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Abstract Neural computations underlying cognitive functions require calibration of the strength

of excitatory and inhibitory synaptic connections and are associated with modulation of gamma

frequency oscillations in network activity. However, principles relating gamma oscillations, synaptic

strength and circuit computations are unclear. We address this in attractor network models that

account for grid firing and theta-nested gamma oscillations in the medial entorhinal cortex. We show

that moderate intrinsic noise massively increases the range of synaptic strengths supporting gamma

oscillations and grid computation. With moderate noise, variation in excitatory or inhibitory synaptic

strength tunes the amplitude and frequency of gamma activity without disrupting grid firing. This

beneficial role for noise results from disruption of epileptic-like network states. Thus, moderate noise

promotes independent control of multiplexed firing rate- and gamma-based computational

mechanisms. Our results have implications for tuning of normal circuit function and for disorders

associated with changes in gamma oscillations and synaptic strength.

DOI: 10.7554/eLife.06444.001

Introduction
Cognitive processes are mediated by computations in neural circuits and are often associated

with gamma frequency oscillations in circuit activity. Gamma activity and cognitive performance often

co-vary within tasks and between individuals, while cognitive deficits in psychiatric disorders such as

autism and schizophrenia are linked to altered gamma frequency network dynamics (Uhlhaas and

Singer, 2012; Spellman and Gordon, 2014). Such disorders are also linked to changes in the efficacy

of excitatory glutamatergic and inhibitory GABAergic synapses (Rubenstein and Merzenich, 2003;

Lewis et al., 2012). A critical and unresolved issue is the mechanistic relationship between gamma

oscillations, the strength of excitation and inhibition, and circuit computations. On the one hand,

neural codes based on firing rates may be sufficient for circuit computations (Shadlen and Newsome,

1994; Histed and Maunsell, 2014). In this scenario gamma oscillations might index circuit activation,

but would not be required for computation. Evidence that rate coded computations and gamma

oscillations arise from shared circuit mechanisms could be interpreted to support this view (Lundqvist

et al., 2010; Pastoll et al., 2013), which predicts that when synaptic properties of a circuit are altered

then gamma activity and the output of the rate-coded computation will co-vary. Alternatively, gamma

oscillations, while sharing cellular substrates with rate-coded computations, may nevertheless support

independent or multiplexed computational modes. For example, according to the communication

through coherence hypothesis, tuning of gamma frequency activity may facilitate selective

interactions between distant brain regions (Fries, 2009). In this scenario independent control of

rate coded computation and gamma activity would be beneficial, for example by allowing tuning of
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coherence without disrupting multiplexed rate-coded computations. However, it is unclear how this

could be achieved in circuits where gamma and rate-coded computations share common synaptic

mechanisms, as this would require variation in synaptic properties to differentially affect gamma

activity and the rate coded computation.

We address these issues using a model that accounts, through a common synaptic mechanism, for

gamma oscillations and spatial computation by neurons in layer 2 of the medial entorhinal cortex

(MEC) (Pastoll et al., 2013). The rate-coded firing of grid cells in the MEC is a well-studied feature of

neural circuits for spatial cognition (Moser and Moser, 2013). During exploration of an environment

individual grid cells are active at multiple locations that together follow a hexagonal grid-like

organization. At the same time MEC circuits generate periods of activity in the high gamma frequency

range (60–120 Hz) nested within a slower theta (8–12 Hz) frequency network oscillation (Chrobak and

Buzsáki, 1998). Analysis of spatial correlations in grid firing, of manipulations to grid circuits, and

recording of grid cell membrane potential in behaving animals, collectively point towards continuous

two-dimensional network attractor states as explanations for grid firing (Bonnevie et al., 2013;

Domnisoru et al., 2013; Schmidt-Hieber and Häusser, 2013; Yoon et al., 2013). In layer II of the

MEC, which has the highest known density of grid cells (Sargolini et al., 2006), stellate cells that

project to the dentate gyrus of the hippocampus are the major population of excitatory neurons

(Gatome et al., 2010). These excitatory (E) neurons do not appear to influence one another directly

but instead interact via intermediate inhibitory (I) neurons (Dhillon and Jones, 2000; Couey et al.,

2013; Pastoll et al., 2013). Models that explicitly incorporate this recurrent E-I-E connectivity can

account for grid firing through velocity-dependent update of network attractor states (Pastoll et al.,

2013). When these models are implemented with excitable spiking neurons they also account for

theta-nested gamma frequency network oscillations (Pastoll et al., 2013). The influence in these, or

other classes of attractor network models, of the strength of E to I or I to E connections on gamma

oscillations and grid firing, or other attractor computations, has not been systematically investigated.

We find that while gamma oscillations and grid firing are both sensitive to the strength of

excitatory and inhibitory connections, their relationship differs. Although their underlying synaptic

eLife digest When electrodes are placed on the scalp, or lowered into the brain itself, rhythmic

waves of electrical activity are seen that reflect the coordinated firing of large numbers of neurons.

The pattern of the waves varies between different brain regions, and according to what the animal or

person is doing. During sleep and quiet wakefulness, slower brain waves predominate, whereas

faster waves called gamma oscillations emerge during cognition—the act of processing knowledge.

Gamma waves can be readily detected in a region of the brain called the medial entorhinal cortex

(MEC). This brain region is also known for its role in forming the spatial memories that allow an

individual to remember how to navigate around an area they have previously visited. Individual MEC

cells increase their firing rates whenever an individual is at specific locations. When these locations

are plotted in two dimensions, they form a hexagonal grid: this ‘grid cell map’ enables the animal to

keep track of its position as it navigates through its environment.

To determine how MEC neurons can simultaneously encode spatial locations and generate the

gamma waves implicated in cognition, Solanka et al. have used supercomputing to simulate the

activity of more than 1.5 million connections between MEC cells. Changing the strength of these

connections had different effects on the ability of the MEC to produce gamma waves or spatial

maps. However, adjusting the model to include random fluctuations in neuronal firing, or ‘noise’, was

beneficial for both types of output. This is partly because noise prevented neuronal firing from

becoming excessively synchronized, which would otherwise have caused seizures.

Although noise is generally regarded as disruptive, the results of Solanka et al. suggest that it

helps the MEC to perform its two distinct roles. Specifically, the presence of noise enables relatively

small changes in the strength of the connections between neurons to alter gamma waves—and thus

affect cognition—without disrupting the neurons’ ability to encode spatial locations. Given that noise

reduces the likelihood of seizures, the results also raise the possibility that introducing noise into the

brain in a controlled way could have therapeutic benefits for individuals with epilepsy.

DOI: 10.7554/eLife.06444.002
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substrates are identical, gamma activity nevertheless provides little information about grid firing or

the presence of underlying network attractor states. Thus, gamma activity is not a good predictor of

rate-coded computation. Unexpectedly, we find the range of E- and I- synaptic strengths that support

gamma and grid firing is massively increased by moderate intrinsic noise through a mechanism

involving suppression of seizure-like events. In the presence of moderate noise differences in synaptic

strength can tune the amplitude and frequency of gamma across a wide range with little effect on grid

firing. We obtain similar results in implementations of E-I models in which connectivity is probabilistic

and in models extended to include additional I to I and E to E connections. Our results suggest

constraints for extrapolation of differences in gamma activity to mechanisms for cognition, identify

noise as a critical factor for successful circuit computation, and suggest that tuning of excitatory or

inhibitory synaptic strength could be used to control gamma-dependent processes multiplexed within

circuits carrying out rate coded computations.

Results
To systematically explore relationships between strengths of excitatory and inhibitory synapses,

computations and gamma activity, we initially take advantage of models that account for both grid

firing and theta-nested gamma oscillations through E-I-E interactions (Pastoll et al., 2013). In these

models a layer of E cells sends synaptic connections to a layer of I cells, which in turn feedback onto

the E cell layer (Figure 1A). For attractor dynamics to emerge the strength of E and I connections are

set to depend on the relative locations of neurons in network space (Figure 1B). While suitable

connectivity could arise during development through spike timing-dependent synaptic plasticity

(Widloski and Fiete, 2014), here the connection profiles are fixed (Pastoll et al., 2013). To vary the

strength of excitatory or inhibitory connections in the network as a whole we scale the strength of all

connections relative to a maximum conductance value (gE or gI for excitation and inhibition

respectively) (Figure 1B). We also consider networks in which the connection probability, rather than

Figure 1. Attractor network model with feedback inhibition and theta frequency inputs. (A) A schematic of

populations of excitatory cells (E cells, red) and inhibitory cells (I cells, blue) on a twisted torus of size 34 × 30

neurons. The synaptic coupling between the two populations was parameterized by the inter-population peak

synaptic conductances gE (E → I synapses) and gI (I → E synapses). (B) Top: Plots illustrate peak synaptic

conductances of E (red) and I (blue) synapses as a function of the distance between pre- and post-synaptic neurons.

Bottom: Distributions of synaptic weights from all I cells onto an E cell in the model (left) and from all E cells onto an

I-cell (right). Parameters gI and gE determine maximal values of these distributions. (C) Examples of the membrane

potential of an isolated E cell during two consecutive theta cycles in networks without noise (white noise input

current standard deviation σ = 0 pA), with an intermediate amount of noise (σ = 150 pA) and with noise levels

doubled (σ = 300 pA). Theta signal is illustrated in grey.

DOI: 10.7554/eLife.06444.003

The following figure supplement is available for figure 1:

Figure supplement 1. Synaptic weights in scaled and probabilistic variants of the network.

DOI: 10.7554/eLife.06444.004
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its strength, varies according to the relative position of neurons in the network (Figure 1—figure

supplement 1). Each E and I cell is implemented as an exponential integrate and fire neuron and so its

membrane potential approximates the dynamics of a real neuron, as opposed to models in which

synaptic input directly updates a spike rate parameter. Addition of noise to a single E or I cell

increases variability in its membrane potential trajectory approximating that seen in vivo (Figure 1C)

(Domnisoru et al., 2013; Pastoll et al., 2013; Schmidt-Hieber and Häusser, 2013). Given that all

neurons in the model are implemented as exponential integrate-and-fire neurons and that in total the

model contains >1.5 million synaptic connections, we optimized a version of the model to enable

relatively fast simulation and automated extraction and analysis of generated data (see ‘Materials and

methods’). In this way the effect on grid firing of 31 × 31 combinations of gE and gI could be evaluated

typically using >50 nodes on a computer cluster in approximately 1 week.

Intrinsic noise increases the range of synaptic strengths that support
grid firing
What happens to grid firing patterns when the strengths of excitatory and/or inhibitory synaptic

connections in the model are modified? To address this we first evaluated grid firing while simulating

exploration within a circular environment with a network from which noise sources were absent

(Figure 2A). When we reduce the strength of connections from I cells by threefold and increase the

strength of connections from E cells by threefold we find that grid firing is abolished (Figure 2Ab vs

Figure 2Aa). Exploring the parameter space of gE and gI more systematically reveals a relatively

restricted region that supports grid firing (Figure 2D and Supplementary file 1A–D). Rather than the

required gI and gE being proportional to one another, this region is shifted towards low values of gI

and high gE. Thus, the ability of recurrently connected networks to generate grid fields requires

specific tuning of synaptic connection strengths.

Because neural activity in the brain is noisy (Shadlen and Newsome, 1994; Faisal et al., 2008), we

wanted to know if the ability of the circuit to compute location is affected by noise intrinsic to each

neuron (Figure 1C). Given that continuous attractor networks are often highly sensitive to noise

(Zhang, 1996; Eliasmith, 2005), we expected that intrinsic noise would reduce the parameter space

in which computation is successful. In contrast, when we added noise with standard deviation of 150

pA to the intrinsic dynamics of each neuron, we found that both configurations from Figure 2Aa,b now

supported grid firing patterns (Figure 2Ba,b). When we considered the full space of E and I synaptic

strengths in the presence of this moderate noise we now found a much larger region that supports

grid firing (Figure 2E and Supplementary file 1E–H). This region has a crescent-like shape, with arms

of relatively high gI and low gE, and low gI and high gE. Thus, while tuning of gI and gE continues to be

required for grid firing, moderate noise massively increases the range of gE and gI over which grid

fields are generated.

When intrinsic noise was increased further, to 300 pA, the parameter space that supports grid firing

was reduced in line with our initial expectations (Figure 2Ca,b,F and Supplementary file 1I–L). To

systematically explore the range of gE and gI over which the network is most sensitive to the beneficial

effects of noise we subtracted grid scores for simulations with 150 pA noise from scores with

deterministic simulations (Figure 2G). This revealed that the unexpected beneficial effect of noise was

primarily in the region of the parameter space where recurrent inhibition was strong. In this region,

increasing noise above a threshold led to high grid scores, while further increases in noise

progressively impaired grid firing (Figure 2H). In probabilistically connected networks, the range of gE

and gI supporting grid firing was reduced, but the shape of the parameter space and dependence on

noise was similar to the standard networks (Figure 2—figure supplement 1), indicating that the

dependence of grid firing on gE and gI, and the effects of noise, are independent of the detailed

implementation of the E-I attractor networks.

How closely does the firing of I cells in the simulated networks correspond to inhibitory activity in

behaving animals, and to what extent is the pattern of I cell firing affected by gE, gI and noise? While

there is little data on the spatial firing of interneurons in the MEC, recent evidence indicates that the

majority of parvalbumin positive interneurons have firing fields with significant spatial stability, but low

spatial sparsity and grid scores compared to excitatory grid cells (Buetfering et al., 2014). A possible

interpretation of these data is that parvalbumin positive cells are unlikely to fulfill the roles of I cells

predicted in E-I models. However, in networks that we evaluate here in which E cells have grid firing
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Figure 2. Noise increases the range of synaptic strengths that support grid firing. (A–C) Example spatial firing fields

(left) and spatial autocorrelation plots (right) of E and I cells for networks without noise (A; σ = 0 pA), with noise level

set to σ = 150 pA (B), and noise level set to σ = 300 pA (C) and with the strengths of recurrent synaptic connections

indicated by arrows in (D–F). Maximal firing rate is indicated to the top right of each spatial firing plot. The range of

spatial autocorrelations is normalized between 0 and 1. (D–F) Gridness score as a function of gE and gI for networks

with each noise level. Each item in the color plot is an average gridness score of four simulation runs. Arrows indicate

the positions of grid field and autocorrelation examples from simulations illustrated in (A–C). Simulations that did

not finish in a specified time interval (5 hr) are indicated by white color. (G) Difference between gridness scores of

networks with σ = 150 pA and networks with σ = 0 pA plotted as a function of gE and gI. (H) Gridness score plotted as

a function of the standard deviation of intrinsic noise. Each noise level comprises simulations from a neighborhood

of gE and gI surrounding a center point in the parameter space (center included) indicated by arrows in (D–F).

DOI: 10.7554/eLife.06444.005

Figure 2. continued on next page
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fields in the presence of moderate noise, I cell firing fields also have a much lower spatial information

content and spatial sparsity than the corresponding E cell firing fields (E cells: spatial sparsity 0.788 ±
0.061, spatial information: 1.749 ± 0.32 bits/spike; I cells: spatial sparsity 0.239 ± 0.018, spatial

information 0.243 ± 0.024 bits/spike; p < 10−16 for comparisons of both spatial sparsity and

information; paired t-test; data range is indicated as mean ± standard deviation) (Figure 2A–C and

Figure 2—figure supplement 2). Spatial autocorrelograms of simulated I cell firing fields also do not

contain the six hexagonally organized peaks that are characteristic of grid fields (Figure 2A–C).

Nevertheless, I cell spatial autocorrelograms produce positive grid scores (0.39 ± 0.16;

Figure 2—figure supplement 3), although these are reduced compared to scores for the E cells in

the same networks (E cells: 0.796 ± 0.157; p < 10−16; paired t-test; mean ± SD) and in many networks

are below the threshold considered previously to qualify as grid like (cf. Figure 4B of Buetfering et al.,

2014). When we evaluated the dependence of I cell spatial firing on gE, gI and noise, it appeared to

be similar to that of E cells (Figure 2—figure supplement 3). To assess whether grid scores of I cells

can be reduced further in E-I networks while maintaining grid firing by E cells, we investigated

networks in which uncorrelated spatial input is applied to each I cell (Figure 2—figure supplement 4).

In these simulations E cells had grid scores of 0.57 ± 0.25, spatial sparsity of 0.78 ± 0.03 and spatial

information of 1.69 ± 0.18 bits/spike, whereas I cells had grid scores of 0.16 ± 0.2 (p < 10−16, paired t-

test), spatial sparsity of 0.21 ± 0.01 (p < 10−16, paired t-test) and spatial information of 0.2 ± 0.01 bits/

spike (p < 10−16, paired t-test; range of all data sets is mean ± SD). Thus, spatial firing of I cells has

a similar dependence on noise, gE and gI to grid cells, conventional indices of spatial firing are

nevertheless much lower for I cells in E-I networks compared to E cells, and grid firing by E cells in E-I

networks is relatively robust to disruption of the rotational symmetry of I cell firing fields.

Together these simulations demonstrate that attractor circuit computations that generate grid

firing fields require specific tuning of gE and gI. In the absence of noise grid firing is supported in

relatively restricted regions of parameter space. Optimal levels of noise, which produce single cell

membrane potential fluctuations of a similar amplitude to experimental observations (Domnisoru

et al., 2013; Pastoll et al., 2013; Schmidt-Hieber and Häusser, 2013), promote grid firing by

reducing the sensitivity of grid computations to the strength of recurrent synaptic connections,

particularly when inhibition is relatively strong and excitation is weak.

Differential sensitivity of gamma oscillations and grid firing to the
strength of E and I synapses
Is the sensitivity of gamma frequency oscillations to synaptic strength and to noise similar to that of

grid firing? To evaluate gamma activity we recorded synaptic currents from single E and I cells across

multiple theta cycles (Figure 3A–C). For the network configurations illustrated in Figure 2Aa,b and in

which intrinsic noise is absent, we observed synaptic events entrained to theta cycles (Figure 3Aa,b).

However, the timing and amplitude of synaptic events typically differed between theta cycles and no

consistent gamma rhythm was apparent. In contrast, in the presence of noise with standard deviation

150 pA we observed nested gamma frequency synaptic activity with timing that was consistent

between theta cycles (Figure 3Ba). In this condition the frequency of the gamma oscillations was

reduced and their amplitude increased by raising gI and lowering gE (Figure 3Bb). With a further

Figure 2. Continued

The following figure supplements are available for figure 2:

Figure supplement 1. Sensitivity of grid firing to changes in feedback inhibition, excitation and noise levels in

networks with connection probability between pairs of neurons drawn according to the synaptic profile functions in

Figure 1B.

DOI: 10.7554/eLife.06444.006

Figure supplement 2. Spatial information and sparsity of firing fields of E and I cells.

DOI: 10.7554/eLife.06444.007

Figure supplement 3. Gridness scores of I cells.

DOI: 10.7554/eLife.06444.008

Figure supplement 4. Spatial firing fields in networks with uncorrelated spatial input applied to each I cell.

DOI: 10.7554/eLife.06444.009
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increase in noise to 300 pA, gamma activity remained entrained to theta cycles, but became less

ordered (Figure 3Ca,b).

To explore gamma activity across a wider range of gI and gE we automated quantification of the

strength and frequency of oscillatory input to E cells (see ‘Materials and methods’). In the absence of

noise gamma frequency activity only occurred for a narrow range of gI and gE (Figure 3D). Strikingly,

following addition of moderate noise the region of parameter space that supports gamma activity was

Figure 3. Differential sensitivity of gamma oscillations and grid fields to changes in the strength of E and I synapses. (A–C) Examples of inhibitory (red) and

excitatory (blue) synaptic currents recorded respectively from excitatory and inhibitory neurons from simulations highlighted by arrows in panels (D–F).

(D–F) Top: Correlation value at the first local maximum of the autocorrelation of inhibitory synaptic currents (I → E cells, 25 randomly selected E cells),

plotted as a function of gE and gI, for networks without noise (D), with noise level set to σ = 150 pA (E), and noise level set to σ = 300 pA (F). Each point is

an average over five simulation trials. In these simulations velocity and place cell inputs were disabled. The duration of simulations was 10 s. Bottom:

Frequency corresponding to the peaks of the autocorrelation functions for simulations in the top panels. Black lines in (E) indicate the region from Figure

2E where the gridness score = 0.5. (G) Scatter plots show gridness score as a function of gamma oscillation strength (top) and frequency (bottom) for

simulations with noise absent (green), with an intermediate level of noise (red) and highest simulated noise level (blue). Each dot represents data from

a single network configuration. (H) Top: Gamma oscillation strength plotted as a function of standard deviation of the noise current. Grey color indicates

simulations with gE = 3 nS, gI = 1 nS (A). Red color indicates simulations with gE = 1 nS, gI = 3 nS (B). Bottom: Frequency corresponding to the detected

autocorrelation peak.

DOI: 10.7554/eLife.06444.012

The following figure supplements are available for figure 3:

Figure supplement 1. Sensitivity of gamma oscillations to changes in the strength of E and I synapses in networks with connection probability between

pairs of neurons drawn according to the synaptic profile functions in Figure 1B.

DOI: 10.7554/eLife.06444.013

Figure supplement 2. Scatter plots of gridness score as a function of the amplitude of gamma oscillations.

DOI: 10.7554/eLife.06444.014

Figure supplement 3. Scatter plots of gridness score as a function of the detected oscillation frequency.

DOI: 10.7554/eLife.06444.015

Figure supplement 4. Amplitude and frequency of gamma oscillations in the gE and gI parameter regions where grid fields are robust.

DOI: 10.7554/eLife.06444.016
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massively expanded (Figure 3E). Within this space, the amplitude of gamma increased with increasing

inhibition, whereas the frequency was reduced. As noise is increased further the amplitude and

frequency of gamma oscillations are reduced (Figure 3F). We found a similar dependence of gamma

oscillations on noise, gE and gI in networks with probabilistic connectivity (Figure 3—figure

supplement 1). Thus, intrinsic noise modifies the amplitude and frequency of nested gamma

oscillations.

To determine whether there is a systematic relationship between values of gE and gI that generate

gamma and grid firing we compared the gridness score and gamma scores for each circuit

configuration (Figure 3G, Figure 3—figure supplements 2, 3). We found this relationship to be

complex and highly sensitive to noise. However, we did not find any evidence for strong linear

relationships between gamma amplitude or gamma frequency and grid score (R2 < 0.12 for all

comparisons), while gamma amplitude and frequency provided only modest amounts of information

about grid scores (0.27 < MIC < 0.33 and 0.27 < MIC < 0.37 respectively). The relationship between

noise intensity and gamma differed from that for grid computations. Whereas, grids emerged above

a sharp noise threshold (Figure 2H), for the same regions in parameter space the frequency and

amplitude of gamma oscillations varied smoothly as a function of noise (Figure 3H). Thus, neither the

frequency nor the power of gamma appears to be a good predictor of grid firing.

When we considered only regions of parameter space that generate robust grid fields (grid score

>0.5), we found circuits generating almost the complete observed range of gamma amplitudes (0.02

< autocorrelation peak < 0.59) and frequencies (31 Hz < frequency < 102 Hz) (Figure 3—figure

supplement 4). For example, considering the crescent shaped region of E-I space that supports grid

firing in the presence of intermediate noise (the region within the isocline in Figure 3E), when gI is

high and gE low then the amplitude of gamma is relatively low and the frequency high. Moving

towards the region where gI is high and gE is low, the amplitude of gamma is increased and the

frequency is reduced. Thus, variation of synaptic strength across this region of E-I space can be used

to tune the properties of gamma activity while maintaining the ability of the network to generate grid

fields.

Together these data indicate that an optimal level of noise promotes emergence of gamma

oscillations, while the properties of oscillations may depend on the relative strength of synaptic

connections. The relationship between gamma and synaptic strength differs to that for grid

computations. Strikingly, while gamma activity provides relatively little information about grid firing,

differential sensitivity of gamma and grid firing to gE and gI provides a mechanism for circuits to tune

gamma frequency activity while maintaining the ability to compute rate coded grid firing fields.

Noise promotes attractor computation by opposing seizures
Given the emergence of a large parameter space that supports grid firing following introduction of

moderate noise, we were interested to understand how noise influences the dynamics of the E-I

circuits. One possibility is that in networks that fail to generate grid firing fields network attractor

states form, but their activity bumps are unable to track movement. In this scenario disrupted grid

firing would reflect incorrect control of network activity by velocity signals. Alternatively, deficits in

grid firing may reflect failure of network attractor states to emerge. To distinguish these possibilities

we investigated formation of activity bumps in network space over the first 10 s following initialization

of each network (Figure 4).

Our analysis suggests that the deficit in grid firing in deterministic compared to noisy networks

reflects a failure of attractor states to emerge. For deterministic simulation of the points in parameter

space considered in Figure 2Aa, which are able to generate grid patterns, we found that a single

stable bump of activity emerged over the first 2.5 s of simulated time (Figure 4Aa). In contrast, for

deterministic simulation of the point considered in 2Ab, which in deterministic simulations did not

generate grid patterns, a single stable bump fails to emerge (Figure 4Ab). Quantification across the

wider space of gE and gI values (see ‘Materials and methods’) indicated that when gI is low there is

a high probability of bump formation as well as grid firing, whereas when gI is high the probability of

both is reduced (Figure 4B). In contrast to the deterministic condition, for circuits with intrinsically

noisy neurons activity bumps emerged in the first 1.25 s following initialization of the network

(Figure 4Ac–e) and the area of parameter space that supported bump formation was much larger

than that supporting grid firing (Figure 4B). Plotting gridness scores as a function of bump probability
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Figure 4. Noise promotes formation of continuous attractors. (A) Examples of snapshots of network activity of E cells

from simulations in which velocity and place cell inputs are inactivated. Each row shows a simulation trial with a value

of gE and gI highlighted by an arrow in panel (B). The corresponding probability of bump formation (P(bumps)) and

the maximal firing rate is indicated to the left and right, respectively. (B) Color plots show probability of bump

formation (P(bumps)), for the simulated range of gE and gI and the three simulated noise levels. Each color point is

an average of five 10 s simulation runs. Arrows show positions in the parameter space of examples in (A). Black lines

indicate the regions where the gridness score = 0.5 (cf. Figure 2D–F). (C) Relationship between gridness score

computed from the grid field simulation runs (Figure 2D–F) and the probability of bump formation (B).

(D) Relationship between gamma oscillation strength (Figure 3D–F) and the probability of bump formation (B). Each

color in (C and D) represents one noise level and each dot in the scatter plots corresponds to simulations of a single

pair of values of gE and gI.

DOI: 10.7554/eLife.06444.010

The following figure supplement is available for figure 4:

Figure supplement 1. Sensitivity of bump attractor spontaneous drift to variations in gE and gI and noise levels.

DOI: 10.7554/eLife.06444.011

Solanka et al. eLife 2015;4:e06444. DOI: 10.7554/eLife.06444 9 of 31

Research article Computational and systems biology | Neuroscience

http://dx.doi.org/10.7554/eLife.06444.010
http://dx.doi.org/10.7554/eLife.06444.011
http://dx.doi.org/10.7554/eLife.06444


indicated that bump formation was necessary, although not sufficient for grid formation (Figure 4C),

while plotting the first autocorrelation peak as a function of bump probability supported our

conclusion that grid computation and gamma activity are not closely related (Figure 4D). Together,

these data indicate that noise promotes formation of attractor bumps in network activity and in

deterministic simulations the failure of the circuit to generate attractor states largely accounts for

disrupted grid firing.

In noisy networks the presence of low grid scores for networks with high bump scores (Figure 4C) is

explained by sensitivity of these network configurations to noise-induced drift. This is illustrated by the

region of parameter space from Figure 2Ab, where gI is relatively high and gE relatively low, and

which in deterministic simulations fails to generate bumps or grids. With moderate noise, this point

generates bumps that show little drift (Figure 4Ac), whereas as noise is increased further the bump

begins to drift (Figure 4Ae). In contrast, at the point illustrated in Figure 2Aa, which forms grids and

bumps in the presence or absence of noise, activity bumps are relatively stable in each condition

(Figure 4Aa,d), although drift increases with greater noise (Figure 4—figure supplement 1). Thus,

intrinsic noise has two opposing effects on bump formation. For much of the parameter space we

consider moderate noise promotes emergence of bumps and grids, while across all of parameter

space noise reduces bump stability leading to deterioration of grids.

To investigate how addition of noise promotes emergence of network attractor states we

investigated the dynamics of neurons in the simulated circuits. We focus initially on the point in

parameter space identified in Figure 2Ab, where grids are found in the presence of moderate noise,

and bumps are found when noise is moderate or high. When we examined times of action potentials

generated by all neurons in this circuit, we find that in the absence of noise the network generates

hyper-synchronous seizure-like states at the start of each theta cycle (Figure 5A and Figure 5—figure

supplement 1A). The number of E cells active on each theta cycle differs, but their activity is typically

restricted to the rising phase of theta, and there is no consistent structure in the pattern of activated

neurons. The number of simultaneously active I cells is also greatest at the start of each theta cycle.

The I-cells continue to fire over the theta cycle, but their synchronization declines. When moderate

noise is added to the circuit only a subset of E-cells are active on each theta cycle, forming an activity

bump (Figure 5B and Figure 5—figure supplement 1B). The I-cells are active at gamma frequency

and the formation of an activity bump in the E-cell population is reflected by an inverted bump in the

I-cell population activity (Figure 5B). With increased noise there is a similar overall pattern of activity,

but spike timing becomes more variable, causing the bumps to drift and reducing the degree of

synchronization at gamma frequencies (Figure 5C and Figure 5—figure supplement 1C).

To determine whether these changes in network dynamics are seen across wider regions of

parameter space we first quantified the presence of seizure like events from the maximum population

firing rate in any 2 ms window over 10 s of simulation time (E-ratemax). Strikingly, we found that in the

absence of noise epochs with highly synchronized activity were found for almost all combinations of gE

and gI, whereas these seizure-like events were absent in simulations where noise was present

(Figure 5D). Interestingly, while grids emerge in deterministic networks in regions of E-I space where

E-ratemax is relatively low, there is a substantial region of parameter space in which E-ratemax is >400
Hz, but grids are nevertheless formed. It is possible that seizure-like states may be rare in this region

of parameter space and so do not interfere sufficiently with attractor dynamics to prevent grid firing.

To test this we calculated for each combination of gE and gI the proportion of theta cycles having

events with population-average rate >300 Hz (PE-rate > 300). For values of gE and gI where grid fields

are present PE-rate > 300 was relatively low, indicating that seizure-like events are indeed rare

(Figure 5E). Consistent with this, when we plotted grid score as a function of PE-rate > 300, we found

that PE-rate > 300 was relatively informative about the gridness score in networks without noise (MIC =
0.624) and a low value of PE-rate > 300 was necessary for grid firing (Figure 5F). In contrast, E-ratemax

was less informative of grid firing (0.392 ≤ MIC ≤0.532) and a wide range of values were consistent

with grid firing (Figure 5F). Thus, while grid firing is compatible with occasional seizure-like events,

when seizure-like events occur on the majority of theta cycles then grid firing is prevented.

Because seizure-like events tend to initiate early on the depolarizing phase of each theta cycle, we

asked if synchronization by theta frequency drive plays a role in their initiation. When theta frequency

input was replaced with a constant input with the same mean amplitude, the power of gamma

oscillations was still dependent on the levels of noise and changes in gE and gI (Figure 6—figure

supplement 1). However, in contrast to simulations with theta frequency input (Figure 5D,E),
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noise-free networks without theta exhibited hyper-synchronous firing only when gE was <0.5 nS

(Figure 6A) and generated grid firing fields almost in the complete range of gE and gI (Figure 6D,G).

Addition of noise in the absence of theta had mostly detrimental effects on grid firing (Figure 6E,F,H,I

Figure 5. Noise opposes generation of seizure-like states. (A–C) Raster plots show activity of all neurons in the

excitatory (red) and inhibitory (blue) populations for the duration of two theta cycles (top), along with the average

population firing rates for both populations (center and bottom; calculated with a sliding rectangular window with

2 ms duration and 0.5 ms time step), for networks where noise is absent (A; σ = 0), with noise set to σ = 150 pA (B), and

with noise set to σ = 300 pA (C). Simulations were performed in the absence of animal movement and place cell input;

gE = 1 nS and gI = 3 nS. (D) Maximal average population firing rate of E cells estimated from the whole simulation run

(10 s; 500 ms at the beginning of the simulation excluded) for each simulated level of noise. Each point is an average

of maxima from five simulation runs. (E) Probability of the maximal population-average firing rate during each theta

cycle exceeding 300 Hz, that is, at least 60% of E cells firing synchronously within a time period of 2 ms in the

parameter space of gE and gI when σ = 0 pA. Black lines indicate regions where gridness score equals 0.5. (F) Scatter

plots show the relationship between gridness score and the maximal firing rate during the simulation (left) and the

probability of the maximal population-average firing rate during each theta cycle exceeding 300 Hz (right).

DOI: 10.7554/eLife.06444.017

The following figure supplement is available for figure 5:

Figure supplement 1. Examples of activity in the network.

DOI: 10.7554/eLife.06444.018
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Figure 6. Seizure-like states and grid firing fields in networks without theta frequency inputs. (A–C) Maximal average

population firing rate of E cells estimated from the whole simulation run (10 s; 500 ms at the beginning of the

simulation excluded) for each simulated level of noise indicated by σ, in networks with theta frequency inputs

replaced with a constant input with the same mean amplitude. Each point is an average of maxima from five

simulation trials. Black lines indicate the regions from (G–H) where gridness score = 0.5. (D–F) Example spatial firing

fields (left) and autocorrelation plots (right) for the specific values of gE and gI indicated by arrows in (G–I),

corresponding to the three simulated noise levels. Maximal firing rate is indicated at the top right of each spatial

firing plot. The range of spatial autocorrelations is normalized between 0 and 1. (G–I) Gridness score as a function of

gE and gI, for each simulated level of noise. Each item in the color plot is an average gridness score of three

simulation runs of 600 s duration. Arrows indicate the positions of grid field and autocorrelation examples from

simulations illustrated in (D–F). Simulations that did not finish in a specified time interval (5 hr) are indicated by white

color.

DOI: 10.7554/eLife.06444.019

The following figure supplements are available for figure 6:

Figure supplement 1. Effect of replacing theta frequency inputs by a constant input with an equal mean amplitude.

DOI: 10.7554/eLife.06444.020

Figure supplement 2. Effect of noise on gridness scores in networks without theta frequency inputs.

DOI: 10.7554/eLife.06444.021

Figure supplement 3. Firing rates of E cells.

DOI: 10.7554/eLife.06444.022

Figure supplement 4. Calibration of the gain of the velocity inputs.

DOI: 10.7554/eLife.06444.023

Figure supplement 5. Effectivity of the place cell resetting mechanism as a function of gE and gI and noise levels.

DOI: 10.7554/eLife.06444.024
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and Figure 6—figure supplement 2). Interestingly, with intermediate levels of noise, the subregion

with high gridness scores (>0.5) retained its crescent-like shape (Figure 6E,H), but was smaller

when compared to the networks with theta frequency inputs (size of regions with and without theta:

488/961 vs 438/961), while the range of gamma frequencies present was much lower than in networks

containing theta drive. Together, these data indicate that moderate noise prevents emergence of

seizure like states by disrupting synchronization of the attractor network by the shared theta

frequency drive. In networks with moderate noise theta drive promotes grid firing and enables a wide

range of gamma frequencies to be generated without disrupting grid firing.

Our analysis points towards suppression of seizure-like events as the mechanism by which

moderate noise promotes grid firing, while interactions between noise and theta appear important for

the capacity to multiplex grid firing with a wide range of gamma frequencies. However, we wanted to

know if other factors might contribute to these beneficial roles of noise. Grid fields may also fail to

form if overall activity levels are too low, in which case neurons with grid fields instead encode head

direction (Bonnevie et al., 2013). This observation is unlikely to explain our results as the mean firing

rate of E cells in networks that generated grid firing fields (grid score >0.5, networks with gE or gI set

to 0 excluded) was in fact lower than the firing rate of networks without grid fields (1.2; 1.0; 1.0 Hz grid

fields vs 3.0; 2.7; 1.2 Hz no grid fields, in networks with σ = 0; 150; 300 pA respectively). There was

also no systematic relationship between grid score and firing frequency (Figure 6—figure

supplement 3). We also wanted to know if other properties of grid fields vary as a function of gE

and gI. Parameters used to calibrate velocity integration by the grid network varied very little with

changes in gE and gI (Figure 6—figure supplement 4), whereas drift increased with gI

(Figure 4—figure supplement 1) and place cell input was most effective in opposing attractor drift

in noisy networks with high gridness scores (Figure 6—figure supplement 5). These data are

consistent with suppression of seizure like events as the mechanism by which noise promotes grid

firing, while interactions between noise and theta frequency inputs profoundly influence the dynamics

of attractor networks that generate grid fields.

Recurrent inhibition increases the frequency of gamma activity and
promotes grid firing
Our analysis so far focuses on E-I attractor networks as simple models of grid firing that are

compatible with the finding that synaptic interactions between stellate cells in layer 2 of the MEC are

mediated via inhibitory interneurons (Dhillon and Jones, 2000; Couey et al., 2013; Pastoll et al.,

2013). However, there is evidence that interneurons active during theta-nested gamma activity make

connections to one another as well as to stellate cells (Pastoll et al., 2013). To establish whether this

recurrent inhibition substantially modifies our conclusions from simpler E-I networks, we extended the

E-I model to also include synapses between interneurons (see ‘Materials and methods’). In the

resulting E-I-I networks, in the absence of noise, grid firing emerges across a much larger region of

parameter space compared to E-I networks (Figure 7A, Figure 7—figure supplements 1–4).

However, as in E-I networks occasional seizure like activity was present across a wide range of gE and

gI (Figure 7—figure supplement 5), and gamma frequency activity was largely absent (Figure 7D,G).

Following addition of noise with standard deviation of 150 pA to E-I-I networks, grid firing was

maintained, seizure like activity was abolished, and gamma like activity emerged (Figure 7B,E,H and

Figure 7—figure supplement 5). Increasing the noise amplitude to 300 pA reduced grid firing and

interfered with the emergence of gamma oscillations (Figure 7C,F,I and Figure 7—figure

supplements 1–5). Importantly, just as in E-I networks, the presence of moderate noise in E-I-I

networks enables tuning of gamma activity by varying gE and gI while maintaining the ability of the

networks to generate grid firing fields. Gamma activity had a higher frequency in E-I-I compared to E-I

networks, with a greater proportion of the parameter space supporting gamma frequencies >80 Hz.

This higher frequency gamma is similar to fast gamma observed experimentally in the MEC

(cf. Chrobak and Buzsáki, 1998; Colgin et al., 2009; Pastoll et al., 2013). Thus, by including

additional features of local circuits in layer 2 of the MEC, E-I-I models may more closely recapitulate

experimental observations. Nevertheless, E-I-I networks maintain the ability, in the presence of

moderate noise, for variation in gE and gI to tune gamma oscillations without interfering with grid firing.

Finally, we asked if addition of synaptic connections between excitatory cells modifies the

relationship between gamma, noise, gE and gI. While the E-I model is consistent with the connectivity
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Figure 7. Gridness scores and gamma activity in networks with recurrent inhibition. (A–C) Gridness score as

a function of gE and gI for networks without noise (A; σ = 0 pA), with noise level set to σ = 150 pA (B), and noise level

set to σ = 300 pA (C). Simulations that did not finish in a specified time interval (5 hr) are indicated by white color.

(D–F) Examples of inhibitory (red) and excitatory (blue) synaptic currents recorded respectively from excitatory and

Figure 7. continued on next page

Solanka et al. eLife 2015;4:e06444. DOI: 10.7554/eLife.06444 14 of 31

Research article Computational and systems biology | Neuroscience

http://dx.doi.org/10.7554/eLife.06444


between stellate cells in layer 2 of the MEC, adjacent pyramidal cells may also have grid firing

properties. Unlike stellate cells, pyramidal cells interact with one another directly via excitatory

connections and indirectly via inhibitory interneurons (Couey et al., 2013). To assess the impact of E-E

connections, we first extended the E-I model to allow each E cell to excite other E cells that are nearby

in neuron space. The dependence of grid firing, gamma oscillations, and bump formation on noise, gE

and gI was similar to E-I networks (Figure 7—figure supplements 6–9). We also attempted to

evaluate networks in which E-E connections were structured, but E-I and I-E connections were

uniformly distributed. However, in these networks we were unable to identify parameters that support

formation of stable activity bumps (Figure 7—figure supplement 10). This is consistent with

instability of simpler network attractors based on E-E connections (Seung et al., 2000).

Discussion
We investigated the relationship between rate coded spatial computations and nested gamma

oscillations in attractor network models of grid firing. While in the models we consider rate coding and

gamma oscillations share the same neural substrate, that is projections from a population of E cells to

an I cell population, which in turn projects back to the E cell population, we find that their sensitivity to

variations in excitatory and inhibitory synaptic strengths nevertheless differs. A moderate level of

noise promotes generation of both grid fields and nested gamma oscillations, primarily by the

disruption of epileptic-like firing of E and I cells in the network. When the strength of E or I

connections is varied in the presence of moderate noise a wide range of gamma frequency and power

Figure 7. Continued

inhibitory neurons from simulations highlighted by arrows in panels (G–I). (G–I) Top: Correlation value at the first

local maximum of an autocorrelation of inhibitory synaptic currents (I→ E cells, 25 randomly selected E cells), plotted

as a function of gE and gI, for networks without noise (G), with noise level set to σ = 150 pA (H), and noise level set to

σ = 300 pA (I). Each point is an average over five simulation trials. In these simulations velocity and place cell inputs

were disabled. The duration of simulations was 10 s. Bottom: Frequency corresponding to the peaks of the

autocorrelation functions for simulations in the top panels. Black lines in (H) indicate the regions from (B) where

gridness score = 0.5.

DOI: 10.7554/eLife.06444.025

The following figure supplements are available for figure 7:

Figure supplement 1. Spatial firing fields in networks that contain recurrent I → I synapses.

DOI: 10.7554/eLife.06444.026

Figure supplement 2. Continuous attractors in networks that contain direct I → I synapses.

DOI: 10.7554/eLife.06444.027

Figure supplement 3. Sensitivity of bump attractor spontaneous drift to variations in gE, gI and noise levels in

networks that contain direct I → I synapses.

DOI: 10.7554/eLife.06444.028

Figure supplement 4. Calibration of the gain of the velocity inputs in networks that contain direct I → I synapses.

DOI: 10.7554/eLife.06444.029

Figure supplement 5. Seizure-like states in networks that contain direct I → I synapses.

DOI: 10.7554/eLife.06444.030

Figure supplement 6. Sensitivity of grid firing to changes in inhibition and excitation in networks that contain direct

E → E synapses.

DOI: 10.7554/eLife.06444.031

Figure supplement 7. Sensitivity of gamma oscillations to changes in inhibition and excitation in networks that

contain direct E → E synapses.

DOI: 10.7554/eLife.06444.032

Figure supplement 8. Continuous attractors in networks that contain direct E → E synapses.

DOI: 10.7554/eLife.06444.033

Figure supplement 9. Seizure-like states in networks that contain direct E → E synapses.

DOI: 10.7554/eLife.06444.034

Figure supplement 10. Probability of bump formation and network activity plots in networks with structured E → E

and unstructured E → I and I → E connections.

DOI: 10.7554/eLife.06444.035
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can be obtained without affected grid firing. Thus, noise can be beneficial for computations

performed by the nervous system, while the frequency and power of multiplexed gamma oscillations

can be tuned independently of rate-coded grid computations, suggesting a mechanism for differential

control of multiplexed neural codes.

Our results suggest a novel beneficial role for noise. In general noise in the nervous system is

believed to distort the fidelity of transmitted signals (Faisal et al., 2008). Exceptions are stochastic

resonance phenomena in which noise promotes detection of small amplitude signals by individual

neurons (Longtin et al., 1991; Benzi et al., 1999; Shu et al., 2003), improvements in signal coding

through desynchronization of neuronal populations (Hunsberger et al., 2014) and emergence of

stochastic weak synchronization in interneuron networks (Tiesinga and Jose, 2000). The beneficial

role for noise that we identify here differs from these phenomena in that it emerges through

interactions between populations of neurons and because the grid cell attractor network performs

a computation—generation of a spatial code from velocity inputs—rather than propagating input

signals. We find that by opposing emergence of hyper-sychronous seizure-like states noise allows the

network to generate stable bump attractor states. Noise prevents the seizure-like states by

desynchronizing neuronal responses to common theta input. We were able to identify this role for

noise because spiking and synaptic dynamics are explicitly represented in the simulated network.

These dynamics are absent from other attractor network models of grid firing (Fuhs and Touretzky,

2006; Guanella et al., 2007; Burak and Fiete, 2009). They are also absent from other models of

theta-nested gamma oscillations that simulate two-dimensional dynamical systems of E and I

populations with theta modulated inputs to the network (Onslow et al., 2014). Thus, intrinsic cellular

and synaptic dynamics in conjunction with noise sources may be important in accounting for

computations and oscillatory activity in neural networks.

The distinct control of rate coded grid computations and gamma oscillations by noise, gE and gI

was independent of the detailed implementation of the E-I models we considered and was maintained

in more complex models incorporating I-I and E-E coupling. Current available experimental data

appears to be insufficient to distinguish between these different models. For example, our analysis of

interneuron firing indicates that while E-I models predict that interneurons will have spatial firing

fields, they have lower spatial information content, spatial sparsity and grid scores than E cells and

therefore may be difficult to detect in existing experimental datasets and with current analysis tools.

Thus, evidence previously interpreted to argue against E-I based mechanisms for grid firing may in

fact not distinguish these from other possible mechanisms. Indeed, we found that grid firing by E cells

can be maintained during spatial input that distorts the spatial firing pattern of I cells

(Figure 2—figure supplement 4). While these simulations establish in principle that E-I based

attractor networks can generate grid outputs even when spatial firing of many E and I cells in the

network is not clearly grid-like, the extent to which these networks can account for additional details

of experimental observations, for example weak periodic patterns in the spatial autocorrelation of the

firing fields of some PV interneurons (cf. Buetfering et al., 2014, Figure 4a), is not yet clear. Our

results are consistent with local synaptic connections, in addition to those between E cells and I cells,

having important functional roles. For example addition of synapses between interneurons to E-I

networks causes an overall increase in the frequency of gamma activity and in the stability of grid

firing. Nevertheless, we find that in these modified networks moderate noise still enables variation in

gE and gI to tune gamma oscillations independently from grid firing.

An intriguing aspect of our results is that they suggest novel approaches to suppressing seizures

and to promoting normal cognitive function. Seizures have previously been suggested to result from

deficits in inhibition or from alterations in intrinsic excitability of neurons (Lerche et al., 2001;

Treiman, 2001). We show that seizures can be induced when these properties are held constant

simply by reducing levels of noise within a circuit. A future experimental challenge for dissecting the

contribution of intrinsic noise to seizures will be to target biological noise sources. In the brain noise

arises from ion channel gating and from background synaptic activity. It is therefore difficult to

manipulate noise sources without also affecting intrinsic excitability or excitation-inhibition balance.

However, it may be feasible to add noise to circuits through transcranial magnetic stimulation

(Ruzzoli et al., 2010). In this case our simulations predict that addition of noise may restore epileptic

circuits to normal activity. This mechanism may explain why focal electrical stimulation of the

entorhinal cortex in patients with seizures leads to an enhancement of memory performance

(Suthana et al., 2012).
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While correlations between gamma oscillations and various cognitive and pathological brain states

are well established, the proposed computational roles of gamma oscillations have been difficult to

reconcile with rate-coded representations with which they co-exist. We were able to address this issue

directly by analyzing a circuit in which gamma oscillations and rate-coded computations arise from

a shared mechanism. Rather than gamma serving as an index of rate-coded computation, we find

instead that there is a substantial parameter space across which rate-coded computation is stable,

while the amplitude and frequency of theta-nested gamma oscillations varies. Our analysis leads to

several new and testable predictions. First, tuning of recurrent synaptic connections could be used to

modify gamma oscillations without affecting rate-coded computation. If multiple networks of the kind

we simulate here correspond to grid modules providing input to downstream neurons in the

hippocampus (Stensola et al., 2012), then adjusting gE or gI would alter gamma frequency with

minimal effect on the grid firing pattern of each module. If the downstream neurons integrate input at

the gamma time scale, then this should lead to re-mapping of their place representation in the

absence of any change in either the strength of their synaptic inputs or the information they receive

from upstream grid cells. Adjustment of gE and gI could be achieved dynamically through actions of

neuromodulators (Marder, 2012), or on slower developmental time scales (Widloski and Fiete,

2014). Second, subtle differences in gamma could be a sensitive index of network pathology at stages

before deficits in rate coded computation are apparent. If cognitive deficits in psychiatric disorders

reflect a failure of rate coded computation, then our analysis predicts that a change in noise within

a circuit, in addition to synaptic modification, may be necessary for deficits to emerge. From this

perspective it is intriguing that seizure phenotypes are often associated with disorders such as autism

(Deykin and MacMahon, 1979). Alternatively, cognitive deficits may result from a failure to coordinate

gamma frequency synchronization of circuits that converge on downstream targets. In this case we

expect cognitive deficits to be phenocopied by manipulations that affect gamma frequency or power

without influencing rate-coded computations (Sigurdsson et al., 2010; Spellman and Gordon, 2014).

In conclusion, our systematic exploration of three dimensions of parameter space (gE, gI and

intrinsic noise) illustrates the complexity of relationships between rate-coded computation, gamma

frequency oscillations and underlying cellular and molecular mechanisms. Our results highlight the

challenges in straightforward interpretation of experiments in which these parameters are correlated

to one another, (cf. Wang and Krystal, 2014). While there are parallels to investigations of pace-

making activity in invertebrate circuits (Marder and Taylor, 2011), which demonstrate that many

parameter combinations can account for higher order behavior, there are also critical differences in

that the models we describe account for multiplexing of rate-coded computation and oscillatory

activity, while the number of neurons and connections in the simulated circuit is much larger. Future

experimentation will be required to test our model predictions for unexpected beneficial roles of

noise and for control of gamma oscillations independently from grid firing by modulating the strength

of excitatory and inhibitory synaptic connections.

Materials and methods
The model comprised a network of exponential integrate and fire neurons (Fourcaud-Trocmé et al.,

2003) implemented as a custom-made module of the NEST simulator (Gewaltig and Diesmann,

2007). The network investigated in the majority of simulations (Figures 1–6) is modified from that in

Pastoll et al. (2013) and consists of excitatory (E) and inhibitory (I) populations of neurons that were

arranged on a twisted torus with dimensions of 34 × 30 neurons. In networks where connection

strengths were generated probabilistically instead of in an all-to-all way, the synaptic weights from E

to I cells and vice versa were constant, while the probability of connection between the pre- and post-

synaptic neuron was drawn according to Figure 1B. In addition, some networks also included direct

uniform recurrent inhibition between I cells (Figure 7; referred to as E-I-I networks) or direct

structured recurrent excitation between E cells (Figure 7—figure supplements 6–10). When

recurrent excitation was present, synaptic weights between E cells followed the connectivity profile in

which the strongest connection was between cells that were close to each other in network space

(Figure 1B) and the weights between E and I cells were generated either according to synaptic

profiles from Figure 1B (Figure 7—figure supplements 6–9) or the E-I connectivity was uniform with

a probability of connection of 0.1 (Figure 7—figure supplement 10). E and I cells also received the

theta current drive which was the sum of a constant amplitude positive current and a current with

sinusoidal waveform (8 Hz). The constant component of the drive was required to activate the circuit,
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while the theta drive frequency was chosen to reflect the frequency of theta oscillations in behaving

animals. The amplitude (cf. Appendix 1) was chosen to produce theta modulation of I cell firing similar to

that observed in behaving animals (cf. Chrobak and Buzsáki, 1998) and ex-vivo models of theta-nested

gamma activity (cf. Pastoll et al., 2013). In order to oppose drift of the activity bump in networks that

simulated exploration of the arena E cells received input from cells with place-like firing fields simulated

as Poisson spiking generators with their instantaneous firing rate modeled as a Gaussian function of the

animal position. Full details of the connectivity and network parameters are in Appendix 1.

In all simulations the networks were parameterized by the standard deviation of noise (σ) injected
independently into each E and I cell and by synaptic scaling parameters (gE and gI). Noise was

sampled from a Gaussian distribution with standard deviation either set to σ = 0, 150 or 300 pA, or

alternatively in the range of 0–300 pA in steps of 10 pA (Figures 2H, 3H). The peaks of the synaptic

profile functions (Figure 1B) were determined by the gE and gI parameters that appropriately scaled

the maximal conductance values of the excitatory and inhibitory connections respectively.

Gridness scores were estimated by simulating exploration in a circular arena with a diameter of 180

cm. For each value of gE and gI the simulations consisted of two phases. In the first phase, animal

movement with constant speed and direction (vertically from bottom to top) was simulated in order to

calibrate the gain of the velocity input to achieve 60 cm spacing between grid fields in the network. In

the second phase, the calibrated velocity input gains were used during a simulation of realistic animal

movements with duration of 600 s (Hafting et al., 2005). Each simulation was repeated 1–4 times. For

each trial, gridness score was then estimated from an E or I cell located at position (0, 0) on the twisted

torus. In simulations where interneurons received uncorrelated spatial inputs (Figure 2—figure

supplement 4), gridness scores were estimated from 100 randomly selected E and I cells on the

twisted torus.

For the analysis of bump attractor properties and gamma oscillations a separate set of simulations were

run. For each value of gE, gI and noise level, there were five trials of 10 s duration during which the velocity

and place cell inputs were deactivated. For each trial spiking activity of all cells was recorded. In addition,

inhibitory synaptic currents of 25 randomly selected E cells were saved and used for further analysis.

The strength and frequency of gamma oscillations were estimated from the inhibitory synaptic

currents recorded from E cells. The currents were first band-pass filtered between 20 and 200 Hz. For

each trace, its autocorrelation function was computed and the first local maximum was detected using

a peak detection algorithm which was based on calculating the points in the autocorrelation function

where the first difference of the signal changed sign from positive to negative and thus approximated

the points where the first derivative was zero and the second derivative was negative. The strength

and frequency of gamma oscillations was estimated from the correlation value and lag at the position

of the first local maximum respectively.

Properties of bump attractors were estimated by fitting symmetric Gaussian functions onto

successive snapshots of firing rates of each cell in the E population. For each snapshot this procedure

yielded the position of the bump center and its width. The probability of bump formation was then

estimated as a proportion of population-activity snapshots that were classified as bump attractors,

that is, those fitted Gaussian functions whose width did not exceed the shorter side of the twisted

torus. Other properties of bump attractors were estimated by analyzing successive positions of the

bump attractor centers. Action potential raster plots of E and I populations (Figure 5A–C,

Figure 5—figure supplement 1 and Figure 7—figure supplement 10) show neuron indices that are

flattened in a row-wise manner with respect to the two-dimensional twisted torus. Data points with

white color in Figure 5D,E and Figure 5—figure supplement 1A have been excluded from analysis

since the maximal firing rate of E cells exceeded 500 Hz/2 ms window.

The calculation of the maximal information coefficient (MIC) for the relationship between gridness

score, gamma and bump scores was estimated by applying the MIC measure using the minepy

package (Albanese et al., 2013). Calculations of spatial information were carried out according to

(Skaggs et al., 1996). Spatial sparsity was calculated by following the procedure outlined in

(Buetfering et al., 2014). All other data analysis and simulations were performed in Python.
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Appendix 1

Supplementary methods

Neuron membrane and synaptic dynamics
Each neuron’s membrane potential (Vm) is governed by the passive membrane equation:

Cm
_Vm = Im + Isyn + Iext + η; (1)

in which the total membrane current is a sum of four separate components: the trans-

membrane current (Im), the total synaptic current (Isyn), the current injected externally from other

brain regions (Iext) and η∼N ð0;   σ2Þ, which is the noise current with zero mean and appropriate

standard deviation in the range of 0–300 pA.

For E cells, the trans-membrane current

Im =gLðEL −VmÞ+gAHPðtÞðEAHP −VmÞ+gLΔT exp

�
Vm −VT

ΔT

�
; (2)

contains the leak conductances (‘L’ subscript), after-spike hyperpolarisation conductance (‘AHP’

subscript) and an exponential part that initiates a spike when the membrane potential gets close to

the threshold (VT). After each spike, there is a reset of membrane potential and the AHP conductance:

Vm →Vr;

gAHP →gAHPmax : (3)

The I cells do not possess an AHP, but instead contain a simple adaptation term. The trans-

membrane current has the following form:

Im =
�
gL +gadðtÞ

�ðEL −VmÞ+gLΔTexp

�
Vm −VT

ΔT

�
: (4)

The gad term adds an extra conductance after each spike, that is, after the spike:

Vm →Vr;

gad →gad +gadinc
: (5)

We used adaptation for the I cells in order to include refractory properties after each spike.

The frequency vs current (F-I) relationship of the standard leaky integrate-and-fire neuron

model has a steep slope right after the firing threshold has been crossed. This is an undesirable

property because a neuron’s firing rate is overly sensitive to small current changes. To linearize

the F-I curve we used adaptation. The adaptation was not specifically tuned to produce the

current model behavior and other mechanisms could be used as well (e.g., after-spike

hyperpolarization as was done in the case of E cells).

Both AHP and adaptation conductances (gAHP and gad respectively) decay exponentially:

_gAHP =−
gAHP

τAHP
;

_gad =−
gad

τad
: (6)

In Equations 2, 4, the term ΔT is defined as the spike slope factor (Fourcaud-Trocmé et al.,

2003) and it measures the sharpness of the spike initiation. The closer this parameter is to zero,

the faster spike initiation will happen when Vm gets close to VT. For the exponential integrate
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and fire neuron, in the limit ΔT → 0, the model becomes equivalent to a leaky integrate and fire

neuron (Fourcaud-Trocmé et al., 2003).

The synaptic current for each neuron is a sum of the AMPA, NMDA and GABAA synaptic

currents collected from spikes of all other neurons:

IsynðtÞ=gGABAA
ðtÞðEGABAA

−VmÞ+gAMPAðtÞðEAMPA −VmÞ+gNMDAðtÞðENMDA −VmÞ: (7)

In networks that do not contain recurrent E → E connections we set gAMPA = gNMDA = 0 for the

E cells, and gGABAA
= 0 for I cells. In other network variants (with E → E or I → I connectivity)

these synaptic strengths are non-zero. E → E, as well as E → I synapses thus both contain the

NMDA component. Connections from place cells were modeled as AMPA conductances only

(cf. description of place cell inputs). The synaptic conductances gAMPA, gNMDA and gGABA  A
of

a postsynaptic neuron i were modeled as exponentials with pre-defined time constants

(see Appendix table 1 for the parameter values):

_gi
AMPA =−

gAMPA

τAMPA
+ ∑

j

wij
AMPAδ

�
t − tj

�
;

_gi
 NMDA =−

gNMDA

τNMDA
+ ∑

j

wij
 NMDAδ

�
t − tj

�
;

_gi
 GABA  A

=−
gGABA  A

τGABA  A

+ ∑
j

wij
 GABA  A

δ
�
t − tj

�
: (8)

Appendix table 1. Parameter values for synapses

Name Units Value

EAMPA mV 0

τAMPA ms 1

ENMDA mV 0

τNMDA ms 100

EGABA A
mV −75

τGABA A
ms 5

DOI: 10.7554/eLife.06444.037

After each spike of a presynaptic neuron j, each corresponding conductance was incremented bywij.

In MEC layer II, basket cells receive a potent, NMDA-mediated synaptic excitation (Jones and

Buhl, 1993). These NMDA responses are slow, lasting several tens of ms (Jones and Buhl,

1993). NMDA synapses in the attractor network are thus represented by an exponentially

decaying conductance (gNMDA), with a 100 ms time constant (Appendix table 1). Both the

voltage dependence and slow kinetics of NMDA receptors have been suggested to help

maintain persistent activity in working memory networks (Wang, 1999). Here, it is the slow

kinetics of gNMDA that is necessary to maintain the state of the network during consecutive theta

cycles. NMDA receptors are known to be of several variants, depending on the types of the

subunits the receptors are composed of (Paoletti et al., 2013). These several receptor variants

have different kinetic time scales, and different sensitivity to the concentration of Mg2+. In

Jones and Buhl (1993), the authors do not report, quantitatively, to what extent the amplitude

of the NMDA-mediated synaptic responses are dependent on the Mg2+ concentration.

Therefore, we assume here that the slow kinetics of gNMDA is sufficient to stabilise the activity of

the network and do not include voltage-dependence of NMDA conductances.

Finally, the current external to the neuron

IextðtÞ= IconstðtÞ+ IθðtÞ+ IvelðtÞ+ IplaceðtÞ; (9)
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consists of a constant value (Iconst), a theta modulated part, modeled as

IθðtÞ=Aθ

2
ð1+ sinð2πfθt +ϕθÞÞ; (10)

the velocity modulated current (Ivel) that simulates a combination of head-direction input and

animal speed input, and an input coming from place cells (Iplace). The description of the

parameters in the equations can be found in Appendix table 2. The theta current drive is the

sum of a constant amplitude positive current (Iconst) and a current with sinusoidal waveform (Iθ).

The constant component of the drive is required to activate the circuit. If it is removed then the

circuit becomes silent. The sinusoidal waveform has a frequency of 8 Hz. This is chosen to reflect

the frequency of theta oscillations in behaving animals. The amplitude is chosen to produce

theta modulation of interneuron firing similar to that observed in behaving animals (cf. Chrobak

and Buzsáki, 1998) and in ex-vivo models of theta-nested gamma activity (cf. Pastoll et al.,

2013). While Iconst and Iθ are simple functions of time, the velocity modulated current and place

cell current are described separately. The velocity modulated current is described in ‘Velocity

modulated input current’ and the place cell input current in ‘Place cell input’.

Appendix table 2. Neuron parameters and their description

Name Description Name Description

Vm Membrane potential EAMPA AMPA reversal potential

Cm Membrane capacitance gNMDA NMDA conductance

gL Leak conductance ENMDA NMDA reversal potential

EL Leak reversal potential Im Trans-membrane current

gAHP AHP conductance Isyn Synaptic current

τAHP AHP time constant Isyn Synaptic current

EAHP AHP reversal potential Iext External current

ΔT Spike initiation width Iconst Constant current

VT Spike initiation threshold Iθ Theta-modulated current

gGABA A
GABA conductance Ivel Velocity current

EGABA A
GABA reversal potential Iplace Place cell current

gAMPA AMPA conductance τAMPA AMPA time constant

τGABA A
GABA time constant τNMDA NMDA time constant

gad Adaptation conductance τad Adaptation time constant

gAHPmax
AHP maximal value gadinc

Adaptation conductance increase

Aθ θ-current amplitude fθ θ-current frequency

ϕθ θ-current phase – –

wAMPA AMPA synaptic weight wNMDA NMDA synaptic weight

wGABA A
GABA synaptic weight – –

For the exact values used in the simulations, refer to Appendix tables 1, 3–5.

DOI: 10.7554/eLife.06444.038

Appendix table 3. Single neuron parameter values for all cells

Name Units Value (E cells) Value (I cells)

Cm pF 211.389 227.3

EL mV −68.5 −60

VT mV −50 −45

Vr mV −68.5 −60

gL nS 22.73 22.73

ΔT mV 0.4 0.4

Appendix table 3. Continued on next page
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Appendix table 3. Continued

Name Units Value (E cells) Value (I cells)

EAHP mV −80 ×

τAHP ms 20 ×

gAHPmax
nS 5 ×

τad ms × 7.5

gadinc
nS × 22.73

DOI: 10.7554/eLife.06444.039

Appendix table 4. Parameter values for external inputs

Name Units Value (E cells) Value (I cells)

Iconst pA 300 200

Aθ pA 375 25

ϕθ rad −π/2 −π/2

fθ Hz 8 8

DOI: 10.7554/eLife.06444.040

Appendix table 5. Parameter values for synaptic profiles

Name Units Value

μ normalised 0.433

σexc normalised 0.0834

σinh normalised 0.0834

C normalised 0.03

λgrid cm 60

DOI: 10.7554/eLife.06444.041

Synaptic connection profiles
In the majority of the simulations the attractor model simulates only connections from E to I

cells and vice versa. Synapse strengths of connections originating from E cells are generated by

a Gaussian-like function with values dependent on the distance between a presynaptic (j) and

postsynaptic (i) cell on the twisted torus:

wij
AMPA =gEexp

0
B@−
�
d
�
i; j;C;ej

p

�
− μ
�2

2σ2  exc

1
CA; (11)

d
�
i; j;C;ep

�
=
��ui −uj −Cep

��
torus

; (12)

wij
 NMDA =CNMDA  w

ij
  AMPA: (13)

In these equations, μ is the distance of the excitatory surround from the position of presynaptic

neuron, σexc is the width of the excitatory surround,
�� · ��

torus
is a distance on the twisted torus that

takes the boundaries of the torus into account and C is the synaptic profile shift. The excitatory

connections are composed of the equivalent amount of NMDA synaptic conductances. The

synaptic strengths of NMDA is specified by a fractional constant CNMDA. In all simulations, the

NMDA conductance constituted 2% of the AMPA conductance, which was an amount necessary

to retain the information about the position of the bump attractor during consecutive theta cycles,

while not too high to prevent generation of nested gamma oscillations. In Equation 12, ep
determines the shift of the center of the outgoing synaptic strength profile on the torus, and was

used to couple the velocity of the bump with the animal velocity (Burak and Fiete, 2009; Pastoll

et al., 2013). The velocity modulated input is described in more detail in ‘Velocity modulated input

current’.
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Synapse strengths from I cells to E cells in networks with structured connections were

generated by a Gaussian function

wij
 GABA  A

=g  Iexp

 
−dði; j; 0; 0Þ2

2σ2  inh

!
; (14)

that takes a distance between the pre- and post-synaptic neurons (d(i, j, 0, 0)) and a width of the

Gaussian (σinh) as parameters. As can be seen from Equation 14, inhibitory neurons do not have

shifts in their outgoing synaptic profiles. In addition, a distance-independent I → E inhibitory

connectivity was generated for which the probability of connection between the pre- and post-

synaptic cell was 0.4 and the weight of a connection was set to 0:013g  I. The total inhibitory

synaptic weight was thus a sum of w GABA  A
in Equation 14 and the distance-independent

component. In simulations with recurrent I → I connectivity (E-I-I networks), I neurons were

mutually connected with a connection probability of 0.1 and a constant synaptic weight of 69 pS.

In networks that contain recurrent E → E connectivity, the connections between E cells were

modelled as a Gaussian function, that is, similarly to Equation 14:

wij
  E→   E =gE→  Eexp

0
BB@−d

�
i; j;C;ej

p

�2
2σ   E→   E

2

1
CCA; (15)

where C, ep and σE → E have the same meaning as in Equation 11. In these simulations, if not

stated otherwise, gE → E = 0.5 nS.

We also evaluated networks in which E → I and I → E synapses were unstructured and have

a constant value. Here, the E → E synaptic weights were set according to Equation 15 and the

excitatory and inhibitory synaptic weights for E→ I and I→ E synapses were set to gE/d and gI/d

respectively, where d is a probability of connection between the presynaptic and postsynaptic

neuron, set to 0.1. The density factor d was used in order to ensure equivalence of total synaptic

input of a postsynaptic cell when compared to networks that have all-to-all connectivity

(Equations 11, 14, 15).

Finally, in networks where connection strengths were generated probabilistically instead of in

an all-to-all way, the synaptic weights from E to I cells and vice versa were all constant and set to

gE and gI respectively, while the probability of connection between the pre- and post-synaptic

neuron was drawn according to Equation 11 for E → I synapses, and Equation 14 for I → E

synapses.

Velocity modulated input current
All simulations of grid fields and estimations of the velocity input gain contain current input

modulated by the speed and direction of the simulated animal. Although translational activity

can be achieved by inputs to either of the populations (Pastoll et al., 2013), here we have

simulated velocity modulated inputs only onto the E cell population. All E cells are assigned

a preferred direction vector (Equation 12) that shifts the outgoing synaptic profile in the

direction specified by the unit vector ep in Equation 12. The preferred directions are drawn

from a set of four unit vectors pointing up, down, left and right so that all directions are

distributed along the twisted torus.

During simulated movement of the animal, the velocity modulated current injected into the

neuron i is computed as follows (here · is a dot product):

IivelðtÞ=CvvðtÞ ·ei
p;

Cv =
Nx

aλgrid
: (16)
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The gain of the velocity input (Cv) is determined from the number of neurons the bump needs

to translate in order to return to the original position (Nx [neurons]; on a twisted torus this

quantity is effectively the horizontal size of the neural sheet) divided by the product of the

expected grid field spacing (λgrid [cm]) and a slope of the relationship between bump speed

and injected velocity current magnitude (a [neurons/s/pA]). Therefore, given a desired spacing

between grid fields, the gain of the velocity inputs can be calibrated.

Place cell input
Because of the finite network size, spiking variability, or imperfections in the synaptic profile

functions, the position of bump attractor in the network might drift over time. The simulations

of grid firing fields (Figures 2, 6D–I, 7A–C and associated figure supplements) and simulations

that explored the controllability of the network by place cell input (Figure 6—figure

supplement 5) included a separate population of cells with place-like firing fields connected to

E cells (in all other simulations the input was de-activated). Inputs from these cells opposed drift

of the bump attractor.

Place cells were simulated as independent inhomogeneous Poisson processes, whose rate was

modulated by a Gaussian function of the simulated animal location. Thus, the firing rate of an

ith place cell, ri was:

ri = rmax exp

 
−
jl− μi j2
2σ2field

!
; (17)

where rmax is firing rate in the center of the place field, l is an instantaneous position of the

simulated animal, μi is the center of the place field and σfield is the width of the place field. In all

simulations, there were 900 place cells, with rmax = 50 Hz, and σfield = 20 cm. Spikes emitted by

place cells were thus generated by independent Poisson processes with rate ri(t) in Equation 17,

and the centres of individual place fields were uniformly distributed in the arena the simulated

animal was moving in. The connection weights from place cells were arranged in a divergent

manner, so that a place cell had strongest connections with grid cells whose firing fields were

aligned (in real space) with the firing field of the place cell. The connection weight from place cell

i to a grid cell j decayed according to a Gaussian function

gji =Gmax
PC exp

 
−

���μiPC − μjG

���2
2σ2PC

!
; (18)

where Gmax
PC is the maximal connection strength between two fully aligned grid and place fields,

μiPC is the centre of the place field of the ith place cell, μjG is the centre of the grid field of the jth

grid cell that is nearest to the place cell, σPC is the width of the synaptic profile. The parameters

were set to Gmax
PC = 0.5 nS and σPC = 7 cm. Connections from place cells were modelled as

AMPA conductances only (Equation 8). This was sufficient for the purpose of opposing drift of

the bump attractor and we therefore do not include any more biological detail into these

connections.

In simulations where I cells received uncorrelated spatial inputs (Figure 2—figure supplement 4),

an additional population of place cells was instantiated, with parameters set to rmax = 100 Hz and

σfield = 80 cm. Each I cell received connections from three randomly chosen place cells, with

a synaptic weight of 4 nS.

Bump attractor initialisation
Each simulation contains an initialisation stage that attempts to set the model into the desired

state, that is, a bump attractor. During this stage, the theta-modulated input is switched off and

the network receives only the constant input source (see Equation 9). The bump attractor might

not form spontaneously, and instead the network could persist in a uniform firing rate regime

(Compte et al., 2000). However, it might be possible that when forced into the attractor state, the

network will persist (data not shown). Therefore, we used the place cell input as a spatially-tuned
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input that served (i) as an initialisation input in order to drive the network into an attractor state if

this does not happen spontaneously and (ii) to initialise the bump attractor position so that the

phase of grid firing fields matched the positions of place fields. The initialisation phase lasted for

the first 500 ms of simulation time, during which the firing rate of place cells were doubled, and

the strength of connections from place cells to grid cells was increased 10-fold.

Parameter space exploration
The excitatory and inhibitory parameter space exploration was performed by varying the

amount of inhibitory and excitatory synaptic strengths. Since the actual synaptic weights are

a function of distance on the twisted torus, we used the maximal conductance of AMPA

(gE, Equation 11) and GABA synapses (gI, Equation 14) in all the parameter exploration plots.

Note that since the amplitude of NMDA conductances was a fixed fraction of that of AMPA, the

strength of NMDA was also scaled as a function of gE in line with the scaling of the AMPA

conductance and was thus implicitly counted toward gE. Additionally, in Figure 7—figure

supplement 10, parameter exploration simulations were performed in which the gE → E

synaptic scaling variable, as well as the width of the synaptic profile of E→ E connections (σE → E

in Equation 15) was used.

Analysis of spatial firing fields
Gridness scores were calculated following previous studies (Sargolini et al., 2006), by taking

the spatial autocorrelation of each firing field (a region corresponding to a circle with radius

λgrid/2 and a centre in the middle of the autocorrelation function has been removed) and

rotating in steps of three degrees. For each rotation a Pearson correlation coefficient was

calculated with the original autocorrelation. To calculate the gridness score the maximum of

values at 30, 90 and 150˚ rotation was subtracted from the minimum of the values at 60 and 120˚

rotation.

Spatial information (bits/spike) was calculated according to (Skaggs et al., 1996):

I= ∑
N

i =1

  pi
λi
λ
log2

λi
λ
; (19)

where the environment was divided into N bins and pi was the occupancy probability of bin i, λi
was the mean firing rate for bin i and λ was the overall mean firing rate of the cell.

Spatial sparsity was calculated following (Buetfering et al., 2014):

S =1−

�
∑
N

i =1

piλi

�2

∑
N

i = 1

piλ
2
i

; (20)

where N, pi and λi have the same meaning as in Equation 19.

Estimating gain of the velocity-dependent inputs
In order to estimate the precision of velocity integration in a continuous attractor, we have

performed shorter simulations in which a constant velocity input (in a vertical direction) was

injected into E cells for a period of 10 s. Based on this set of simulations, the slope of the

relationship between bump speed and the injected velocity current was estimated (in units of

neurons/s/pA). The estimation was based on the following algorithm:
1. Estimate the range of bump speeds that need to be covered (Appendix figure 1).

sibump =
Nx

λ  grid
sianimal; (21)

where si are the speeds of the animal/bump, estimated from forward differences of the
trajectory of the simulated animal, Nx is the horizontal size of the neural sheet (neurons), and
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λgrid is the grid field spacing (cm). These speeds will form a distribution of bump speeds that
the attractor must achieve in order to path integrate without error (Appendix figure 1B).

2. Pick a specified percentile from this distribution (here the 99th percentile was used), that is,
the maximal speed of the bump, in order to account for the specified fraction of animal
velocities, set this as smax. The range of target bump speeds will be <0, smax>.

3. For each Ivel ∈ {0, 10,…, 100} pA, estimate the bump speed by tracking its position on the
neural sheet, using the ‘Gaussian fitting procedure’. Repeat this step 10 times. This step
acquires data for estimating the relationship between the slope of bump speed and
injected velocity current.

4. For each Imax
vel ∈ f10;   20;…;   100g pA, estimate a line fit on data samples with the velocity

current in the range of Ivel ∈ < 0; Imax
vel > , that is, fit the line to only a subset of velocity current

data points.
5. Remove all fits that do not fit at least <0, smax> on the bump velocity axis.
6. If there are any lines left, select line with the minimal error of fit (normalized by the number

of data points used); otherwise select line (from the original list) that covers the maximal
range of bump speeds.

7. Calculate the slope of the selected line and finish.

Appendix figure 1. (A) Histogram of velocities of a simulated animal. (B) Histogram of bump speeds

derived from the animal velocities estimated in Equation 21, for different grid field spacings.

DOI: 10.7554/eLife.06444.042

Simulation protocols

Simulations of animal movement
Simulations of animal movement were carried out for 600 s of simulated time. Here, for each

value of gE and gI, the main simulation run was preceded by a number of shorter simulations

which determined how much current needs to be injected in order for the bump of activity to

track the simulated movement of an animal (‘Estimating gain of the velocity-dependent inputs’).

This procedure calibrates the gain of the velocity input current in order to produce grid fields

with a specified spacing between the peaks in the individual firing fields. The result is a single

number in units of neurons/s/pA, which determines the speed of the bump as a function of

injected velocity input. The spacing between the individual fields of the grid firing fields was set

to 60 cm in all of the simulations.

During the main simulation run, the animal movement was simulated for 600 s. Each of the runs

was repeated four times for simulations in Figure 2 and three times for simulations in

Figure 6D–I and once for networks that contain additional recurrent synapses between E cells

or I cells, as well as in networks with synapses generated probabilistically. These simulations use

the estimated velocity response gain in order to calibrate the spacing between the grid firing
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fields. After the simulation was finished, a neuron in the bottom-left corner of the torus was

selected for analysis. For this cell the gridness score of its firing field was computed. The

reasoning behind choosing only a single cell to estimate the gridness score is as follows. The

grid firing fields in the network are a result of coordination of activity of the network as a whole.

If the network forms a bump attractor that is able to accurately track animal movement, all cells

in the network will have grid-like firing fields that differ only in their phases. On the other hand,

if the bump attractor does not form, is unstable, or does not accurately track the position of the

animal, the gridness score of all cells will be low. Thus, the firing field of a single cell in the

network represents grid field computation in the network as a whole. Moreover, this cell can be

selected arbitrarily. This condition might not hold in simulations where I cells receive

uncorrelated spatial inputs and therefore in these simulations firing fields of 100 randomly

selected cells from both E and I populations were used to calculate the gridness scores

(Figure 2—figure supplement 4).

Short simulation runs without animal movement
Some of the simulation runs were used to estimate properties of bump attractors and nested

gamma oscillations. In these experiments, instead of simulating animal movement, a shorter,

10 s simulation, was run. The velocity and place cell input were deactivated. Thus, the network is

expected to only produce a static bump attractor and does not perform path integration. For

each parameter setting (determined by gE, gI, and the noise level), five simulations were

performed. For each simulation run, post-synaptic currents were recorded from 25 randomly

selected excitatory cells in the model by clamping their membrane potential at −50 mV (this

was done by simulating a separate process for each of the selected neurons, while simulating

the original membrane potential according to Equation 1). Thus, on each run, different cells

could be picked up for analysis. It is in principle possible to record membrane currents from all

the neurons. However, the amount of data generated by such simulations quickly becomes

overwhelming (on the order of several terabytes per parameter exploration experiment). Thus

the approach chosen here was to sample from the population of neurons and store the

recorded state variables of only a subset of these. This allowed for unrestricted analysis and

visualisation of the recorded state variables.

Analysis of nested gamma oscillations
We estimated the properties of nested gamma oscillations by using autocorrelation functions

of the inhibitory currents impinging from inhibitory synapses onto excitatory cells. These

currents were estimated from 25 randomly selected excitatory cells recorded during the

simulation run. For each neuron, the current was then band-pass filtered between 20 and 200

Hz, the autocorrelation function was computed and then used to detect local maxima after

excluding the first peak. The positions of local maxima were calculated as those points in the

autocorrelation function where the first difference of the signal changed sign from positive to

negative and thus approximated points where the first derivative is zero and the second

derivative is negative. The power and frequency of the underlying oscillation was then

estimated from the correlation value and from the time lag of the first detected autocorrelation

peak respectively. Both values were averaged over all 25 recorded neurons and then

subsequently averaged over all simulation trials.

Gaussian fitting procedure
In networks where properties of bump attractors, such as the position and presence of an

activity bump, were estimated, we developed a procedure to fit Gaussian functions onto

successive snapshots of network activity of E cells. The network activity snapshots were

estimated by taking action potential times of all E cells and estimating their immediate firing

rate using a 250 ms wide sliding window with a 125 ms time step. For each snapshot, the

properties of a bump-like network activity (if it was a bump) were then estimated by fitting

a symmetric Gaussian function to the network activity snapshots, using the maximum likelihood

estimator under Gaussian noise (the least squares fitting method):
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BðXÞ=Aexp

 
−

������X− μ
������2

2σ2  bump

!
; (22)

where A was the height of the Gaussian function, X was neuron position on the twisted torus, μ
was the centre of the Gaussian, σbump was the width of the Gaussian, and jj · jj represents
a distance metric on the twisted torus. The parameters fitted were A, μ and σbump. These

parameters were then used as the basis for further analysis.
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