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Many social, biological, and technological networks consist of a small number of highly connected
components (hubs) and a very large number of loosely connected components (low-degree nodes). It has
been commonly recognized that such heterogeneously connected networks are extremely vulnerable to the
failure of hubs in terms of structural robustness of complex networks. However, little is known about
dynamical robustness, which refers to the ability of a network to maintain its dynamical activity against local
perturbations. Here we demonstrate that, in contrast to the structural fragility, the nonlinear dynamics of
heterogeneously connected networks can be highly vulnerable to the failure of low-degree nodes. The crucial
role of low-degree nodes results from dynamical processes where normal (active) units compensate for the
failure of neighboring (inactive) units at the expense of a reduction in their own activity. Our finding
highlights the significant difference between structural and dynamical robustness in complex networks.

N
etwork science has witnessed many developments in the last decade because many real-world networks
were found to have a variety of topological structures1–3. The complexity of a network structure can be
characterized by the connectivity properties of the interaction pathways (links) between network com-

ponents (nodes). The degree of a node is the number of its links connected to other nodes. In terms of the degree
distribution (the probability distribution of the degrees of all the nodes in the network), complex networks can be
classified into homogeneous and heterogeneous networks. Homogeneous networks such as random graphs4 and
small-world models5 possess binomial or Poisson degree distribution, where the degrees concentrate around the
mean degree. Heterogeneous networks such as scale-free networks6 have a heavy-tailed degree distribution that at
least approximately follows a power law. Data analyses have revealed that the scale-free property is found in
social7,8, biological9–11, technological12,13, and many other types of networks1–3,6.

One of the major characteristics of heterogeneous networks is that they are highly robust against random errors
but are extremely fragile to attacks targeted at hubs14. Namely, the connectivity properties of a heterogeneous
network as a whole are not so much affected by the random removal of a fraction of the nodes as compared with a
homogeneous network; however, they are drastically altered by the preferential removal of hubs, leading to
network fragmentation. These properties have been theoretically studied by means of percolation theory15–17.
The structural fragility to the preferential removal of important nodes is also observed in heterogeneous network
models incorporating dynamical flows of physical quantities on the network18,19. Most of these studies are
concerned with the robustness of the network structure: the measure of network function is given by the size
of the giant component (the largest connected subnetwork), and failure nodes are removed to induce a topological
change. However, less attention has been paid to changes in network dynamics caused by local errors in complex
networks of dynamical units20, which are particularly relevant to biological robustness21,22. Because most real-
world complex networks are composed of elements with internal dynamics, it is essential to consider the
robustness with respect to nonlinear dynamics.

Here we focus on the dynamical robustness of complex networks, which is defined as the ability of a network to
maintain its dynamical activity when a fraction of the dynamical components are deteriorated or functionally
depressed but not removed. Our aim is to demonstrate that the key nodes impacting the dynamical robustness of
heterogeneous networks are low-degree nodes. This is in strong contrast to the structural robustness which is
largely influenced by hubs. As an example of networks consisting of dynamical units, we introduce coupled
oscillator networks23–25 which have often been used to study a variety of biological phenomena including circadian
rhythms, synchronized neuronal firing, and spatiotemporal activity in the heart and the brain. In the mammalian
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suprachiasmatic nucleus (SCN) producing a biological clock that
drives circadian rhythms, normal function is sustained by networks
of SCN neuronal oscillators26. The self-sustained oscillation of each
individual SCN neuron can be damped because of some envir-
onmental conditions27 or age-related deterioration28. Coupled oscil-
lator models are useful for exploring how circadian rhythms are
robustly generated in a population of self-sustained and damped
circadian oscillators29. In the pancreatic islets, synchronized oscillat-
ory activity of electrically coupled beta cells is involved in pulsatile
insulin secretion that regulates blood glucose levels. A major issue
that has been studied using coupled oscillator models is how rhyth-
mic insulin secretion can be robustly achieved in populations of
heterogeneous cells that are active or silent30. There are many other
dynamical cellular and multicellular processes in which oscillation
plays important roles31,32. Moreover, coupled oscillator models are
also relevant to electric power networks in which network compo-
nents like power sources should be synchronized at the same fre-
quency33. It is essential to investigate how the collective dynamics of
power networks is tolerant to local disturbances of power sources
that may lead to a cascading blackout34,35.

We consider networks consisting of N oscillator nodes coupled by
diffusive connections with fixed strength K (see Methods section). A
normal (active) oscillator exhibits periodic oscillation when it is
isolated, whereas a deteriorated (inactive) oscillator settles down in
a quiescent state after transient damping oscillation (Fig. 1a)36,37.
Unless any local deterioration occurs, the network of all active oscil-
lators produces completely synchronized oscillation. When a pro-
portion of the oscillators are randomly inactivated with ratio p in a
heterogeneous network (Fig. 1b), we observe phase synchronized
oscillation with different amplitudes (Fig. 1c). The individual inact-
ive oscillator, which cannot oscillate by itself, manages to continue
weak oscillation in the network because of continuous inputs from
neighboring active oscillators through diffusive coupling. Instead,
the active oscillators decrease their oscillation levels as compared
with the isolated ones in order to achieve a balance between their
states and those of neighboring inactive oscillators.

Results
Behavior in the oscillator network model. The oscillation ampli-
tude of a node is largely dependent on the degree of the node in
heterogeneous networks (Fig. 2a), as compared with homogeneous
networks (Fig. 2c). When a part of the oscillators are randomly
inactivated independently of their degrees, the expected number of
inactive oscillators connected to a node is proportional to the degree
of the node. Therefore, within the subpopulation of active oscillators,
the nodes with lower degree are likely to generate larger oscillation
amplitudes because they are less affected by the neighboring inactive
oscillators. To measure the network activity, we introduce the order
parameter jZj that represents the average of the oscillation ampli-
tudes over all the oscillators in the phase synchronization state (see
Methods section). As the ratio p increases, the order parameter
decreases (Figs. 2b and 2d). When p exceeds a critical value pc, the
order parameter vanishes with a loss of global oscillation. For a
sufficiently large coupling strength K, the order parameter displays
a second-order phase transition at p 5 pc

36,37. The critical ratio pc,
namely the maximum inactivation ratio for which the network
activity is sustainable, is regarded as a measure of the dynamical
robustness. A higher critical value implies a more dynamically
robust network.

Random inactivation. In the case where oscillators are randomly
inactivated, the critical ratio pc is analytically obtained for both
heterogeneous and homogeneous networks (see Methods section
and Supplementary Information). The degree of the jth oscillator
is denoted by kj (j 5 1, …, N) and the mean degree, by kh i:P

j kj

.
N . We assume that the behavior of a heterogeneous

network with large N is governed by two mean fields cor-
responding to the subpopulations of active and inactive oscillators.
In order to apply the degree-weighted mean field approximation38,39

or the annealed network approximation40 to each subnetwork,
we assume that the oscillators with the same degree in the same
subpopulation are identical. Under this assumption, the critical
ratio pc for heterogeneous networks is derived as follows:

phet
c ~

F K,að Þ{d
F K,að Þ{F K,{bð Þ for KwKhet

c , ð1Þ

where d ; Ækæ/(N 2 1) (, Ækæ/N for large N) is the link density, K
is the coupling strength, and a . 0 and 2b , 0 are the values of
the intrinsic parameters for the active and inactive oscillators,
respectively (see Methods section). The function F is dependent on
the degree distribution normalized by the system size as well as the
coupling strength and the intrinsic parameters (see equation (6)).
The critical coupling strength, below which phet

c ~1, is given by

Figure 1 | An oscillator network model. (a) The behavior of the isolated

active (red curve) and inactive (blue curve) oscillators. The active oscillator

exhibits periodic oscillation, whereas the inactive oscillator becomes

quiescent after transient damping oscillation. (b) A heterogeneous network

composed of active (red nodes) and inactive (blue nodes) oscillators. Here,

the oscillators are randomly inactivated with ratio p 5 0.3. The link density

is d , 0.08 (N 5 100 and Ækæ 5 8). (c) The behavior of (1 2 p)N active (red

curves) and pN inactive oscillators (blue curves) in the network. The

coupling strength is set at K 5 30. The solid black curve in each panel

indicates the mean field for each subpopulation. The inactive oscillators,

which are not able to oscillate when isolated, manage to sustain the

oscillatory behavior because of the diffusive interactions with neighboring

active oscillators. All the oscillators show phase synchronization.
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Khet
c *a=dmin, where dmin ; kmin/N with the minimum degree kmin ;

min1#j#Nkj. For homogeneous networks, we further assume that the
degrees of all the oscillators are approximated by the mean degree for
analytical calculations. Then, the critical ratio is described as follows:

phom
c ~

a Kdzbð Þ
azbð ÞKd

for KwKhom
c , ð2Þ

where Khom
c ~a=dƒKhet

c . The critical ratio is invariant if the product
of the link density and the coupling strength is kept constant. Hence,

a more strongly or densely connected network is less robust. The
critical ratios for homogeneous and heterogeneous networks are
plotted against the coupling strength K and the link density d in
Figs. 3a and 3b. The results of the analytical formulae are in good
agreement with the corresponding numerical results. For a wide
range of parameter values, the critical ratio for the heterogeneous
network is larger than that for the homogeneous network. This
property can be further confirmed by the comparison between
Fig. 4a for heterogeneous networks and Fig. 4b for homogeneous

Figure 2 | Behavior in heterogeneous and homogeneous networks. (a), (c) The upper panel shows the degrees kj of individual oscillators in (a)

heterogeneous and (c) homogeneous networks with d , 0.08 (N 5 1,000 and Ækæ 5 80), K 5 30, and p 5 0.55. The lower panel shows the oscillation

amplitudes | zj | of the individual oscillators. (b), (d) The order parameter | Z | is plotted against the inactivation ratio p for (b) heterogeneous and (d)

homogeneous networks with d , 0.08 (N 5 1,000 and Ækæ 5 80). The critical ratio pc, at which | Z | reaches 0, is different between the two types of networks

for sufficiently large K. The error bars indicating the variance for 10 network realizations are invisibly small.

Figure 3 | Comparison of the critical ratio with respect to coupling strength K and link density d between heterogeneous and homogeneous networks
for random inactivation. (a) The critical ratio pc is plotted against the coupling strength K in networks with d , 0.08 (N 5 3000 and Ækæ 5 240). A globally

oscillatory state with | Z | . 0 is observed for p , pc, whereas a quiescent state with | Z | 5 0 is observed for p . pc. The solid and dashed black curves indicate

the analytically obtained results in equations (1) and (2), respectively. Blue diamonds and red triangles indicate the numerically obtained results. The error

bars indicate the variance for 10 network realizations. (b) The critical ratio pc is plotted against the link density d in networks with N 5 3000 and K 5 30.
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networks in the parameter space of K and d. Therefore, hetero-
geneous networks are more tolerant to random inactivation than
homogeneous ones. This result is consistent with that based on the
structural robustness against random removal of nodes1–3,14–17.

Targeted inactivation. In the case where oscillators are not ran-
domly inactivated, the mean field approximation is not appro-
priate. Thus, we numerically computed the critical ratios for
preferential inactivation targeted at either high-degree or low-
degree nodes in heterogeneous networks. First, the node with the
highest (lowest) degree among the active oscillators was inactivated.
Then, this process was repeated until the number of inactive
oscillators became pN. The critical ratio for targeted inactivation is
compared with that for random inactivation in heterogeneous
networks, as shown in Figs. 5a and 5b. Compared with the random
inactivation case, the targeted inactivation of low-degree nodes
makes the networks significantly vulnerable for a wide range of
parameter values. This consequence is opposite to the structural
fragility against removal of hubs. Figures 4a and 4c also clearly
show the difference between the critical ratio pc for random inac-
tivation and that for targeted inactivation of low-degree nodes.
As explained before, the active oscillators with lower degrees are
likely to exhibit larger oscillation amplitudes (see Fig. 2a). There-
fore, the inactivation of low-degree nodes more dramatically de-
creases the order parameter and thereby results in a lower critical
ratio compared with the random inactivation. The critical coupling
strength indicated in Fig. 5a is obtained as Khet,l

c ~a=dmax , where
dmax ; kmax/N with the maximum degree kmax ; max1#j#Nkj.
The critical coupling strength is considerably decreased by the
inactivation of low-degree nodes, i.e. Khet,l

c vKhet
c . On the other

hand, the inactivation of the high-degree nodes (hubs) makes
heterogeneous networks slightly more robust as compared with the
random inactivation. This is because active oscillators with higher
degree contribute less to the order parameter (see Fig. 2a). In this
case, the critical coupling strength indicated in Fig. 5a is given by
Khet,h

c ~a
�

dmin*Khet
c . The difference between the critical ratio pc

for random inactivation and that for targeted inactivation of high-
degree nodes is subtle, as shown in Figs. 4a and 4d.

Discussion
We have demonstrated that heterogeneous networks are highly
tolerant to random inactivation but extremely fragile to targeted
inactivation of low-degree oscillators with respect to the dynamical
robustness. The former property is consistent with the structural
robustness of heterogeneous networks14. The latter property sheds
light on the critical difference between the structural robustness
and the dynamical robustness. These properties also hold for
coupled oscillator models in which the coupling strengths are
not identical but uniformly or normally distributed (see Sup-
plementary Information). Our finding results from the diffusive
coupling that serves to balance the states of the two connected
nodes. Active nodes function to restore neighboring inactive
nodes, with a resulting weakening of their dynamical activity.
Because low-degree active nodes are affected by only a few neigh-
boring inactive nodes, they can maintain relatively high dynamical
activity compared with high-degree active nodes. Therefore, tar-
geted inactivation of low-degree nodes leads to a considerable
reduction in the network dynamical activity, making the network
dynamically vulnerable.

This mechanism is expected to be applicable to a wide range of
networked systems, because diffusion in various transport phenom-
ena are commonly found in physical, biological, and engineering
systems. For example, electrical synapses or gap junctions that are
widely observed in the brain41 can be modeled by diffusive coupling
in neural networks42; in particular, rhythmicity and synchrony
among inferior olive neurons43 can be quantitatively described by a
neural network model composed of oscillatory neurons coupled
through such electrical synapses44. Electric power networks that are
composed of distributed power sources including renewable energy
sources with inverters45,46 such as wind and solar power can also be
modeled as a coupled oscillator network33 interconnected by diffus-
ive coupling with active and reactive power flows.

Figure 4 | Dependence of the critical ratio on coupling strength K and link density d. The color indicates the value of the critical ratio pc in networks with

N 5 3000. (a) Heterogeneous networks for random inactivation. (b) Homogeneous networks for random inactivation. (c) Heterogeneous networks for

targeted inactivation of low-degree nodes. (d) Heterogeneous networks for targeted inactivation of high-degree nodes.

www.nature.com/scientificreports
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Our results imply that dynamical processes play an important role
in understanding the dynamical robustness in complex networks
composed of interacting dynamical units. One needs to appropri-
ately model dynamical processes and define a measure of dynamics-
based network function to mathematically treat the dynamical
robustness in such realworld networks as biological cellular net-
works11,21, metabolic networks9, protein networks10, brain networks47,
and electric power networks48. For designing dynamically robust net-
works and planning recovery strategies against local errors, both the
network structure and the dynamical processes should be considered
in detail.

Methods
Model equations. The network of diffusively coupled oscillators is described as
follows:

_zj~ ajziV{ zj

�� ��2� �
zjz

K
N

XN

k~1

Ajk zk{zj
� �

for j~1, . . . ,N, ð3Þ

where N is the number of oscillators; zj, the complex state variable of the jth oscillator;
aj, the intrinsic parameter of the jth oscillator; V, the natural frequency; and K, the
coupling strength. The single oscillator without coupling (K 5 0), called the Stuart-
Landau oscillator24, represents the normal form of dynamical systems that describe
the nonlinear dynamics near the supercritical Hopf bifurcation at aj 5 049. The single
oscillator exhibits periodic (active) oscillation for a positive value of aj, whereas it
becomes quiescent (inactive) for a negative value of aj (see Fig. 1a). The set of node
indices for the active oscillators is denoted by SA and that for the inactive oscillators,
by SI. We set aj 5 a . 0 for j g SA and aj 5 2b , 0 for j g SI

36,37. The parameter
values are fixed at a 5 1, b 5 3, andV5 3. The adjacency matrix A 5 (Ajk) represents
the network connectivity, where Ajk 5 Akj 5 1 if the jth and the kth oscillators are
connected and Ajk 5 Akj 5 0 otherwise. The degree of the jth oscillator is given by
kj~

PN
k~1 Ajk . The homogeneous and heterogeneous networks are given by the

Erdös-Rényi random graph4 and the Barabási-Albert scale-free model6, respectively.

Order parameter and critical ratio. The macroscopic oscillation level of the entire
network is evaluated by the order parameter jZj, where Z: 1=Nð Þ

PN
j~1 zj . When all

the oscillators stop oscillating, the order parameter vanishes. As the ratio p of inactive
oscillators increases from zero, the order parameter decreases and vanishes at a
critical ratio p 5 pc (see Figs. 2b and 2d). In simulation experiments, the model
equation (3) with random initial conditions was numerically integrated by the fourth-
order Runge-Kutta method with time step 0.1, and the order parameter jZj was
calculated at t 5 50000. We considered the critical value pc to be the value of p at
which the value of jZj at t 5 50000 falls below 1026 as p is increased.

Mean field approximation. The critical ratio for random inactivation is analytically
obtained by the mean field approximation38,39 or the annealed network
approximation40. The sum of contributions to the jth oscillator from the connected
oscillators in Eq. (3) is represented by the local field hj:

PN
k~1 Ajkzk . For sufficiently

large N, the number of active oscillators in the neighborhood of the jth oscillator is
expected to be (1 2 p)kj and that of inactive ones, pkj. Therefore, based on numerical

observations (see Supplementary Information), we approximate the local field as
follows:

hj tð Þ^ 1{pð ÞkjHA tð ÞzpkjHI tð Þ,
where the degree-weighted mean fields HA(t) and HI(t) for active and inactive sub-
populations are given by

HA tð Þ:
P

j[SA
kjzj tð ÞP

j[SA
kj

and HI tð Þ:
P

j[SI
kjzj tð ÞP

j[SI
kj

: ð4Þ

Accordingly, the original equation (3) can be approximated as follows:

_zj~ ajziV{ zj

�� ��2� �
zjz

Kkj

N
1{pð ÞHA tð ÞzpHI tð Þ{zj

� �
: ð5Þ

The coupling term, which is dependent on the connectivity matrix Ajk in the original
equation, is now only dependent on the degree of the node. Once the mean fields HA

and HI are provided, the steady oscillatory state of the jth oscillator is obtained from
the reduced form (5). For the mean field approximation to be self-consistent, the
mean fields calculated by equation (4) from the steady oscillatory states must be
equivalent to the originally given mean fields. From a self-consistency analysis (see
Supplementary Information), we derive the critical ratio (1) with

F K,að Þ: 1
N

XN

j~1

d2
j

dj{a=K
; ð6Þ

where dj 5 kj/N is the degree of the jth oscillator, normalized by the system size.
For homogeneous networks, we further assume that the degrees of all the oscilla-

tors are the same as the mean degree, i.e. kj 5 Ækæ 5 (1/N)Sjkj for all j. Then, because dj

5 d 5 Ækæ/N for all j, equation (6) is reduced to F(K, a) 5 d2/(d2a/K). By substituting
this form into equation (1), we obtain equation (2). See Supplementary Information
for further details.
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