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Abstract

Purpose: To determine the effect of different drug-loaded nanocarriers (micelles and liposomes) on delivery and treatment
efficacy for radiofrequency ablation (RFA) combined with nanodrugs.

Materials/Methods: Fischer 344 rats were used (n = 196). First, single subcutaneous R3230 tumors or normal liver
underwent RFA followed by immediate administration of IV fluorescent beads (20, 100, and 500 nm), with fluorescent
intensity measured at 4–24 hr. Next, to study carrier type on drug efficiency, RFA was combined with micellar (20 nm) or
liposomal (100 nm) preparations of doxorubicin (Dox; targeting HIF-1a) or quercetin (Qu; targeting HSP70). Animals
received RFA alone, RFA with Lipo-Dox or Mic-Dox (1 mg IV, 15 min post-RFA), and RFA with Lipo-Qu or Mic-Qu given 24 hr
pre- or 15 min post-RFA (0.3 mg IV). Tumor coagulation and HIF-1a orHSP70 expression were assessed 24 hr post-RFA.
Third, the effect of RFA combined with IV Lipo-Dox, Mic-Dox, Lipo-Qu, or Mic-Qu (15 min post-RFA) compared to RFA alone
on tumor growth and animal endpoint survival was evaluated. Finally, drug uptake was compared between RFA/Lipo-Dox
and RFA/Mic-Dox at 4–72 hr.

Results: Smaller 20 nm beads had greater deposition and deeper tissue penetration in both tumor (100 nm/500 nm) and
liver (100 nm) (p,0.05). Mic-Dox and Mic-Qu suppressed periablational HIF-1a or HSP70 rim thickness more than liposomal
preparations (p,0.05). RFA/Mic-Dox had greater early (4 hr) intratumoral doxorubicin, but RFA/Lipo-Dox had progressively
higher intratumoral doxorubicin at 24–72 hr post-RFA (p,0.04). No difference in tumor growth and survival was seen
between RFA/Lipo-Qu and RFA/Mic-Qu. Yet, RFA/Lipo-Dox led to greater animal endpoint survival compared to RFA/Mic-
Dox (p,0.03).

Conclusion: With RF ablation, smaller particle micelles have superior penetration and more effective local molecular
modulation. However, larger long-circulating liposomal carriers can result in greater intratumoral drug accumulation over
time and reduced tumor growth. Accordingly, different carriers provide specific advantages, which should be considered
when formulating optimal combination therapies.
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Received February 24, 2014; Accepted June 21, 2014; Published August 18, 2014

Copyright: � 2014 Moussa et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants from the National Cancer Institute, National Institutes of Health, Bethesda, MD (R01CA133114, R01 CA100045, and
CCNE 1U54CA151881-01), Harvard Medical Faculty Physicians Faculty Radiology Foundation, and the Israel Science Foundation. The funders had no role in study
design, data collection, and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: mahmed@bidmc.harvard.edu

Introduction

Radiofrequency ablation (RFA) is now a mainstay treatment for

primary and secondary small focal tumors in the liver, lung,

kidney, and other organs, with long-term studies demonstrating

good outcomes in well-selected patient populations [1,2]. Howev-

er, challenges to RF ablation of larger tumors remain, including

the potential persistence of residual tumor cells within the ablation

zone and the surrounding ablative margin despite apparent

adequate treatment [3,4]. Therefore, strategies to target residual

viable tumor cells and achieve a more complete treatment are

being actively pursued. One such strategy has been to combine RF

ablation with chemotherapy delivered in liposomal nanocarriers to

target partially-injured viable cells in the ablation zone and

surrounding periablational rim [5–7]. Early studies demonstrate

increased local tumor coagulation, intratumoral drug accumula-

tion, increased animal endpoint survival, and increased tumor

coagulation in clinical studies using long-circulating liposomal

doxorubicin as an adjuvant to RF [5–9].
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Over the last several years, greater mechanistic understanding

of the RFA-induced tissue reactions and low-level hyperthermia in

the periablational margin has led to refined approaches such as

modulating chemotherapy drug payload, composition, and

liposomal drug release profile [10–15]. Key examples include

the use of liposomal quercetin to eliminate upregulated heat shock

proteins and bortezomib to eliminate HIF-1a and thereby increase

tumor destruction [14,16]. Yet, limitations persist, either in the

form of incomplete modulation of target post-RFA tissue reactions,

inadequate spatial and temporal coordination of drug delivery to

the periablational rim, or sub-optimal drug release [14,17,18].

Specifically, in the case of liposomal quercitin, although marked

reduction in the thickness of the rim of HSP was noted, persistence

of more peripheral expression of HSP was seen. This provides

ample rationale for further study to uncover the optimal

nanocarriers to be used in the setting of ablation.

Most studies have used 100 nm-size liposomal carriers, based

upon original combination therapy studies and the long-circulat-

ing nature of many of these formulations [12,18]. Yet, within the

fields of oncology and pharmacotherapeutics, there is increasing

interest in using smaller carriers (micelles and spheroids) to

improve intratumoral drug delivery and deeper interstitial

penetration on its own, and in combination with low-level

generalized hyperthermic treatments [19,20]. However, such

carrier alterations will likely affect properties of drug delivery

such as kinetics, warranting formal evaluation of potential trade-

offs between different outcomes (e.g., delivery, modulation of

specified targets, and overall survival).

Along these lines, here, we sought to determine whether or not

we could alter the nanodrug formulation to improve the spatial

distribution of specific drugs to target relatively ‘‘short-acting’’

processes in a rim further from the ablation zone that were

inadequately treated using long-circulating liposomes in prior

studies [14,21]. Accordingly, we studied the comparative effects of

smaller (20 nm beads or micelles) and larger–sized (100+ nm

beads or long-circulating PEG-coated liposomes) particles/carri-

ers: on 1) distribution in the periablational rim using fluorescent

beads (to determine the extent to which smaller particles have

deeper penetration in periablational inflammatory tissue; 2)

suppressing key ablation-induced reactions including pro-angio-

genic hypoxia-inducible factor (HIF-1a) and protective heat shock

protein (HSP70) production in the periablational rim using

targeted drug payloads (doxorubicin/Dox and quercetin/Qu); 3)

intratumoral drug accumulation of a target drug payload

(doxorubicin); and finally 4) determine whether any of these

primary end-points ultimately affected tumor growth rate and

animal endpoint survival.

Materials and Methods

Experimental Overview
All animal work was conducted according to relevant national

and international guidelines. Approval of the Beth Israel

Deaconess Medical Center Institutional Animal Care and Use

Committee was obtained prior to the start of this study. The study

was performed in four phases. A total of 196 female Fischer 344

rats were used. All drugs were administered intravenously (IV).

The following abbreviations are used: liposomal doxorubicin

(Lipo-Dox), micellar doxorubicin (Mic-Dox), liposomal quercetin

(Lipo-Qu), and micellar quercetin (Mic-Qu).

Phase1. Effect of particle size on distribution in the

periablational rim after RF ablation. Studies were per-

formed in two models, representing the tumor and the necessary

surrounding normal tissue that must be ablated to achieve an

adequate ablation margin [1]. First, 16 single subcutaneous R3230

breast adenocarcinoma tumors were implanted. Animals were

randomized to receive RFA combined with color-labeled fluores-

cent beads of three sizes (20, 100, and 500 nm) given I5 min post-

RF (6 animals62 time points, n = 12) or IV fluorescent beads

treatment alone (control tumors; n = 4). Next, the left liver lobes of

16 normal (tumor-free) animals were treated with RF ablation/IV

fluorescent beads (20 nm and 100 nm, 15 min post-RFA) (6

animals62 time points, n = 12) and control IV fluorescent beads

alone (control livers; n = 4). Animals were sacrificed at 4 and 24 hr

post-treatment, and tissues harvested for histopathologic and

fluorescent microscopic analysis and quantification.

Phase 2. Effect of carrier (20 nm micelles vs. 100 nm

liposomes) on combination therapy (RF ablation with

doxorubicin or quercetin). Seventy single subcutaneous

R3230 tumors were divided into the following 7 treatment arms

(n = 10 per group): RF alone, RF ablation with liposomal or

micellar doxorubicin (both formulations: 1 mg in 0.5 ml, given

15 min post-RFA), and RF ablation with either liposomal or

micellar quercetin (each formulation, 0.3 mg in 0.5 ml, given

either 24 hr pre- or 15 min post-RFA based upon prior studies

using these two time points for liposomal quercetin [14]).

Doxorubicin (an HIF-1a inhibitor) and quercetin (an HSP70

inhibitor) were selected as both agents have known suppressive

effects on hypoxia and RF ablation-induced heat stress responses,

respectively [14,22]. Animals were sacrificed and tumors harvested

24 hr post-RFA. Outcome measures included tumor coagulation

and immunohistochemistry (IHC) for HIF-1a and HSP70

(including rim thickness and % cell positivity/high powered field

[hpf]).

Phase 3. Effect of nanocarrier on tumor growth and

survival after RF ablation. A total of 30 single subcutaneous

R3230 tumors were used. Animals were allocated to the following

4 treatment arms: RF ablation with liposomal or micellar

doxorubicin (both formulations: 1 mg in 0.5 ml, given 15 min

post-RFA; n = 8 each arm), and RF ablation with either liposomal

or micellar quercetin (each formulation, 0.3 mg in 0.5 ml) given

15 min post-RFA (n = 7–8 each arm). The administration time for

RF/quercetin studies was selected based upon the results of Phase

2. Tumor growth was measured daily and animals were sacrificed

at a pre-determined endpoint of 30 mm mean tumor diameter or

60 days survival post-ablation, whichever came first. Outcome

measures included tumor growth curves and Kaplan Meier

analysis of survival rates.

Phase 4. Effect of nanocarrier on intratumoral drug

delivery and retention after RF ablation. Here, 64 paired

subcutaneous R3230 tumors were implanted in 32 animals.

Animals were allocated to the following treatment arms: RF

ablation of one tumor followed by either liposomal doxorubicin or

micellar doxorubicin (IV, 1 mg in 0.5 ml, given 15 min post-

RFA). The second, paired non-ablated tumor served as in internal

control that was exposed to either IV liposomal or micellar

doxorubicin alone. Animals were sacrificed at 4 different time

points (1–72 hr post-RFA), for a total of 64 tumors (n = 4

treatments64 time points64 per group). Ablated and unablated

tumors and the left liver lobes were harvested. Outcome measures

included gross and histopathologic evaluation for tumor coagula-

tion, and fluorescent quantitative studies for intratumoral doxo-

rubicin

Animal Models
For all experiments and procedures, anesthesia was induced

with 0.1 ml intraperitoneal (IP) injection of a mixture of ketamine

(100 mg/ml, Ketaject; Phoenix Pharmaceutical, St. Joseph, MO)
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and xylazine (50 mg/ml, Bayer, Shawnee Mission, KS). To

maintain adequate anesthesia, increments of 0.01 ml were used

when necessary. Animals were sacrificed with an overdose of

0.3 ml of the same mixture.

Experiments were performed using two animal tissues. The first

is a well-characterized established R3230 mammary adenocarci-

noma cell line implanted in female Fisher 344 rats (150620 g; 14–

16 weeks old, Charles River, Wilmington, MA) [5,23]. Tumor

implantation, evaluation, and preparation techniques were per-

formed as previously described [5]. Briefly, one tumor was

implanted into each animal by slowly injecting 0.3–0.4 mL of

tumor suspension into the chest mammary fat pad of each animal

via an 18-gauge needle. 1.3–1.5 cm solid non-necrotic tumors

were used (18–21 days after implantation), randomized to different

treatment arms. For Phase 3, the second (remote) tumor was

generated using similar implantation technique, with injection into

the abdominal subcutaneous space 3.5– 4 cm distal to the primary

site of injection in the chest. The second model was normal liver in

Fischer F344 female rats. After anesthesia induction, hair was

removed at the incision site and the skin was cleansed with a

disinfectant (70% EtOH). A 15 mm incision was made in a

subcostal location to expose the left lobe of the liver. After

completion of the procedure, the abdomen was closed in layers

using 4–5 interrupted sutures. All intravenous injections were

administered via IV tail injection, under complete anesthesia.

RF Application
Conventional monopolar RFA was applied by using a 500-kHz

RFA generator (model 3E; Radionics, Burlington, Mass), as has

been previously described [5]. Briefly, the 1-cm tip of a 21-gauge

electrically insulated electrode (SMK electrode; Radionics) was

inserted into the center of the tumor or left liver lobe. RF energy

was applied for 5 min with generator output titrated to maintain a

designated tip temperature (7062uC, continuous monitoring via a

thermocouple in the electrode tip). This standardized method of

RF application has been previously demonstrated to provide

reproducible volumes of coagulation with use of this conventional

RFA system [5,23]. To complete the RF circuit, the animal was

placed on a standardized metallic grounding pad (Radionics).

Preparation and administration of adjuvant nanoagents
For fluorescent beads, three commercially available carboxyl-

ated fluorescent dyed-polystyrene microspheres were used (Fluo-

Spheres; Invitrogen, Eugene, OR), representing three different

sizes/colors: 20 nm/crimson (wavelengths, excitation 625 nm/

emission 645 nm), 100 nm/orange (540/560), and 500 nm/

yellow-green (505/515), which were best observed using the

purple, red, and green microscope color filters, respectively (per

the manufacturer). Prior to initiating our experiments, single-

colored beads were used as positive controls and examined under

all fluorescent filters to ensure absence of any fluorescence bleed-

through artifacts.

For liposomal doxorubicin, a commercially available prepara-

tion (Doxil; ALZA Pharmaceuticals, Palo Alto, CA) was used.

Quercetin-loaded liposomes were prepared such that liposome

formulation was identical to Doxil, and as has been described [14].

Doxorubicin-loaded micelles were prepared as described [24].

Briefly, first PEG2000-DSPE micelles were prepared using a lipid

film hydration method. The lipid film was formed from a

chloroform solution of PEG2000-DSPE by removal of the organic

solvent by rotary evaporation followed by freeze-drying. The film

was hydrated with 10 mM PBS pH 7.4 at room temperature and

mixed using a vortex device for 5 min to give a final lipid

concentration of 40 mg/ml. The PEG2000-DSPE micelles were

then mixed with equal volume of drug solution (4 mg/ml) and

incubated at room temperature for 1 h. Free doxorubicin was

separated from the doxorubicin-micelle solutions using Amicon

centrifuge filters (MWCO = 30 kDa). The micellar doxorubicin

concentration was 2 mg/ml after diluting the micelles with

methanol using a Labsystems Multiskan MCC/340 microplate

reader (Labsystems and Life Sciences International, UK) at

excitation and emission wavelengths of 485 and 590 nm,

respectively. The micelle size (hydrodynamic diameter) was

measured by dynamic light scattering (DLS) using a N4 Plus

Submicron Particle System (Coulter Corporation, Miami, FL,

USA) and was found to be 17.062.1 nm. The zeta-potential was

221.764.3 mV.

Quercetin-loaded micelles were also prepared using a lipid film

hydration method. Briefly, 0.6 mg of quercetin (1 mg/mL solution

in methanol) was added to polyethylene-glycolphosphatidyl-

ethanolamine (PEG2000-PE) solutions in chloroform, and a lipid

film was formed in a round-bottomed flask by solvent removal on

a rotary evaporator. The lipid film was then rehydrated with 1 mL

of phosphate buffered saline (pH 7.4) to obtain final lipid

concentration 5 mM. After mixing using a vortex device for

15 min at room temperature, the unincorporated quercetin was

removed by filtration of the micelle suspension through 0.2 mm

membrane filters. The micellar loading efficiency of quercetin was

100% (as for quercetin-loaded liposomes, 0.6 mg of quercetin was

loaded in each administered dose). The micelle size was

17 nm62.1 nm. The zeta-potential was -21.764.3 mV.

Tumor specimen retrieval
For Phases 1–3, tumors were removed from the animal and

sectioned perpendicularly to the direction of electrode insertion.

Tissue samples were split and processed for gross pathologic

assessment of tumor coagulation, and for histopathology, immu-

nohistochemistry, fluorescent microscopy, or doxorubicin quanti-

fication, as below.

Confocal microscopy and fluorescent quantification
Tumor sections were flash frozen in optimal cutting tempera-

ture (OCT) media, to allow analysis of fluorescence. Tissues were

sectioned at a thickness of 5 mm. For each tumor one slide was

stained for H&E for gross pathology comparison and slides

prepared for confocal fluorescent microscopy were counterstained

with DAPI nuclear staining. A Zeiss LSM 510 Inverted Live-Cell

Confocal System (Carl Zeiss Microscopy, Thornwood, NY) was

used for image acquisition and tiling. In brief, slides were

counterstained with Gold anti-fade reagent with DAPI (Life

Technologies, Grand Islands, NY) and stored overnight, followed

the next day with image acquisition. For each sample, at 106and

406 magnification, a minimum of 100 fields were imaged and

automatically tiled by the microscope software, Ziess LSM image

examiner (Carl Zeiss Microscopy). Tiled images allowed subjective

assessment and quantification of slices of the tumor section that

encompassed the center, periablational rim and tumor edge.

Images were then quantified for fluorescence using Volocity 6.0

software (PerkinElmer, Waltham, MA). For each tumor section,

the peak values, means and sums of each fluorescent color surface

area count were quantified. Where ‘‘peak values’’ represent the

area with highest uptake, typically the periablational rim (as

confirmed by duplicate H&E slides), ‘‘means’’ represent the

average fluorescent surface area count per HPF and the ‘‘sums’’

represent the area under the curve (AUC) or total fluorescent

surface area of a certain color in an entire section.

Effect of Nanodrug Carrier on RF Tumor Ablation Therapy
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Gross pathologic evaluation
To assess gross tumor coagulation, one half of each sample was

incubated in 50 ml of PBS with 1 mg of 2,3,5-triphenyltetrazolium

chloride (TTC, Sigma Aldrich) as has been previously described

[5]. Non-viable white tissue, representing the coagulation zone,

was identified and measured using manual calibers and recorded.

Immunohistochemical staining
Tumor samples were placed in cassettes containing the central

section of tumor. All tissues were fixed in 10% formalin overnight

at 4uC, embedded in paraffin, and sectioned at a thickness of

5 mm. Tissues were stained with H&E for gross pathology. For

Phase 2, at least 3 samples from each treatment group underwent

immunohistochemical staining using previously described tech-

Figure 1. Confocal tiled Imaging for fluorescent surface area quantitation in R3230 tumors sacrificed at 4 hours post RF (106).
R3230 tumors were treated with RF alone, followed by IV injection of equal volumes of 3 fluorescent beads of different colors and sizes (purple
20 nm, red 100 nm, green 500 nm). Quantitation of tiled images of tumor sections (center, periablational rim and tumor margin) demonstrated
fluorescent bead accumulation in the periablational rim, with greatest uptake of 20 nm beads (D) followed by the 100 nm (C) beads followed by the
500 nm beads (B) (p,0.05, all comparisons).
doi:10.1371/journal.pone.0102727.g001

Figure 2. Confocal Imaging of perivascular and interstitial fluorescent bead penetration in the periablational rim 24 hr after RF
ablation of R3230 tumors (406). R3230 tumors were treated with RF alone, followed by IV injection of 3 fluorescent beads of different colors and
sizes (purple 20 nm, red 100 nm, green 500 nm). 406 images of the periablational rim reveal deeper penetration of the 20 nm beads into the
intracellular spaces beyond the primary site of extravasation, outlining and mapping out the cells they are surrounding (D,E), whereas the majority of
the 100 nm (B) remain confined to the primary site of extravasation. Even less extravasation is seen for the 500 nm beads (C).
doi:10.1371/journal.pone.0102727.g002
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niques [13,14,21]. Staining was performed using antibodies to

HSP70, (Stressgen, Chicago, MI) [25], to detect evidence of HSP

production, and HIF-1a (Abcam, Boston, MA) were used to detect

the a-subunit of HIF-1.

Specimen slides were imaged at the periablational rim at 106
and 406 magnification and analyzed using a Micromaster I

microscope (Fisher Scientific, Pittsburgh, PA) and Micron Imaging

Software (Westover Scientific, Inc., Mill Greek, WA) to determine

rim thickness and percent (%) cell positivity. Five random high

power fields were analyzed for a minimum of 3 specimens for each

parameter and scored in a blinded fashion to remove observer

bias. As an additional control to insure uniformity of staining,

whenever direct comparisons were made, immunohistochemical

staining was repeated with all relevant comparison slides stained at

the same time. Accuracy of the final data was verified by the senior

author, who was blinded to treatment group.

Drug quantification in harvested tissues
Doxorubicin inherent fluorescent properties were used to

quantify drug accumulation in tumor and liver samples, as

described [5]. In Phase 3, tissue was harvested from the ablated

tumor, and remote, untreated tumor and untreated liver as

controls. Tissues were weighed, and homogenized in acid alcohol

(0.3N HCL, 70% EtOH), and doxorubicin was extracted for 24 hr

at 4uC. Doxorubicin extracted from tissue homogenate superna-

tant samples was quantified by fluorometry with an excitation

wavelength of 470 nm and intensity of emission measured at

590 nm and plotted on a standard curve.

Statistical Analysis
The Microsoft Office 2010 Excel software (Microsoft, Red-

mond, WA) was used for statistical analysis. All data were provided

as mean plus or minus SD. Immunohistochemistry results and

fluorescence quantification were compared using analysis of

variance (ANOVA). Additional post-hoc analysis was performed

with paired, two-tailed Student’s T-test, if and only if, the analysis

of variance achieved statistical significance. A P value of less than

0.05 was considered significant. The Kaplan–Meier method and

log-rank test were used for endpoint survival analysis. Given the

absence of censoring of our data, one-way analysis of variance was

then performed on the survival endpoints for each animal for the

comparisons reported. Pair-wise t tests (p,0.05; two-tailed test)

based on the least square means were subsequently performed

only if the overall P values were significant.

Results

Phase 1. Smaller beads (20 nm) have greater deposition
and deeper interstitial penetration than larger beads in
the post-RFA periablational zone

In R3230 tumors treated with RFA and IV fluorescent beads in

animals sacrificed at 4 and 24 hr, greatest deposition was observed

in the periablational rim, with peak uptake at 4 hr post-RFA for all

sizes of beads. At 4 hr post-RFA, 20 nm beads had the greatest

peak, sum and mean of fluorescence deposition, as depicted by

fluorescent surface area detected followed by 100 nm beads, with

the least uptake seen for 500 nm beads (TABLE 1). Similarly at

24 hr post-RFA, 20 nm beads had the greatest deposition as

compared to 100 nm and 500 nm beads (p,0.05 for all

comparisons, TABLE 1, FIGURE 1, 2). Similarly, for normal

liver we observed greater deposition of smaller beads (20 nm) in

the periablational margin compared to larger beads after RF

ablation. However, unlike the tumor model, bead deposition

peaked later at 24 hr post-RFA (TABLE 1).
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Phase 2. Adjuvant micellar Dox/Qu led to greater
suppression of stress and hypoxia markers compared to
adjuvant liposomal Dox/Qu preparations

RFA combined with Mic-Dox led to greater suppression of

HIF-1a expression compared to RFA combined with Lipo-Dox as

measured by rim thickness in the periablational rim (45637 mm

vs. 129668 mm, respectively, p,0.04), with equal % cell positivity

(14.261.1 vs.13.662.1, respectively, p = 0.7) (TABLE 2, FIG-
URE 3). Both adjuvant Mic-Dox and Lipo-Dox therapies resulted

in statistically significant reduction of HIF-1a expression as

compared to RFA alone groups (210685 mm and 37.964.3% at

24 hr, p,0.05 for all comparisons; TABLE 2, FIGURE 3).

RFA combined with any quercetin nanopreparation adminis-

tered at any time point reduced periablational HSP70 expression

compared to RFA alone control groups (p,0.01 for all

comparisons; TABLE 2). However, RFA micellar quercetin

preparations markedly reduced rim thickness of HSP70 expression

compared to RFA combined with liposomal quercetin for both

24 hr pre-RFA and 15 min post-RFA administration

(8536157 mm vs. 148886326 mm and 8596262 mm vs.

20896569 mm, respectively, p,0.03 for all comparisons) (FIG-

URE 4). With regard to timing of adjuvant nanodrug adminis-

tration, Mic-Qu markedly reduced rim thickness of HSP70

expression equally at both 24 hr pre- and 15 min post-RFA

administrations (8536157 mm and 8596262 mm, respectively,

p = NS). However, adjuvant Lipo-Qu resulted in the greatest

suppression of RFA-induced HSP70 expression when given 24 hr

pre-RFA, with significantly less effect on the rim thickness of

HSP70 expression when given 15 min post-RFA (148886326 mm

and 20896569 mm, respectively; p,0.01) (TABLE 2).

Phase 3. RF ablation combined with long-circulating
liposomal nanodrugs led to equal local tumor
coagulation and equal or better control of tumor growth
and animal endpoint survival compared to micellar
nanodrugs

Significantly greater tumor coagulation was achieved in

treatment groups combining RFA with any adjuvant nanopre-

parations of quercetin or doxorubicin, than by RFA alone at 24 hr

(all comparisons p,0.05, TABLE 2). Yet, no statistically signif-

icant difference in coagulation was observed based on type of drug

or nanopreparation used at 24 hr (TABLE 2).

Figure 3. Comparison of micellar and liposomal formulations on modulating local periablational target proteins (HIF-1a and
HSP70) 24 hr after RF ablation of R3230 tumor. (A) Micellar doxorubicin suppressed periablational HIF-1a expression to a greater degree than
(B) liposomal doxorubicin 24 hr after RF ablation (406). Similarly, (C) micellar quercetin suppressed ablation-induced periablational HSP70 expression
in R3230 tumor at 24 hr compared to (D) liposomal quercetin (106).
doi:10.1371/journal.pone.0102727.g003
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For RFA combined with doxorubicin nanopreparations, the

mean endpoint survival for animals treated with RFA/Lipo-Dox

was 49.869.1 d, including two animals that survived up to the 60

day post-treatment monitoring end-point. This was significantly

longer than RFA/Mic-Dox, which had a mean survival of

39.668.4 d (p,0.04, FIGURE 5). By contrast, RFA/Lipo-Qu

and RFA/Mic-Qu had similar animal endpoint survival profiles,

where RFA/Mic-Qu had a mean survival of 31.168.2 d

compared to 31.269.1 d with RFA/Lipo-Qu (p = 0.9, FIG-
URE 5).

Phase 4. Contrasting intratumoral doxorubicin
accumulation kinetics for micellar and liposomal
preparations after RF ablation

At 1 hr post-RFA, there was minimal doxorubicin detected in

tumor samples of either Mic-Dox or Lipo-Dox groups. However,

at 4 hr post-RFA, intratumoral doxorubicin levels were approx-

imately 6-fold higher for RFA/Mic-Dox compared to RFA/Lipo-

Dox (0.000660.0002 mg/g vs. 0.000160.000024 mg/g, p,0.03).

Yet, at the later time points of 24 hr and 72 hr, RFA/Lipo-Dox

increased to a much greater degree than micellar doxorubicin

concentrations. This resulted in significantly higher levels of

intratumoral doxorubicin (approximately 17-fold) for long-circu-

lating liposomal doxorubicin delivery compared to RFA/Mic-Dox

(p,0.01 for all comparisons, TABLE 3). Specifically, at 24 hr

post-RFA, doxorubicin levels in the periablational rim were

1.0260.52 mg/g for RFA/Lipo-Dox compared to only

0.0660.02 mg/g for RFA/Mic-Dox (p,0.001). Similarly, at

72 hr post-RFA, intratumoral doxorubicin levels after RFA/

Lipo-Dox were 1.1760.52 mg/g, compared to RFA/Mic-Dox

0.0160.02 mg/g (p,0.001).

Discussion

There is increasing interest in developing treatment paradigms

that combine focal tumor ablation with adjuvant pharmacologic or

chemotherapeutic agents to address both challenges with residual

viable tumor from incomplete local treatment and difficulties in

achieving high concentrations of targeted drug delivery [18,26–

28]. Early studies combining RF ablation with a commercially-

available liposomal doxorubicin (Doxil) preparation reported

increases in local tumor coagulation, periablational drug uptake,

and reduced tumor growth in animal studies, and increased tumor

destruction in preliminary clinical studies [5,6,8,9]. Subsequent

studies have refined the approach, either through modification of

the drug payload or using thermosensitive preparations to facilitate

intratumoral drug release, though with mixed improvements in

treatment efficacy [11–13,17]. While most of these studies have

largely used 100 nm sized liposomes as the carrier model, more

recent studies on nanoparticle delivery (without ablation) suggest

improved carrier and drug penetration with smaller-sized prepa-

rations [20,29].

In our current study, smaller-sized particles (20 nm) adminis-

tered in combination with RF ablation did indeed result in greater

and deeper interstitial and perivascular penetration into the

periablational rim compared to larger (100 nm and 500 nm) sized

particles. Thus, our findings are consistent with uses of smaller-

sized carriers to overcome limitations in intratumoral and

interstitial drug delivery when using nanoparticles alone or in

combination with low-level hyperthermia (40–45uC) applications

[29,30]. For example, Tsukioke et al have reported deeper

interstitial penetration of micellar doxorubicin into tumor

spheroids as compared to liposomal doxorubicin [29]. Yet, our

results go well beyond these findings as we achieved a primary goal
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of demonstrating that the greater nanodrug penetration from

micellar preparations can be translated into markedly improved

modulation/suppression of specifically targeted tissue reactions in

the periablational rim. To wit, here ablation-induced expression of

both HIF-1a and HSP70 were independently suppressed to a

greater degree with micellar nanopreparations compared to their

liposomal counterparts in terms of spatial distribution. Specifically,

micellar nanodrugs specifically reduced the geographic extent of

marker expression (i.e., rim thickness) in the periablational rim,

highlighting greater tissue penetration micellar preparations with

concurrent greater spatial distribution of the desired biochemical

modulation.

While these results are exciting in achieving a primary goal of

using refined nanodrug paradigms to target specific cellular

reactions, it must be acknowledged that these gains in interstitial

penetration and suppression of local tissue reactions do not

necessarily translate into improvements in all desired outcome

metrics in cancer therapy. Along these lines, in our study micellar

preparations had similar or inferior effects on curbing tumor

growth and promoting animal survival and likewise micellar

preparations did not increase local ablation-induced tumor

coagulation compared to liposomal preparations at 24 hr. This

reinforces our understanding that local effects of tumor coagula-

tion and periablational proteomic reactions may also not directly

translate into reduction in tumor growth and gains in animal

endpoint survival outcomes.

To account for the results we observed, we hypothesize that

marked, but incomplete reduction of HSP or HIF-1a may be

insufficient to induce complete tumor destruction at 24 hr and

that, the ability of each drug to increase local coagulation may be

susceptible to a threshold effect, with only a certain amount of

drug required to target the partially injured remaining cells in the

periablational rim. However, other longer-term effects on growth

in the remaining untreated tumor may reflect a more complex

reality where differences in nanocarrier release and drug uptake

that are greater with long-circulating liposomal formulations [31]

may very well be of primary importance for overall survival.

Indeed, our results are concordant with previously reported

findings by Yang et al, where RFA combined with liposomal

paclitaxel (an apoptosis enhancer) resulted in greater apoptosis (as

measured by caspase 3), yet did not suppress tumor growth to a

similar extent as liposomal doxorubicin [13]. Conversely, with

increasing evidence that some reactions (such as increased HIF-1a)

in the periablational rim may stimulate growth in distant tumor,

successful modulation of local tissue reactions may assume

increasing clinical relevance as its own endpoint separate from

tumor growth [32–34].

Our study adds to the growing body of evidence supporting the

notion that it is the variable nanodrug delivery kinetics that are

likely to be primarily responsible for the way that different

nanopreparations induce better or worse effects on specific

outcome metrics [17,35]. For example, while greater intratumoral

doxorubicin uptake was observed with micelles compared to

liposomes early (4 hr) after RF ablation, liposomes delivered

significantly greater doxorubicin to the treated tumor over a

longer period of time (24–72 hr post-treatment). Therefore, while

micellar preparations had a greater effect on our specific targets

(HIF-1a and HSP70), these markers also peak early (4–24 hr post-

RFA) and may be more susceptible to early drug delivery. In

contrast, if the overall amount of drug delivery to the tumor is the

primary goal, then long-circulating liposomal preparations are

superior carriers. Greater overall tumor exposure to accumulating

doxorubicin may explain the greater animal endpoint survival

observed with RFA/liposomal doxorubicin. Along these lines,

recently, Andriyanov et al reported corroborating findings when

comparing RF ablation combined with conventional long-circu-

lating stealth PEG-ylated liposomal doxorubicin (i.e., Doxil) to

fast-releasing 100 nm thermosensitive liposomal doxorubicin (i.e.,

ThermoDox), in which prolonged slow drug uptake resulted in a

greater reduction in long-term tumor growth compared to early

flooding of the tumor with intratumoral nanodrug [17]. Indeed,

we posit that longer drug circulation, and therefore exposure time,

may take on greater importance for processes that are likely to

occur over a variable relatively longer time frame in the target

Figure 4. RF ablation combined with micellar quercetin suppresses periablational HSP70 expression more than a liposomal
nanocarrier. Interestingly, in addition to the observed superior inhibitory effect of adjuvant micellar quercetin over adjuvant liposomal quercetin,
regardless of timing of admininstration (pre-RFA or post-RFA), micellar adjuvant therapy is equally effective when given pre- or post-RFA
(853.076156.59 mm and 859.426261.51 mm). However, adjuvant liposomal quercetin shows significantly greater HSP70 inhibition when given pre-
RFA as compared to tumors treated with liposomal quercetin post-RFA (14888.016325.53 mm and 2088.586568.54 mm).
doi:10.1371/journal.pone.0102727.g004
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Figure 5. Comparison of animal endpoint survival for micellar and liposomal doxorubicin or quercetin formulations when
combined with RF ablation of R3230 tumors. (A) RF/Lipo-Dox resulted in the greatest animal survival (49.869.1 d), followed by RFA/Mic-Dox
(39.668.4 d). (B) RFA combined with either micellar quercetin or liposomal quercetin resulted in the same mean animal survival (31.168.2 d and
31.269.1 d, respectively).
doi:10.1371/journal.pone.0102727.g005

Table 3. Periablational intratumoral doxorubicin accumulation for liposomal and micellar nanocarriers combined with RF ablation
over time.

Doxorubicin accumulation in RF ablated tumors (mg/g)

Time post RF RF+Lipo Dox RF+Mic Dox

Mean ± SD Mean ± SD

1 hour 0.0000008160.0000003 0.0000000760.0000001

4 hours 0.000160.000024 0.000660.000174*

24 hours 1.0260.517* 0.0660.024

72 hours 1.1760.243* 0.0160.013

* = p,0.05 when compared to the other treatment group.
doi:10.1371/journal.pone.0102727.t003
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tumor. Specifically, doxorubicin, an intercalating agent, is more

effective when cells are in the G2 phase of replication, and cells in

and around the ablation zone are likely to enter the G2 phase at

variable time points after ablation [36]). Having high concentra-

tions of doxorubicin in the serum when various cells enter this

point of the cell cycle over a period of days may well represent the

best chance to ensure that efficacious drug concentrations are

present when most needed.

Additional potentially useful pharmacologic observations were

noted in our study. For quercetin nanopreparations, we also found

a wider window of efficacious administration with micellar

preparations than may have been expected given the well-known,

relatively short (2–3 hr half-life) plasma kinetics for these smaller

vehicles [37]. Specifically, we demonstrated equivalent responses

and tumor coagulation when micellar quercetin was given

between 24 hr pre- to 15 min post-RF ablation compared to the

liposomal formulation where optimal HSP70 suppression was

observed only when given 24 hr pre-RFA. Thus, our results

suggest that intratumoral concentrations are primary over plasma

kinetics and that likely very little drug is needed to achieve the

desired HSP reduction – provided it is successfully delivered to the

desired spatial location. Additionally, we observed variable timing

of accumulation for smaller fluorescent bead particles between

tumor and normal liver, where peak fluorescence was observed at

24 hr post-RFA in normal liver. This suggests that even with

equivalent outcomes, some types of nanocarriers, with ideal

therapeutic windows tailored to specific tissues, may offer clinically

relevant and practical advantages.

Ultimately, our findings suggest that several different factors

need to be considered when developing combination therapy

paradigms. Optimal choice of carrier type and drug payload will

likely involve both identifying goals of treatment and prioritizing

outcome metrics (e.g., local suppression of a specific cytokine such

as HIF-1a or control of tumor growth). Tumor and tissue-specific

characteristics, and differences in carrier and drug pharmacoki-

netics will factor into the practical considerations of when to time

peri-ablation drug administration. Thus, the choice of nanopar-

ticles should ultimately likely be tailored to achieve specific goals in

specific tissues, as optimal carriers may differ depending on

whether modulation of local periablational processes or growth

suppression of untreated tumor is required.

We acknowledge several limitations with our study. Fluorescent

beads were commercially acquired and the number of beads per

volume was pre-determined by the manufacturer and was not

likely not identical between different particle sizes. Yet, we

controlled for the key variable drug concentration in all of our

subsequent experiments as the active drug (i.e., 1 mg of

doxorubicin loaded in 0.5 ml) was given precedence to the

number of particles in the micellar or liposomal vehicle. Thus, as

expected, fluorescent beads of a smaller size had a consistently

higher concentration than larger-sized beads. Additionally,

although the R3230 model used for these studies is a well-

characterized tumor model, results demonstrated may be specific

to the model and should be interpreted and applied to other

scenarios and models with caution, mirroring our call for tailoring

nanopreparations to different tumor types and scenarios. Differ-

ences also exist in pharmacokinetic profiles between the fluores-

cent beads and correspondingly sized nanopreparations (i.e.,

20 nm beads vs. 20 nm micelles). Therefore, interpretation and

correlation of results between fluorescent beads and nanoprepara-

tions must be made carefully. Furthermore, in survival studies, we

did not include an RFA alone treatment arm, as prior studies have

clearly demonstrated a survival benefit for combination therapy

arms (liposomal doxorubicin or quercetin) [9,38]. Finally, tumor

coagulation for micellar doxorubicin in this study differs from

results obtained in an earlier study using a small liposome

preparation (,40 nm), where high levels of intratumoral doxoru-

bicin accumulation but smaller amounts of tumor coagulation

were reported compared to a 100 nm preparation. Differences in

results may represent variable micellar stability due to differences

in doxorubicin loading doses [29], and emphasizes that results

from experimental and clinical studies using combination para-

digms are critically dependent on developing the appropriate

nanopreparations for the right application.

In conclusion, when combined with RF ablation, smaller-sized

particles have superior deeper tissue penetration and therefore can

potentially achieve more effective local molecular modulation of

specific post-ablation reactions including heat shock protein and

HIF-1a expression, with a wider window of administration as

compared to larger (100 nm) particles. However, larger-sized long-

circulating particles can result in greater overall long-term

intratumoral drug accumulation and reduced tumor growth.

Therefore, different nanodrug carriers provide specific advantages,

in part based upon size and circulation kinetics, which should be

considered when formulating strategies to achieve optimal

combination therapies with tumor ablation.
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