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Abstract: Current strategies for phenotyping above-ground biomass in field breeding nurseries
demand significant investment in both time and labor. Unmanned aerial vehicles (UAV) can be used
to derive vegetation indices (VIs) with high throughput and could provide an efficient way to predict
forage yield with high accuracy. The main objective of the study is to investigate the potential of
UAV-based multispectral data and machine learning approaches in the estimation of oat biomass.
UAV equipped with a multispectral sensor was flown over three experimental oat fields in Volga,
South Shore, and Beresford, South Dakota, USA, throughout the pre- and post-heading growth phases
of oats in 2019. A variety of vegetation indices (VIs) derived from UAV-based multispectral imagery
were employed to build oat biomass estimation models using four machine-learning algorithms:
partial least squares (PLS), support vector machine (SVM), Artificial neural network (ANN), and
random forest (RF). The results showed that several VIs derived from the UAV collected images were
significantly positively correlated with dry biomass for Volga and Beresford (r = 0.2–0.65), however,
in South Shore, VIs were either not significantly or weakly correlated with biomass. For Beresford,
approximately 70% of the variance was explained by PLS, RF, and SVM validation models using data
collected during the post-heading phase. Likewise for Volga, validation models had lower coefficient
of determination (R2 = 0.20–0.25) and higher error (RMSE = 700–800 kg/ha) than training models
(R2 = 0.50–0.60; RMSE = 500–690 kg/ha). In South Shore, validation models were only able to explain
approx. 15–20% of the variation in biomass, which is possibly due to the insignificant correlation
values between VIs and biomass. Overall, this study indicates that airborne remote sensing with
machine learning has potential for above-ground biomass estimation in oat breeding nurseries. The
main limitation was inconsistent accuracy in model prediction across locations. Multiple-year spectral
data, along with the inclusion of textural features like crop surface model (CSM) derived height and
volumetric indicators, should be considered in future studies while estimating biophysical parameters
like biomass.

Keywords: high throughput phenotyping; remote sensing; machine learning; UAV/drone; biomass
estimation; oats

1. Introduction

Oat (Avena sativa L.) is a cool-season, multipurpose grain crop which ranks sixth among
the most produced cereal in the world [1]. According to USDA-National Agricultural
Statistics Service small grains 2020 summary statistics, out of 1.2 million hectares of oats
farmed in the United States, approximately 406,000 hectares were harvested for grain,
accounting for less than half of the entire planted area [2]. The crop has traditionally been
collected for fodder, forage, straw, hay, silage, and chaff production in addition to grain
production [1]. Oat forage is preferred over other annual forage crops because of its high
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palatability and dry matter content [3,4]. In accordance with previous findings, oat forage
dry matter production ranged from 4000 kg per hectare in water-stressed conditions [5] to
8000 kg per hectare for the humid north-central US [6].

Breeding for improved forage yield necessitates an accurate estimation of the perfor-
mance of genotypes for biomass production across the target environment [7,8]. Visual scor-
ing, sample clipping, and mowing of individual breeding plots are some of the approaches
utilized for the phenotypic assessment of forage productivity. Although visual scoring is
non-destructive and ratings on individually spaced plants or rows can be correlated to dry
matter yield, they are still time-consuming and vulnerable to subjectivity [9]. The clipping
of small samples for the measurement of biomass is often constrained by greater sampling
error resulting from soil variability and other factors. Full plot harvest provides a means
to collect a representative sample, but it is destructive and time-consuming. With limited
resources, full plot harvest restricts the number of seasons and places that can be sampled,
the number of experimental lines that can be evaluated, and thus the genetic gain that
can be obtained [10–12]. To maximize genetic gain for dry matter yield, high-throughput,
cost-effective, resilient, and precise in-field forage phenotyping techniques are required [13].
Remote sensing platforms such as low altitude unmanned aerial vehicles (UAV) are be-
coming a common tool to increase the throughput of phenotypic data collection in plant
breeding nurseries [14–16]. UAV are capable of rapid assessment of phenotypes in varietal
trials with high spatial and temporal resolutions [17], and per consequent, can increase
selection intensity, improve selection accuracy, and provide valuable selection decision
support [18]. Such platforms can be equipped with different types of sensors such as RGB
sensor (red (R), green (G), and blue (B)) and a multispectral sensor including near-infrared
spectral bands (wavelength ranging between 400 and 1000 nm). These are commonly
used for phenotyping various agronomic traits, including biomass [19–22], yield, disease
resistance, crop/soil water status, and ground cover [23–27].

A variety of spectral features, also known as vegetative indices (VIs), have been used
for biomass estimation, which also offers to quantitatively evaluate the richness, greenness,
and vitality of vegetation in field experiments [28]. Several studies have utilized VIs for
biomass monitoring in various crop species, including maize (Zea mays L.) [22,29,30], barley
(Hordeum vulgare) [15], rice (Oryza sativa) [31,32], wheat (Triticum spp.) [19,20], and other
small grain crops [33]. One of the most used indices is the normalized difference vegetation
index (NDVI) [34,35], which responds to variation in chlorophyll absorption in red spectra
and multi-scattering in NIR spectra, causing high reflectance [36]. The NDVI has been used
for the prediction of biomass and percentage of ground cover in winter forage crops [37].
An NDVI value less than 0 indicates no vegetation covering, whereas a value larger than
0.1 indicates vegetation coverage [38] as the index is directly proportional to vegetation
density, the higher the NDVI score, the greater the vegetation covering. However, the use of
multiple indices is recommended for biomass prediction as different types of VIs are subject
to different sensitivity depending on the amount of biomass and the stage of the crop. The
NDVI, GNDVI (Green Normalized Differential Vegetation Index), SAVI (Soil-Adjusted
Vegetation Index) and G-R (Green-Red Vegetation Index) are more accurate for estimating
the biomass at early crop stages [37], while they get saturated at later stages [36,39] and TVI
(Triangular Vegetation Index) is useful for predicting canopy biomass at later stages [40].

Accurate detection and mapping of crop canopy through remote sensing is challeng-
ing because of background effects like soil, shadow, and non-target canopies with high
morphological similarities. An object-based classification method, particularly machine
learning-based supervised and unsupervised pixel classification, has been widely used
for canopy identification. Gašparović et al. [41] implemented automatic/manual and
object-based/pixel-based classification algorithms for oats (Avena sativa L.) mapping using
UAV-based red, green, and blue (RGB) imagery. Random forest supervised classification
followed K-means unsupervised classification to differentiate oats from background soil
and weed effects [41]. Likewise, Devia et al. [42] utilized the K-mean clustering algorithm
for pixel classification for the identification of rice plants over soil and grasses.
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Statistical models have been implemented to relate spectral information with biophys-
ical attributes of crops [43,44]. Traditional modeling approaches are limited by statistical
assumptions failing to address outlier data, nonlinearity, heteroscedasticity, and multi-
collinearity issues [45]. Recently, machine learning algorithms have been widely employed
for the exploration and analysis of big data sets to identify meaningful correlations, patterns,
and rules among data, which are frequently found to outperform traditional regression
analysis [46]. The relationship between spatial and temporal changes of various predictor
factors determines biomass estimation. Machine learning techniques could be highly rel-
evant for biomass estimation as it has excellent capacity to treat multidimensional data
via incorporating several predictor features [47]. Expected biomass being a continuous
variable, machine learning methods such as support vector machine (SVM) [24], partial
least square (PLS) [48,49], random forest (RF) [50], and artificial neural network (ANN) [51]
have been used for biomass estimation. Training data is often required for supervised
machine learning algorithms, however, obtaining a large dataset is often challenging be-
cause of the difficulty in manually harvesting large numbers of plots and the limited crop
growing season [28]. In order to get reliable and unbiased estimates of model performance
in these cases, validation techniques such as leave one out for cross-validation and k-fold
cross-validation have been used in previous studies [22,52].

There are a limited number of studies that have used UAV-based canopy spectral
information and machine learning to predict the biomass in oats. Various studies related to
above-ground biomass estimation in cereal crops have seen lower estimation accuracy after
the heading stage, which could be due to higher biomass amount or other inflorescence/
stem interference overleaf canopy after heading [25,53]. Few studies have explored the
impacts of canopy spectral information from different growth phases on biomass estimation
for oats. Thus, the objectives of this study are; to (i) evaluate the potential of UAV multi-
spectral imagery-derived VIs in estimation of above ground biomass in oats, (ii) evaluate
the performance of UAV imagery collected at pre- and post-heading phases for oat biomass
estimation, and (iii) compare the performance of different machine-learning algorithms for
estimating above ground biomass of oats.

2. Materials and Methods
2.1. Field Experiments

Thirty-five oat genotypes adapted to the Northern Great Plains were cultivated in
2019 at three locations in South Dakota (Figure 1): Volga (44.321994, −96.924565), South
Shore (45.105087, −96.927985), and Beresford (43.080859, −96.776148). The experimental
design followed a randomized complete block design (RCBD) with three replications.
Each plot (experimental unit) was approximately 2.78 m2. Oats were planted at a density
of approximately 300 seeds per square meter and at a depth of approximately 0.038 m.
Beresford, Volga, and South Shore were planted on 26 April, 14 May, and 7 May, respectively,
and were harvested on 11 July, 18 July, and 19 July, respectively. Agronomic practices such as
fertilization and weed management were carried out in accordance with regional practices.
Based on the information extracted from the Agacis website (https://agacis.rcc-acis.org,
accessed on 1 July 2021), the average temperature during the growing season (May to July)
was 16.4 ◦C in South Shore, 18.8 ◦C in Beresford and 17.2 ◦C in Volga. In 2019, precipitations
during the growing season (May to July) totaled 11.93 cm in South Shore, 9.90 cm in Volga,
and 11.93 cm in Beresford.

https://agacis.rcc-acis.org
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Figure 1. Three different experimental locations (South Shore, Beresford, and Volga) in South Dakota.

2.2. Ground Data Collection

Several phenotypic traits, such as heading time and crown rust severity, which can
directly or indirectly affect forage yield, were collected for this study. Crown rust severity
was scored as the percentage of leaf area covered by pustules over the entire plot. When
plants were between late milk and early dough, oats were harvested for forage. The plants
were cut close to the soil surface (approximately 7.6 cm) with a Jari mower or a forage
harvester (Figure 2a), depending on the location. The above-ground biomass of each plot
(fresh weight) was recorded immediately after harvest. For each plot, a sub-sample was
collected and subjected to air-dried oven set at 70 degrees Celsius until the weight was
constant (approximately a week). Dry matter content was calculated and used to measure
dry matter yield for each plot; the details of dry biomass calculation are as follows:

Dry mater content (%) =
Subsample dry weight

Subsample fresh weight
∗ 100% (1)

Dry biomass =
Fresh biomass ∗ dry matter content

100
(2)
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Figure 2. Harvesting of forage for biomass yield in Beresford (a); preparation for drone flight (b).

2.3. Sensor and Aerial Platform

The UAV deployed is a DJI (Dà-Jiāng Innovations) Matrice 600 hexcopter (SZ DJI Tech-
nology Co., Ltd., Shenzhen 518057, China) (Figure 2b). Multispectral images were collected
with a MicaSense RedEdge-MX camera (MicaSense, Inc., Seattle, WA, USA). Micasense
RedEdge-MX has a 3.2-megapixel resolution, and five bands with central wavelengths of
457 nm (blue), 560 nm (green), 668 nm (red), 717 nm (red-edge), and 840 nm (near-NIR).
The spectral range covered by the green, red, red-edge, and NIR bands were 545–555 nm,
640–660 nm, 710–720 nm, and 840–860 nm, respectively. For UAV waypoint navigation and
flights, an autopilot system was applied using Drone Deploy (Drone Deploy, San Francisco,
CA, USA) software over the fields. Drone Deploy software was used for autonomous
takeoff, flight, and landing purposes, and for capturing consistent data over time. Each of
the flights was performed at an altitude of 25 m and with a front and side overlap of 80%.
The flights were performed in either sunny or overcast conditions with wind gusts less
than 12 miles per hour. Aerial images were collected on multiple days: Beresford (14 June,
1 July, 8 July, and 12 July), Volga (13 June, 25 June, 4 July, and 11 July), and South Shore
(16 June, 25 June, 6 July, 11 July, and 18 July). The UAV flights were conducted between
10 a.m. to 12 p.m. to ensure constant daylight operation.

2.4. UAV Data Processing
2.4.1. Image Preprocessing

The processing of raw images captured by UAV was conducted by using Pix4DMap-
persoftware (Pix4D Inc., San Francisco, CA, USA) to generate orthomosaic images in tiff
format (Figure 3). The orthomosaic images were generated with a spatial resolution of
0.7 cm. Following the orthomosaic, 10 ground control points (GCPs) were employed across
the field area to geo-reference the imageries from various flights. The GCP coordinates
were measured with a Magellan GPS device (Magellan Navigation Inc., San Dimas, CA,
USA). Four white tarps were evenly spaced around each corner of each field for radiometric
correction. The reflectance value of the tarps was determined using a CROPSCAN MSR16R
(CROPSCAN Inc., 1932 Viola Heights Lane NE Rochester, MN 55906, USA). Four white
tarps were used in the development of the linear relationship between DN (digital number)
and surface reflectance. The average DN of white tarps from drone imageries from all
the flights was used to develop an equation for each band. A linear regression-based
calibration [54] was used where slope and intercept from the equation was later used
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to convert DN values from each band to reflectance as described. The DN values were
converted to reflectance using the following equation:

SRij = Slope × DNij + Intercept (3)

where DNij is the digital number for ith band at jth flight period, and SRij is the surface
reflectance for ith band at jth flight period.
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2.4.2. Spectral Vegetation Indices Extraction

Two methodologies were used to derive vegetation indices. The first one (hereafter re-
ferred to as “average reflectance over ROI”) was based on averaging the spectral reflectance
for all pixels within the region of interest (ROI). However, the spectral information de-
rived from average reflectance over ROI included shadows, background soil, and panicles
(for imagery collected after heading), which could affect the overall VIs values. Spectral
indices are sensitive to green living vegetation, therefore, only pixels with high NIR re-
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flectance values within ROI were selected in the second methodology (hereafter referred to
as “pixel classification”).

Average Reflectance over Region of Interest

The orthomosaic images were processed using ArcGIS software (Version 10.7. Red-
lands, CA, USA) to extract the spectral indices. They were first converted to float from
raster format. Then, using the raster calculator tool in the software, a variety of VIs were
generated (Table 1). The shape file polygons were created using the same software and
used for the identification of each sampling plot as an experimental unit. Finally, the zonal
statistics tool was used to derive plot-level mean VIs from each experimental unit.

Table 1. List of spectral vegetation indices calculated.

Vegetative Index Source Mathematical Formula

Normalized Differential Vegetation Index (NDVI) Rouse et al. (1974) [55] (NIR − R)/(NIR + R)
Green Normalized Differential Vegetation

Index (GNDVI) Moges et al. (2004) [56] (NIR − G)/(NIR + G)

Triangular Vegetation index (TVI) Broge and Leblanc (2000) [57] 0.5 × (120 × (NIR − G)-200 × (R − G))
Red edge Triangular Vegetation Index (RTVI) Chen (2010) [58] 100 × (NIR − RE) – 10 × (NIR − G)

Normalized Red-Green Difference Index (NGRDI) Tucker (1979) [59] (G − R)/(G + R)
Visual Atmospheric Resistance Index (VARI) Gitelson et al. (2002) [60] (G − R)/(G + R − B)

Excess Green Minus Red (ExGR) Camargo and Neto (2014) [61] EXG − (1.4R − G)

NIR, Near Infra-Red; R, Red; G, Green; and RE, Red Edge.

Pixel Classification Using K-Mean Clustering Algorithm

Pixel classification was used based on the K-mean algorithm using MATLAB. The
processing software imported stacked mosaic images to create 6 cluster classes. This
differentiation of clusters was based on the color feature of the image. Based on higher
NIR reflectance, cluster types with green pixels were identified. A binary vegetation
image was created after masking non-canopy type cluster classes. Then DN values for that
cluster were extracted for all bands (NIR, red edge, red, green, and blue) and converted to
surface reflectance using a calibration method. The same VIs was computed as previously
described (Table 1).

2.5. Statistical Analysis
2.5.1. Data Pre-Processing

Multispectral imagery from each flight was aggregated, resulting in a comprehensive
dataset for all three locations. For accessing spectral properties in accordance with the
specific growth phase of oats and its relationship with biomass yield, the dataset was
divided into two subsets, i.e., pre-heading and post-heading stages. This division was
based on the heading date noted for each genotype in different field conditions. The
spectral information collected prior to panicle emergence was separated as the pre-heading
dataset, and the spectral information collected after panicle emergence in most genotypes
was separated as the post-heading dataset. More explanation could be obtained from
histograms plotted for each location (Figure 4) representing the distribution of heading
occurrence in different genotypes measured after days of planting. The vertical dotted line
represents spectral data collection through UAV. For Beresford and South Shore, spectral
data from the first two flights were averaged and considered as pre-heading sample data.
Likewise, remaining later flights were averaged and considered as post-heading data.
While in Volga, the first three flights were averaged for the pre-heading data frame and the
last single flight was considered as the post-heading data frame.
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Shore (iii).

2.5.2. Correlation Analysis between VIs and Biomass

The package “hmisc” in R (version 3.5.1, R Development Core Team, 2018) [62] was
used to calculate the correlation matrix, including VIs and biomass. The function “rcorr”
was used to generate a matrix of Pearson’s rank correlation coefficients for all possible pairs
of columns of the matrix.
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2.5.3. Broad Sense Heritability Estimate

Broad sense heritability estimate refers to the proportion of phenotypic variance in a
trait that is attributed to the genetic variance in a population. Based on the linear mixed
model approach, “Minimum norm quadratic unbiased estimation (MINQUE)” was used
for estimating variance components and random effects. The jackknife as resampling
technique was implemented to generalize statistical test using R package “minque” [63].

2.5.4. Modeling

The spectral data retrieved from image processing were combined with ground truth
dry biomass to create the final dataset for modeling. The dataset included many variables
as each VI was considered over different time frames. Hence, various linear and non-linear
regression-based machine learning techniques were evaluated, and their performance was
compared. The “caret” package (Version 6.0-88) in R (version 3.5.1, R Development Core
Team, 2018) was used for implementing all different model algorithms [64]. In this study,
four machine learning algorithms, i.e., PLS (partial least square regression), SVM (support
vector machine), RF (random forest), and ANN (artificial neural network), were used to
predict biomass.

The PLS approach is known for its convenience in highly correlated predictors by di-
mension reduction techniques as in principle component analysis [65]. The SVM algorithm
aims to find a hyperplane in an n-dimensional space that distinctly classifies the data points.
These hyperplanes are known as the decision boundary and are used to predict continuous
output [66]. In our study, SVM was implemented using a linear variant, “svmLinear”
method that was chosen from the caret package in R for this purpose. The RF algorithm
principle works on a combination of tree predictors, such that each tree is dependent on
the values of a random vector that is sampled independently having similar distribution
for rest of trees in forest [67]. The ANN adopts the computing environment by repeated
adjustment using neuron weights and thresholds. The network training completes its task
once the output error of the network reaches its expected value [68].

For all four modeling approaches, tuning parameters were set (Table 2). For example,
in the PLS method, the model was subjected to tuning for finding the optimal number of
principal components (“ncomp”) to be incorporated. While in the case of SVM, parameter
C, known as “Cost”, was used as a tuning parameter, allowing different iterations of C to
maximize model accuracy. The cost-penalty parameter relates tolerance to error, which
means that when C gets large, the model gets flexible, and it leads to overfitting. In
other cases, with a small value of C, the model is rigid and subjected to underfitting. For
the RF analysis, the number of trees defaulted to 500, while to obtain the best predictor
combination for split candidate, the “mtry” parameter was tuned with its corresponding
cross-validation error. For the ANN analysis, size and decay were hyper-parameters used to
tune, where size is the number of units in the hidden layer and decay acts as a regularization
parameter to avoid over-fitting. To change the candidate values of the tuning parameters,
the “tuneLength” or “tuneGrid” arguments were used in the train function.

Table 2. Types of models implemented with their tuning parameters.

Model Source Strategy Tuning Parameter

PLS Abdi (2003) [69] Linear regression ncomp (#component)
SVM Vapnik (1995) [70] Linear regression Cost (C)
RF Livingston (2005) [67] Tree-based regression mtry

ANN Zou (2008) [68] Non-linear regression Size and decay

For Beresford and South Shore, seventy percent of the data for each location was used
for training the model and the rest was used as a validation set for evaluating the model
performance. In Volga, only the first two replications of the field trial were used in our data
analysis because heavy precipitation after planting caused delayed emergence in the third
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replication. Because of the smaller number of datapoints, the set was split 50:50 for training
and validation. Random-number seeds were applied before training each model such that
every model had the same data partition and had stable result output. For PLS, SVM, and
ANN models, data were transformed using the “preProcess” function, which forced all
predictors to be centered and scaled. In addition, “trainControl” was used to specify the
type of resampling methods to estimate performance of model.

For resampling methods, k-fold cross-validation (CV) was performed on the training
data set. The CV approach divides data into folds, estimating the error rate of machine
learning-based classifications on iteration and outputs the final model with the least error
rate [71]. In this study, repeated k-fold CV was implemented using 10 folds with three
replications. The default metric used for accuracy assessment in each model was the root
mean square error (RMSE). The comparison analysis was performed for both the training
set (cross-validation) and the test set data using RMSE and coefficient of determination
(R2). Those parameters were calculated as

R2 =
∑n

i=0(Xi−X)
2
(Yi−Y)

2

n ∑n
i=0(Xi−X)

2
∑n

i=0(Yi−Y)
2

RMSE =
√

1
n ∑n

i=1 (Yi − Xi)
2

where Xi and Yi were estimated biomass and measured biomass, respectively, and X, Y
were the average estimated biomass and measured biomass, respectively, and n was the
number of samples.

The predictor or variable importance for each model was derived using the generic
function “varImp” using the caret package. For the PLS model, the variable importance
was calculated based on weighted sums of the absolute regression coefficients. While in RF
model, variable importance was derived from mean square error, computed out-of-bag data
for each tree, then recomputed again after permuting each predictor variable. For ANN
and SVM, there was no model-specific way for calculating variable importance; hence, the
importance of each predictor was evaluated individually by using the “filter” approach [64].
The overall workflow for machine learning modeling using UAV remote-sensing data for
above-ground biomass estimation is explained in Figure 5.
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3. Results
3.1. Ground-Based Dry Biomass Measurements

The highest dry biomass was produced at South Shore, with an average of 13,674.4 kg/ha.
The lowest dry biomass was produced in Volga, with an average of 9191.0 kg/ha (Figure 6i).
Wet conditions favored the development of crown rust in all three locations. Crown rust
severity was least severe in South Shore, where it averaged 25%, but 50% at the other two
locations (Figure 6ii). There was a negative correlation between fresh biomass and crown
rust severity at Beresford (r = −0.59 **) and Volga (r = −0.4 **), and this shows that biomass
was negatively affected by the presence of crown rust infection on leaves at those two
locations (Table 3). The correlation between biomass and crown rust severity was, however,
not significant in South Shore. The average height for each plot was also correlated to
dry biomass yield. Plant height had a significant positive correlation with dry biomass in
Beresford (r = 0.38) and South Shore (r = 0.24).
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Table 3. Pearson correlation coefficient (r) of dry biomass with plant height and crown rust severity.

Location Plant Height Crown Rust Severity

Beresford 0.38 ** −0.59 **
Volga 0.15 −0.4 **

South Shore 0.24 ** 0.01
** are significant at 95% CI.

3.2. Broad Sense Heritability Estimates for Vegetative Indices

Broad-sense heritability (H2) estimates were calculated for dry biomass yield and
VIs. The broad-sense heritability for dry biomass yield was 0.55 for Beresford and 0.24 for
Volga. In South Shore, however, the heritability was 0.01, which shows that variation in
dry biomass yield was primarily due to other factors than the genotype. Among the VIs
considered, VARI and NDVI were found to consistently have higher heritability across
growth phases and locations. The broad-sense heritability estimates were lower for VIs
derived from pre-heading flights (NDVI: H2 = 0.46 and VARI: H2 = 0.47 for Beresford;
NDVI: H2 = 0.46 and VARI: H2 = 0.45 for Volga; and NDVI: H2 = 0.55 and VARI: H2 = 0.64
for South Shore) than for VIs derived from post-heading flights for all locations (NDVI:
H2 = 0.53 and VARI: H2 = 0.5 for Beresford; NDVI: H2 = 0.63 and VARI: H2 = 0.7 for Volga;
and NDVI: H2 = 0.55 and VARI: H2 = 0.63 for South Shore) (Figure 7).
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Figure 7. Bar plot representation of broad-sense heritability estimates for vegetative indices collected
from pre-heading and post-heading phases across all three locations. (Only the VIs with significant
heritability estimate at 95% CI are presented in the figure).

3.3. Comparison of Vegetation Indices Derived through “Average Reflectance over ROI” and “Pixel
Classification” Methods
3.3.1. Relationship between Dry Biomass Yield and Vegetation Indexes Derived through
Average Reflectance over ROI Method

Pearson correlation coefficients (r) were calculated between dry biomass and VIs
obtained through average reflectance over the ROI method (Table 4). In Beresford, the
highest correlations between VIs and dry biomass yield (0.45 to 0.6) were obtained for later
flights (post-heading). For Volga, the strength of correlations between VIs and dry biomass
yield was similar for both post- and pre-heading flights. Among the VIs, NDVI and RTVI
were most highly correlated with dry biomass yield for both pre-heading (r = 0.43 and 0.57,
respectively) and post-heading flights (r = 0.42 and 0.41, respectively). In South Shore, few
VIs (TVI, ExGR, VARI) had significant correlations with dry biomass yield for flights before
heading. For post-heading flights, only GNDVI was significantly positively correlated with
biomass (r = 0.23).
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Table 4. Pearson correlation coefficients (r) between dry biomass yield and VIs from pre- and
post-heading flights.

Location Stage NGRDI ExGR VARI NDVI GNDVI TVI RTVI

Beresford
pre-heading 0.24 ** 0.3 ** 0.24 ** 0.32 *** 0.26 ** 0.27 ** 0.3 **
post-heading 0.6 *** 0.55 *** 0.55 *** 0.57 *** 0.54 *** 0.45 *** 0.54 ***

Volga pre-heading 0.35 ** 0.25 * 0.33 ** 0.43 ** 0.38 ** 0.47 *** 0.57 ***
post-heading 0.38 ** 0.3 * 0.39 ** 0.42 *** 0.35 ** 0.38 ** 0.41 ***

South
Shore

pre-heading 0.17 0.3 * 0.28 * 0.08 0.3 0.24 * 0.1
post-heading 0.23 −0.11 0.04 0.1 0.23 ** 0.1 0.2

p value significance: * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001.

3.3.2. Relationships between Dry Biomass Yield and Vegetation Indexes Derived through
Pixel Classification

For VIs derived from the pixel classification method, post-heading flights were more
strongly correlated (r = 0.4–0.7) with dry biomass yield than those derived from pre-heading
flights (r = 0.3–0.5) in Beresford (Table 5). Similar results were obtained for Volga. For South
Shore, however, dry biomass was not significantly correlated with any of the VIs except
TVI (r = 0.23) for pre-heading flights (Table 5). The use of pixel classification resulted in
higher correlations between VIs and dry biomass for both pre-heading and post-heading
flights in Beresford.

Table 5. Pearson correlation coefficients (r) of dry biomass yield with VIs from pre- and post-heading flights.

Location Stage NGRDI ExGR VARI NDVI GNDVI TVI RTVI

Beresford
pre-heading 0.42 ** 0.3 ** 0.44 ** 0.56 ** 0.35 ** 0.36 ** 0.4 **
post-heading 0.53 *** 0.61 *** 0.47 ** 0.72 *** 0.52 ** 0.40 ** 0.44 **

Volga pre-heading 0.28 * 0.20 * 0.30 ** 0.33 ** 0.32 ** 0.36 * 0.45 **
post-heading 0.44 ** 0.38 * 0.42 ** 0.54 ** 0.45 ** 0.42 ** 0.46 **

South
Shore

pre-heading 0.17 0.3 0.19 0.20 0.3 0.23 * 0.2
post-heading 0.1 0.2 0.1 0.12 0.1 0.12 0.10

p value significance: * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001.

For Beresford, the correlation between dry biomass and NDVI was r = 0.57 for the
average reflectance over the ROI method and r = 0.72 after pixel classification. For Volga,
correlation coefficients between dry matter yield and VIs derived from pre-heading flights
were quite similar for both methods (average reflectance over ROI and pixel classification)
irrespective of VIs. For the post-heading phase, VIs derived from the pixel classification
method had significantly greater correlation values (r = 0.38–0.54) with dry matter yield as
compared to average reflectance over the ROI method. For the post-heading stage in Volga,
the correlation between dry biomass and NDVI was r = 0.42 for the average reflectance over
the ROI method and r = 0.54 in the pixel classification method. No substantial differences
were observed between the two methods for South Shore. In both cases only some VIs was
significantly correlated to biomass during pre-heading, i.e., ExGR (r = 0.3), VARI (r = 0.28)
and TVI (r = 0.24) in average reflectance over ROI method and TVI (r = 0.23) in the pixel
classification method.

3.4. Analysis of Oat Biomass Estimation
3.4.1. Biomass Prediction from Spectral Information Collected Pre- and Post-Heading

Biomass estimation models were built with 7 VIs derived from flights during pre-
heading and post-heading phases using machine learning regression methods. To assess
each model’s performance, the RMSE and R2 for the testing data set were compared for
each model (Table 6). For UAV data collected prior to heading, the RF model was the best
model for Beresford (RMSE = 1726.3 and R2 = 0.3) and South Shore (RMSE = 1659.1 and
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R2 = 0.2), but the SVM model was best for Volga (RMSE = 695 and R2 = 0.4). For UAV
data collected post-heading, the PLS model performed best for Beresford (RMSE = 1098.6
and R2 = 0.7) and Volga (RMSE = 717.4 and R2 = 0.3), and the SVM model worked best
for South Shore (RMSE = 1681.5 and R2 = 0.1). For Beresford, most models had a good fit;
data points were distributed close to the fitted line as compared to the other two locations
(Figure 8). We found no single model that performed best in all three sites, no matter if it
was based on pre-heading or post-heading flights. The interval in the dot plot (Figure 9)
shows the difference in performance, with wider intervals indicative of greater variation
in performance. The overlapping confidence interval for RMSE values for the different
models (Figure 9) represents the performance gap which could be due to the small sample
size used for modeling.

For Beresford, models’ validation using testing dataset indicates higher R2 for models
developed based on data from post-heading flights as compared to models based on data
from pre-heading flights. For Volga and South Shore, however, the model’s performance
was very similar whether pre- or post-heading data was used for model development.
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Table 6. Performance of prediction models for dry matter yield in oats based on VIs derived from
imagery collected pre- and post-heading (A and B) using RGB and multispectral sensors.

A. Pre-Heading

Training Data Beresford Volga South Shore

RMSE R2 RMSE R2 RMSE R2
PLS 1546.98 0.30 538.08 0.55 1502.14 0.29
RF 1682.61 0.28 538.08 0.56 1546.98 0.30

SVM 1636.66 0.33 605.34 0.51 1479.72 0.28
ANN 1860.86 0.20 582.92 0.52 1703.92 0.29

Test data
PLS 1771.18 0.26 695.02 0.3 1703.92 0.15
RF 1726.34 0.30 717.44 0.22 1659.08 0.20

SVM 1793.6 0.22 695.02 0.36 1793.6 0.10
ANN 1860.86 0.24 695.02 0.32 2264.42 0.10

B. Post-Heading

Training Data Beresford Volga South Shore

RMSE R2 RMSE R2 RMSE R2
PLS 1233.10 0.60 605.34 0.61 1659.08 0.18
RF 1345.20 0.54 538.08 0.56 1748.76 0.30

SVM 1233.10 0.59 560.50 0.56 1726.34 0.13
ANN 1300.36 0.56 695.02 0.52 1771.18 0.25

Test data
PLS 1098.58 0.70 717.44 0.27 1703.92 0.15
RF 1188.26 0.70 739.86 0.24 1771.18 0.10

SVM 1121.00 0.71 784.70 0.20 1681.50 0.14
ANN 1143.42 0.68 739.86 0.16 1771.18 0.18
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Figure 9. Dot plots from “caret” package show model comparisons using the resampling technique
for Beresford (i), Volga (ii), and South Shore (iii). Each plot shows the mean estimated RMSE value
for all four algorithms. Error bars are 95% confidence intervals on the metrics for each algorithm.
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3.4.2. Assessing Variable Importance in Various Models

All four regression methods considered for model development were implemented
with seven predictor variables (VIs), but the relative importance of each predictor varied
depending on the algorithm, location, and time of spectral information collection (i.e.,
pre-heading or post-heading). For Beresford, GNDVI and ExGR had high importance
for both pre- and post-heading across the models (Figure 10a). For Volga, RTVI had the
greatest importance among the VIs (Figure 10b). For South Shore, results were variable
across models (i.e., GNDVI in SVM and PLS, ExGR in ANN and RTVI in RF) (Figure 10c).
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aggregating data from pre- and post-heading flights.

Variable importance was also accessed for pre- and post-heading by aggregating infor-
mation for all locations and models. For models based on pre-heading data, ExGR, GNDVI,
and RTVI had a greater value of importance in comparison to another VIs (Figure 11). The
same three predictor variables also had higher importance in models developed using data
from post-heading flights (Figure 11). This suggests that both RGB based (ExGR) and NIR
based (GNDVI and RTVI) indices were influential for biomass prediction.
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summarized considering all locations and model types.

4. Discussion
4.1. Vegetative Indices on Predicting Biomass

Significant correlations between VIs and dry biomass yield were observed in Beresford
and Volga. In South Shore, however, very few VIs were significantly correlated to dry
biomass. This means that spectral information from aerial multispectral sensors may not
be fully efficient for biomass monitoring in certain cases. The principle of VIs is based
on photosynthetically active material, which could lead to error for the prediction of total
biomass [72,73]. The indicators of plant performance in remote sensing are color, structure,
and shapes of leaves. This is determined by properties like chlorophyll content and leaf
morphological and surface structures, which are dependent on the genotypes and on
environmental stresses and plant nutrition status. In our case, the higher moisture and
lower temperature in South Shore likely resulted in the higher biomass production along
with a low correlation of biomass yield with a disease like crown rust which led to minimal
spectral differences amongst genotypic plots. Another possible reason for the indices not
being able to predict biomass could be optical saturation. VIs saturation has been reported
previously in different studies. Prabhakara et al. [37] reported that VIs was not able to detect
the amount of biomass when there was high vegetation for barley and rye. In their study,
NDVI, GNDVI, and G-R saturated after reaching a value of approximately 0.8 and were
only related to biomass under ~1500 kg/ha, beyond which an increase in biomass did not
increase vegetative index value. In our study, although every location had average biomass
measured above 1500 kg/ha, in South Shore, VIs reached the highest value (average NDVI
value of 0.63) during the second flight (before heading) and gradually declined in later
flights. Whereas, for Beresford and Volga, the average value of VIs consistently increased
over time and reached to peak for the last flight before forage harvest.

In addition, during the 2019 growing season, precipitations were frequent at South
Shore, where the soil was saturated with water, and dew was frequent. The average soil
moisture over the growing season in South Shore was relatively 37.5% higher than in
Beresford (29.2%) [74]. The presence of dew on the canopies at the time of flight could
have affected the spectral reflectance quality and resulted in inaccurate vegetation indices.
Pinter et al. [75], in their study on the effect of dew on canopy reflectance, found that
moderate to high dew levels enhanced reflectance in visible wavelengths by 40–60% in
wheat cultivars. The wetness on leaves has been observed to affect the canopy reflectance
in a variety of plants, particularly in visible wavelengths [76,77].

The thirty-five oat genotypes used in this study had different maturity. The interval for
heading occurrence varied depending on the location. The heading stage for all 105 plots
occurred within nine days in Beresford, within six days in Volga, and within nine days in
South Shore. Plots also had different maturity stages on the day of forage harvest. There
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is evidence that the vegetation indices are affected not only by environmental conditions
but also by the growth stage of the crop [78]. Future studies should include soil moisture
status, weather information, crop stage of each genotype, and other environmental factors
to investigate the possible cause for failure of VIs to predict biomass.

Several studies reported using plant height derived from the crop surface model (CSM)
in combination with VIs for the accurate prediction of biomass for crops like barley [79]
and winter wheat [80]. Using a volume metric to estimate crop biomass within a plot
(combination of spectral and structural information) has significantly improved above-
ground biomass in corn [22]. Overall, these studies, along with our findings, suggest that a
combination of spectral and structural information from an aerial sensor may be necessary
to predict biophysical parameters like biomass more precisely.

4.2. Broad-Sense Heritability Estimates for VIs

For all three locations, NDVI and VARI had higher broad-sense heritability than
dry biomass yield. Another study reported a strong genetic correlation between winter
wheat grain yield and spectral reflectance and found Multispectral/RGB-based VIs with
heritability (H2 = 0.6–0.8), greater than for yield (H2 = 0.4–0.7) [81]. With these criteria,
spectral data can be used for indirect selection in plant breeding operations to increase
genetic gains [18]. However, in this study, biomass and VIs were not significantly correlated
in all locations. Evaluating the performance of UAV as a breeding tool for phenotyping
should be evaluated over multiple locations and years before determining if VIs can be
used as an indirect selection tool for oat biomass.

4.3. Comparison of Methodologies for VIs Computation

Several studies [82,83] have used pixel classification to enhance the accuracy of UAV-
based data to differentiate canopy and non-canopy areas. Booth et al. [82] used the single
pixel sample point method to differentiate shrub and grass species from other background
pixels. Patrignani et al. [83] used Canopeo (automatic color threshold classification in
MATLAB, which classified pixels to the canopy and non-canopy categories in various crops
(turf, corn, sorghum, etc.). In our study, NDVI correlation to biomass improved with the
pixel classification method in almost all cases (except for Volga for pre-heading flights).
Nevertheless, it is essential to note that improvement seen with average reflectance over the
ROI method was not consistent for every VIs. The lack of significant correlations between
VIs and biomass remained unchanged for most cases in South Shore even when the pixel
classification method was applied.

When considering different planophile and erectophile species, Myneni and Williams [84]
reported that NDVI was unaffected by pixel heterogeneity for estimating canopy vigor
based on biomass and color. Pixel heterogeneity, in our case, was comprised of panicle
structure and other background effects (shadow). But resolving problems through the
selection of pure canopy pixels was successful for one location (Beresford), but it did not
quite improve the relationship with ground truth biomass in all cases.

4.4. Evaluation of Prediction Models for Biomass

The proportion of variance in dry biomass yield explained by the models developed
in this study ranged from 70% in Beresford to 0.1% in South Shore. Similar to our results,
Wengert et al. [23] used VIs (RGB and multispectral) along with texture and plant height as
the predictor variable with the RF algorithm to predict above-ground biomass in barley
with a R2 of 0.62. Lu et al. [19], using VIs only as predictor variables, found that RF had a
higher R2 (0.69) than SVM and other linear-based models for predicting biomass in wheat.
For Beresford, model performance marginally fluctuated between model development and
model validation. Validation R2 for Volga, however, drastically decreased for all types
of models. One of the possible reason could be the lower range of dry biomass yield
among plots at that location. The low performance metrics for the models developed for
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South Shore are expected considering the insignificant correlations between VIs and dry
biomass yield.

Comparatively, all machine learning approaches yielded similar performances, except
ANN. The sample size in this study was very small, while a high number of training data
points is required to build optimal neural network models. Small datasets are subject to
overfitting [80,85–87].

RTVI, GNDVI, and ExGR consistently ranked as highly important variables. GNDVI
was also reported to be a highly ranked variable for above-ground biomass prediction of a
legume–grass mixture using UAV-borne spectral information [21]. Several studies [88,89]
have reported that red-edge VIs were not as important as NIR-based VIs for model predic-
tion. In our study, a red-edge-based VI (RTVI) was ranked as an important predictor.

5. Conclusions

The purpose of the study was to estimate oat biomass using VIs derived from high
resolution UAV imagery. Differences in growing conditions between the three locations
resulted in significant variations in oat biomass production. The VIs derived from multi-
spectral imagery was found to be positively correlated to above-ground biomass for two
of the locations. In the third location, however, very few UAV-derived VIs were signifi-
cantly correlated with biomass yield. Two different methodologies for VI extraction were
compared, i.e., the pixel classification method and average reflectance over ROI method.
While the use of pixel classification appears useful to increase the strength of the correlation
between VIs and biomass as observed in Beresford, this was not consistent across locations.

Four machine learning algorithms for estimating dry biomass yield were developed
using VIs from UAV imagery. Approximately 70% of the variance was explained by RF,
SVM, and PLS models for biomass prediction at one location. Additional sampling points
with multi-year trials should be considered to improve prediction models because advanced
machine learning algorithms, such as deep learning, often requires larger number of data
points and long training periods to improve model accuracy.

The same crop in different environments exhibited distinct physical properties, hence,
a single algorithm may not suffice the need for precise biomass monitoring. Multi-sensor
data fusion, multi-index combination, the inclusion of a range of characteristics not directly
linked to crop biomass monitoring, and the use of sophisticated algorithms are all viable
options for enhancing the accuracy of oat biomass predictions [90].
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