO2SD TD HRdescent HRinstant 

PCC 
Boy 0.392 0.598 0.440 0.113 −0.136 −0.493 0.370 0.492 0.625 
Girl 0.826 0.676 0.699 −0.119 0.082 −0.529 0.299 0.450 0.830 

Table 4. Features distributed by degrees of correlation to physical fitness levels. 

Correlation Very Strong 
(PCC: 0.8~1.0) 

Strong 
(PCC: 0.6~0.8) 

Moderate 
(PCC: 0.4~0.6) 

Weak 
(PCC: 0.2~0.4) 

Irrelevant 
(PCC: 0.0~0.2) 

Gender 
Boy None HRinstant 

HRmax 
HRrest HRreserve 

SpO2SD 
HRdescent 

TD SpO2mean 
HRincrease 

Girl 
HRrest HRincrease SpO2SD 

TD 
HRreserve 

HRinstant HRmax HRdescent SpO2mean 
 

  
(a) (b) 

Figure 5. PCC among all features. (a) PCC among features extracted from boys’ recordings; (b) PCC 
among features extracted from girls’ recordings. 

As regards boys’ features, there is no very strong correlation between physiological 
features and fitness levels. But HRincrease (PCC = 0.598), HRmax (PCC = 0.440), SpO2SD (PCC = 
−0.493), HRdescent (PCC = 0.492), and HRinstant (PCC = 0.625) show a moderate or strong 
correlation. We added those features to our selected feature set. HRrest and TD’s PCC is 
between 0.2 and 0.4, representing a weak relationship between them and fitness levels. 
From image (a) in Figure 5, we find that HRrest has a strong correlation with SpO2SD (PCC 
= −0.72). SpO2SD is already in the selected feature set, so we eliminated HRrest. TD was the 
only scoring criteria for scoring students’ running in middle schools, although the PCC 
between TD and fitness levels is 0.370, we chose to persist with TD. HRreserve (PCC = 0.113) 
and SpO2mean (PCC = −0.136) have an irrelevant correlation to fitness levels, so we removed 
them directly. 

As regards girls’ features, HRrest (PCC = 0.826) and HRinstant (PCC = 0.830) have a very 
strong correlation with fitness levels. We added these two features in the final feature set. 
We removed HRreserve and SpO2mean directly because their values are −0.119 and 0.082, 
respectively. The PCC between TD and girls’ physical fitness levels is 0.299, lower than 

Figure 5. PCC among all features. (a) PCC among features extracted from boys’ recordings; (b) PCC
among features extracted from girls’ recordings.

As regards girls’ features, HRrest (PCC = 0.826) and HRinstant (PCC = 0.830) have a
very strong correlation with fitness levels. We added these two features in the final feature
set. We removed HRreserve and SpO2mean directly because their values are −0.119 and
0.082, respectively. The PCC between TD and girls’ physical fitness levels is 0.299, lower
than 0.4, but for the same reason as regards the boys, we kept TD in the final selected
feature set. The PCC between HRmax and girls’ physical fitness levels is 0.699, representing
a strong correlation, but HRmax has a strong relationship with HRrest (PCC = 0.76) and
HRinstant (PCC = 0.69) referring to image (b) in Figure 5. We considered that there was
redundant information among HRmax, HRrest, and HRinstant, so we removed HRmax from
the final feature set. SpO2SD (PCC = −0.529) and HRdescent (PCC = 0.450) show a moderate
relationship, but HRdescent shows a weak correlation with other features. We cannot delete
HRinstant casually. SpO2SD has a strong correlation with HRrest (PCC = −0.77) and HRinstant
(PCC = −0.64), which were already chosen in the final set, so we removed SpO2SD.

Table 5 shows the final selected feature sets for boys and girls. We chose six features
for the boys’ feature set and 5 features for the girls’ feature set. The final selected feature
set will be used to develop our teenager physical fitness evaluation model.

Table 5. Final selected feature set. ‘
√

’ represents that we added this feature to the final feature set,
‘×’ means the opposite.

Feature HRrest HRincrease HRmax HRreserve SpO2mean SpO2SD TD HRdescent HRinstant

Gender
Boy ×

√ √
× ×

√ √ √ √

Girl
√ √

× × × ×
√ √ √

3.3. Evaluation Model Performance

We applied the proposed 1D-CNN with LSTM model to evaluate teenagers’ physical
fitness condition. When developing the proposed model, we divided the data set in a
ratio of seven to three and reduced the learning rate to the original 0.5 every 100 epochs.
After several rounds of frame adjustment, we constructed the final framework described in
Table 6 because of its best performance.
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Table 6. The framework of teenagers’ physical fitness evaluation models.

Model Framework for Boys Model Framework for Girls

Layer Type Output Shape Parameters Layer Type Output Shape Parameters

Conv1D (None, 4, 64) 192 Conv1D (None, 4, 64) 192
ReLU (None, 4, 64) 0 ReLU (None, 4, 64) 0

Conv1D (None, 2, 64) 12352 Conv1D (None, 2, 64) 12352
Conv1D (None, 1, 64) 4160 Conv1D (None, 1, 64) 4160

Batch
normalization (None, 1, 64) 256 Batch

normalization (None, 1, 64) 256

Dropout (None, 1, 64) 0 Dropout (None, 1, 64) 0
Conv1D (None, 1, 32) 2080 Conv1D (None, 1, 64) 4160
Conv1D (None, 1, 32) 1056 Conv1D (None, 1, 64) 4160

Batch
normalization (None, 1, 32) 128 Batch

normalization (None, 1, 64) 256

LSTM (None, 1, 32) 8320 LSTM (None, 1, 64) 33024
LSTM (None, 32) 8320 LSTM (None, 32) 12416
Dense (None, 4) 132 Dropout (None, 32) 0

Dense (None, 4) 132

To better measure the performance of the model, we recorded accuracy for the whole
model, as well as precision, recall, and f1-score for every class with different epochs
(epoch = 250, 300, and 350). Table 7 and Figure 6 record the evaluation indexes for teenagers’
physical fitness levels. We found that when the training epoch is 300, accuracy reaches
the highest, the values of boys’ and girls’ physical fitness evaluation accuracy are 98.27%
and 99.26%, respectively. From the detailed evaluation indexes for every class, we found
two edge classifications (excellent and poor) get 100% accuracy for every epoch, for both
boys and girls. While the accuracy for classifications of two intermediate parts (good and
medium, especially medium) hardly achieve 100% prediction accuracy.
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Table 7. Evaluation indexes for teenagers’ physical fitness levels.

Gender Epoch Accuracy Classes
Evaluation Indexes

Precision Recall F1-Score

Boy

250 0.9769

Excellent 1.00 1.00 1.00
Good 0.99 0.98 0.98

Medium 0.84 0.94 0.89
Poor 1.00 1.00 1.00

300 0.9827 1

Excellent 1.00 1.00 1.00
Good 0.99 0.98 0.99

Medium 0.89 0.94 0.91
Poor 1.00 1.00 1.00

350 0.9769

Excellent 1.00 1.00 1.00
Good 0.99 0.98 0.98

Medium 0.84 0.94 0.89
Poor 1.00 1.00 1.00

Girl

250 0.9852

Excellent 1.00 1.00 1.00
Good 0.95 1.00 0.97

Medium 1.00 0.93 0.96
Poor 1.00 1.00 1.00

300 0.9926 2

Excellent 1.00 1.00 1.00
Good 0.98 1.00 0.99

Medium 1.00 0.98 0.98
Poor 1.00 1.00 1.00

350 0.9778

Excellent 1.00 1.00 1.00
Good 0.95 1.00 0.97

Medium 1.00 0.93 0.96
Poor 1.00 1.00 1.00

1,2 The best accuracy for gender.

We recorded the changes of accuracy and loss during different epoch training for both
boys and girls in Figures 7 and 8. Decreasing loss value proves that it is converging, and
increasing accuracy value proves that its accuracy is improving.

From Figures 9 and 10, we can more clearly find that accuracy in classifying two
intermediate parts (good and medium, especially medium) hardly achieves 100% prediction
accuracy. The accuracy rates of excellent and poor are pretty high. We consider the middle
two levels: good and medium, to be excessive, and hard to classify, while excellent and
poor are more widely separated and easily distinguishable.
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4. Discussions

In the present research, we explored predictability of the running PPGs for the physical
fitness levels of teenagers. The wrist-recorded PPGs were found to be an effective indicator
of teenagers’ physical fitness condition, with better results for predicting excellent and
poor levels. Intermediate health levels are a bit harder to assess. The experiment results
indicate that people can monitor physical fitness condition of adolescents by analyzing
their physiological recordings with modern artificial intelligence methods.

Through mathematical calculation, MF-WT denoising, and PCC value analyses, we
finalized the physiological feature set for boys and girls, respectively. Considering the
one-dimensional nature, and time correlation, of physiological signals, computing ability,
and dimension reduction processing ability of deep learning, we applied 1D-CNN with
LSTM to achieve the classified task and got 98.27% (for boys) and 99.26% (for girls) as the
final prediction results. Notably, whereas, ideally, it is expected to collect physiological
recordings from all items of the student physical fitness test, on the guidance of official
documents published by the government, for the prediction of health condition, our data
were measured merely by a typical running test. Although cardiopulmonary function
can be detected through long-distance running, and running is easier to monitor than
sports such as those requiring sitting forward flexion, we admit that if combined with more
physical tests, the results can be more accurate. Furthermore, the accuracy of the evaluation
model, based on the current method, has reached the commercial level, but if the signals
collected from other sports are added in the future, the accuracy will not be known.

In summary, the contributions of this paper are summarized as follows:

(1) We have pioneered the exploration of the relationship between physiological record-
ings of teenagers with their physical fitness levels and proposed that some key features
could be effectively used to predict fitness levels.

(2) We have proposed an assessment model based on an optimized 1D-CNN with LSTM
to predict the outcome of the running physical test. The proposed model could also
be used for other predictive tasks based on biosensing recordings.

(3) The experimental results provide evidence supporting the feasibility of predicting
teenagers’ physical fitness levels by their biosensing recordings.

5. Conclusions

In this research, we have proposed a 1D-CNN with LSTM based evaluation model to
assess the physical fitness condition of teenagers with the aid of our self-designed wearable
smart bracelet system. Under the guidance of the designed experimental paradigm, we col-
lected one thousand and twenty-four fourteen-year-old middle school students’ PPGs and
applied median filter and wavelet transform to make the original physiological recordings
clean enough for further mathematical calculating of heart rate (HR) and blood oxygen
saturation (SpO2). Then we calculated nine features based on HR and SpO2 extracted in
different experimental procedures and used the Pearson correlation coefficient method to
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finalize the feature set. Finally, we constructed a deep learning model, 1D-CNN with LSTM,
to classify teenagers’ physical fitness condition into four levels: excellent, good, medium,
and poor, with an accuracy of 98.27% for boys, and 99.26% for girls.

Our research demonstrates the possibility and feasibility of applying deep learning
methods to analyze teenagers’ physical fitness based on PPG recordings, and fills the gap
of health monitoring for ordinary teenagers. Extending our knowledge on the healthcare
of teenagers may contribute to improving routine physical assessments and arousing
widespread concern in society. With the rapid progress of biosensing technologies and
artificial intelligence, health monitoring for teenagers’ physical fitness will achieve faster
development based on existing methods.
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