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Aptamers are single stranded DNA or RNA ligands, which can be selected by a
method called systematic evolution of ligands by exponential enrichment (SELEX); and
they can specifically recognize and bind to their targets. These unique characteristics
of aptamers offer great potentials in applications such as pathogen detection and
biomolecular screening. Pathogen detection is the critical means in detecting and
identifying the problems related to public health and food safety; and only the rapid,
sensitive and efficient detection technologies can enable the users to make the
accurate assessments on the risks of infections (humans and animals) or contaminations
(foods and other commodities) caused by various pathogens. This article reviews the
development in the field of the aptamer-based approaches for pathogen detection,
including whole-cell SELEX and Genomic SELEX. Nowadays, a variety of aptamer-
based biosensors have been developed for pathogen detection. Thus, in this review, we
also cover the development in aptamer-based biosensors including optical biosensors
for multiple pathogen detection by multiple-labeling or label-free models such as
fluorescence detection and surface plasmon resonance, electrochemical biosensors
and lateral chromatography test strips, and their applications in pathogen detection and
biomolecular screening. While notable progress has been made in the field in the last
decade, challenges or drawbacks in their applications such as pathogen detection and
biomolecular screening remain to be overcome.

Keywords: aptamers, SELEX, ligands, aptamer-based biosensors, bacterial pathogen detection, dissociation
constants, biomolecular screening, high affinity

INTRODUCTION

Bacteria are microorganisms that are a few micrometers in length and morphologically described
as rod, sphere or spiral. They can sense and respond to temperature and pH changes, nutritional
starvation or new food sources, toxins, stresses, and quorum sensing signals (Salis et al.,
2009). Pathogens are harmful species that cause infections and contagious diseases that result
in many serious complications. Common bacterial pathogens and their complications include
Escherichia coli and Salmonella (food poisoning),Helicobacter pylori (gastritis and ulcers),Neisseria
gonorrhoeae (sexually transmitted disease), N. meningitides (meningitis), Staphylococcus aureus
(boils, cellulitis, abscesses, wound infections, toxic shock syndromes, pneumonia, and food
poisoning), and Streptococcus spp. (pneumonia, meningitis, ear infections, and pharyngitis).
Worldwide, infectious diseases account for nearly 40% of the estimated total 50 million deaths
annually (Ivnitski et al., 1999).
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Detection and identification of microbial pathogens are
crucial for public health and food safety (Law et al., 2015).
Areas where detection of microbial pathogens is critical include
clinical diagnosis, water and environmental analysis, food safety
and biodefense. Currently, microbial culture-based tests and
molecular assays (immunological or nucleic acid technologies)
are among the most commonly used methodologies in detection
and identification of microbial pathogens (Torres-Chavolla and
Alocilja, 2009).

Aptamers are single stranded DNA or RNA ligands that
can be selected for different targets starting from a huge
library of molecules containing randomly created sequences
(Tombelli et al., 2005); and these specifically selected nucleic
acid sequences can bind to a wide range of non-nucleic
acid targets with high affinity and specificity (Jayasena, 1999).
Aptamers usually vary in length from 25 to 90 bases, and
their typical structural motifs can be classified into stems (Tok
and Cho, 2000), internal loops, purine-rich bulges, hairpin
structures, hairpins, pseudoknots (Tuerk et al., 1992), kissing
complexes (Boiziau et al., 1999), or G-quadruplex structures
(Bock et al., 1992). The unique characteristics of aptamers such
as their highly specific binding affinity to non-nucleic acid
targets offer great potentials in the development of fast and
efficient point-of-care assays for pathogen detection (Jayasena,
1999).

The selection process of aptamers is called systematic
evolution of ligands by exponential enrichment (SELEX),
which was developed by two independent groups in 1990
(Ellington and Szostak, 1990; Tuerk and Gold, 1990). Such
work laid out the foundation for later developments of
aptamers and aptamer-based technologies. Since then, SELEX
has become a vital tool in selection of aptamers, transforming
the great potential of aptamers and their related technologies
in pathogen detection and biomolecular screening to a
reality.

SELECTION OF APTAMERS AGAINST
BACTERIAL PATHOGENS

Conventional SELEX
Aptamers is evolved via an iterative process of SELEX (Hamula
et al., 2006). The methodology consists screening large random
oligonucleotide libraries through iterative cycles of in vitro
selection and enzymatic amplification (Ellington and Szostak,
1990; Tuerk and Gold, 1990). Briefly, the selection consists
of numerous cycles, and each cycle includes three steps: (i)
an in vitro synthesized DNA or RNA library is incubated
with the target; (ii) the target-bound and unbound nucleic-
acid sequences are separated and the sequences that are not
bound to the target are removed; and (iii) the target-bound
sequences are used as the template for the subsequent PCR
amplification. The selected sequences are used as the inputs
in the next round of selection; and such selection cycle
will continue until the desired sequence purity is achieved.
In general, a random oligonucleotide library contains 40–
100 single-stranded nucleotide sequences with a randomized

stretch of nucleotide in the center and fixed sequences on
each end. As many as 20 rounds of selection are carried
out until a pool of aptamer sequences with high target
affinity is obtained. These aptamers can then be cloned and
sequenced (Hamula et al., 2006). After SELEX technology
was established, a variety of aptamer-based methodologies
have been developed for pathogen detection and biomolecular
screening.

Most of the aptamers selected against pathogenic bacteria
have been evolved using the conventional SELEX procedures
as demonstrated in Figure 1 (Zhang et al., 2015). Zhang
et al. (2015) described the selection of DNA aptamers targeted
E. coli. Two high-affinity aptamers to E. coli was obtained
with totally eight rounds of SELEX selections. Furthermore,
these conventional SELEX procedures have been used in the
detection of various pathogens such as Vibrio parahaemolyticus
(Hamula et al., 2011), Salmonella typhimurium (Duan et al.,
2012), Listeria monocytogenes (Duan et al., 2013). These
aptamers to a single bacterial species can be created within
10 rounds of selection, while those to multiple bacterial
species also can be achieved within 20 rounds of selection
as shown by the aptamer selection scheme in Figure 2
(Liu G.Q. et al., 2014). As a result, Liu G.Q. et al. (2014)
achieved selection of aptamers against various M-types of
S. pyogenes by using these SELEX procedures rather than the
conventional aptamer selection procedures, which use purified
molecules of monoclonal cells as targets. It turned out that
the aptamers selected through these procedures demonstrated
high affinity and specificity to the targets (Liu G.Q. et al.,
2014).

FIGURE 1 | Schematic showing the aptamer selection against live
bacterial cells using whole-cell SELEX (Zhang et al., 2015).
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FIGURE 2 | Schematic of bacterial cell SELEX against a mixture of the 10 most prevalent GAS M-types in Canada (Liu G.Q. et al., 2014).

OTHER TYPES OF SELEXS

Whole-Cell SELEX
In addition to the conventional SELEX method, several novel
SELEX methods have been developed. For example, a series of
studies aimed to shorten the selection rounds in the aptamer
manufacturing process. As a result, various methodologies with
single round aptamer selection procedure have been developed,
e.g., the ASExp (Aptamer Selection Express) method, which uses
the magnetic mechanism for separation with microbeads (Fan
et al., 2008).

A method called artificially expanded genetic information
systems-SELEX (AEGIS-SELEX) was introduced in 2014 (Sefah
et al., 2014). As the name suggests, this method uses artificially
expanded genetic information systems for aptamer selection.
An AEGIS-SELEX is started with a GACTZP DNA library,
consisting of randomized sequences, primer sites and two
modified nucleotides (ZP); and then a standard protocol
for whole-cell SELEX is followed for the selection cycle.
After the 12th selection round, the aptamers are sequenced
and the aptamers’ affinity is evaluated. As a result, the
AEGIS-SELEX method empowered the system with higher
binding variations. The sequential aptamers can reach the
nanomolar range and are expected to achieve higher sequence
diversities nearer to that displayed by proteins (Sefah et al.,
2014).

Genomic SELEX
Apart from whole-cell SELEX, SELEX can be generated in the
nucleic acid level as well. Lorenz et al. (2006) introduced genomic

SELEX. A genomic DNA library is used in genomic SELEX
in contrast to a conventional SELEX, in which a chemically
synthesized library is used (Lorenz et al., 2006, 2010). A final pool
of oligonucleotides obtained from the ninth selection round is
characterized by high throughput sequencing (HTS) as shown
in Figure 3 (Lorenz et al., 2010). A distinctive advantage of
genomic SELEX is the dramatic decrease of the diversity of the
initial library. Genomic DNA is isolated from the target organism
and the initial library is prepared by adding specific primers to
the isolated DNA and followed by Klenow-fragment extension
on the new strand. This initial library is transcribed into RNA,
and then continued for the selection process. First, a counter
selection against immobilization matrix step is performed. The
library sequences are incubated with the target and the bound
oligonucleotides are subjected to reverse transcription into
cDNA and used in the next round of selection. After several
more rounds, the enriched sequences are subjected to HTS
and mapping analyses as shown in Figure 3 (Lorenz et al.,
2010).

Additionally, a method called transcriptomic SELEX, which
is similar to genomic SELEX, has been developed (Fujimoto
et al., 2012), whereas genomic SELEX opened up a new
horizon for the determination of functionally active motifs
in genomic DNA. One disadvantage of this method was
the non-specific binding in the assay, i.e., primer binding
regions in a DNA library could easily anneal with some
random fragments in the genomic library. Afterward, Jin-
Der and Gray (2004), developed primer-free genomic SELEX
to remedy the drawbacks associated with the transcriptomic
SELEX.
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FIGURE 3 | Illustration of genomic SELEX (Lorenz et al., 2010). Genomic DNA is isolated from the target organism.

APPLICATIONS IN PATHOGEN
DETECTION AND BIOMOLECULAR
SCREENING

Currently, aptamer-based detection methods can be used in
public health and food safety are limited. A primary reason
for that might be the complexity of the methods since these
methods involve a variety of techniques in the sample preparation
and detection processes such as sample’s extraction, purification,
enrichment, and separation (Pitcher and Fry, 2000; Stevens and
Jaykus, 2004).

Pathogen detection is important for public health and food
safety. Three areas of application account for over two thirds
of all research in the field of pathogen detection (Lazcka et al.,

2007), including the food industry (Patel, 2002; Leonard et al.,
2003), water and environment quality control (Emde et al., 1992;
Theron et al., 2000), and clinical diagnosis (Atlas, 1999). The
remaining efforts go into fundamental studies (Herpers et al.,
2003; Gao et al., 2004), method performance studies (Dominguez
et al., 1997; Taylor et al., 2005), and development of new applied
methods (Ko and Grant, 2003; Yoon et al., 2003).

Aptamers and antibodies are commonly used reagents in
various detection assays; the affinity of aptamers to their targets
is comparable to, or even higher than most of the monoclonal
antibodies to their targets; typical dissociation constants of
aptamer-target complexes are found to be in the picomolar to
low micromolar ranges (Hamula et al., 2006). Therefore, nucleic-
acid aptamers demonstrate numerous advantages as recognition
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FIGURE 4 | Schematics of the present microbe detection system. (A) Preparation of aptamer conjugated fluorescence nanoparticles (A-FNPs). (B) Detection
of A-FNP-bound E. coli by the microchannel and optical particle counter.

elements in biosensing over the traditional antibodies. Moreover,
aptamers are small in size, chemically stable and cost effective.
More importantly, aptamers provide remarkable flexibility and
convenience in engineering their structures, which have led
to the development of novel biosensors that exhibited high
sensitivity and specificity (Song et al., 2008). In addition to these
above-mentioned advantages, aptamers offer some distinctive
characteristics as a biological reagent, i.e., once selected, it
can be synthesized with high reproducibility and purity from
commercial sources. Furthermore, in contrast to protein-based
antibodies or enzymes, aptamers (made of DNA) usually are
chemically stable and often undergo significant conformational
changes upon target binding (Song et al., 2008; Binnin et al.,
2011). Nucleic acid aptamers are widely used in the field of
biosensors. Therefore, numerous aptamer-based biosensors are
developed to detect bacterial pathogens. Hence, in this review,
we also summarize the most commonly used aptamer-based
biosensors and bioassay methods for detection of bacterial
pathogens.

OPTICAL BIOSENSORS

Optical biosensors are probably the most popular in bioanalysis,
due to their selectivity and sensitivity. Optical biosensors have
been developed for rapid detection of contaminants (Willardson
et al., 1998; Tschmelak et al., 2004), toxins, drugs (Bae et al., 2004),
and bacterial pathogens (Baeumner et al., 2003).

LABEL-FREE DETECTION OF BACTERIA

Several techniques have been described that allow direct, label-
free monitoring of cells at solid-liquid interfaces (Ebato et al.,

1994; Morgan et al., 1996; Piehler et al., 1996; Medina et al.,
1997; Ghindilis et al., 1998; Fratamico et al., 1998). These
techniques are based on direct measurement of a physical
phenomenon occurring during the biochemical reactions on
a transducer surface (Ivnitski et al., 1999); changes in pH,
oxygen consumption, potential difference, current, resistance, ion
concentrations, and optical properties can be used as measures of
signal parameters in certain detection systems.

FLUORESCENCE DETECTION

Fluorescence occurs when a valence electron is excited from
its ground state to an excited singlet state. The excitation is
produced by the absorption of light of sufficient energy. When
the electron returns to its original ground state it emits a
photon at lower energy (Chung et al., 2014). Nowadays, the
fluorescent material is also broadly used (Vigneshvar et al.,
2015). Bacteria can be detected by using fluorescent beads as
shown in Figure 4 (Chung et al., 2014). Fratamico et al. (1998)
developed a real-time, continuous, and non-destructive single cell
detection method that uses target specific aptamer-conjugated
fluorescent nanoparticles (A-FNPs) and an optofluidic particle-
sensor platform to detect bacterial pathogens.

SURFACE PLASMON RESONANCE
BASED DETECTIONS

Surface plasmon resonance (SPR) biosensors (Cooper, 2003)
measure changes in refractive index caused by structural
alterations in the vicinity of a thin film metal surface. Given its
high sensitivity and fingerprinting capability, surface-enhanced
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FIGURE 5 | Flowchart of S. aureus detection using SERS (Wang et al., 2015). (A) Synthesis of monodispersed silver-coated magnetic nanoparticles and their
conjugation with aptamer 1. (B) Synthesis of core-shell plasmonic nanoparticles (AuNR-DTNB@Ag-DTNB) and their conjugation with aptamer 2. (C) Schematic
illustration of the operating principle for S. aureus detection.

Raman scattering (SERS) has been applied in various fields (Nie
and Emory, 1999; Cao et al., 2002; Li et al., 2010). The detection
and identification of pathogenic microorganisms by SERS have
recently drowned attention because of the potential application
of this technology in single-cell detection (Chang et al., 2013).
The flow chart in Figure 5 demonstrates the process of S. aureus
detection by using SERS (Wang et al., 2015). A plan f or the
conjunction of aptamers to Ag-MNPs is shown in Figure 5A; a
novel SERS tag (DioPNPs) was designed as shown in Figure 5B;
and the operating principle of the SERS biosensor for bacterial
detection that is based on aptamer recognition is shown in
Figure 5C.

ELECTROCHEMICAL BIOSENSORS

Electrochemical sensors have several advantages over optical-
based systems in that they can operate in turbid media, offer
comparable instrumental sensitivity, and are more amenable to
miniaturization. Modern electroanalytical techniques can reach
an extremely low limit of detection (up to 10−9 M), which
can be achieved by using small volumes (1–20 mL) of samples
(Mahmoud et al., 2012). A typical electrochemical method, which
is illustrated in Figure 6 (Jenkins et al., 1988), provides a brand
new avenue for the aptamer-based viability detection of various
microorganisms, particularly viable but non-cultural (VBNC)
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FIGURE 6 | Schematic diagram of the aptamer-mediated electrochemical detection of live Salmonella Typhimurium bacteria (Jenkins et al., 1988).

bacteria, using a rapid, economic, and label-free electrochemical
platform as Jenkins et al. (1988) reported.

Recently, a newly developed aptamer-based biosensor
system has been developed to detect pathogen (Abbaspour
et al., 2015). This system uses a sensitive and highly selective
dual-aptamer-based sandwich immunosensor in conjunction
with electrochemical means for the detection of S. aureus
as shown by Figure 7 (Abbaspour et al., 2015). As a result,
excellent discriminatory power of the biosensor was achieved
by utilizing the two specific aptamer sequences against the
target bacteria and the magnetic beads to capture S. aureus
in a liquid phase. The electrochemical detection method
demonstrated a few advantages in term of simplicity, turn-
around time, low cost, and limit of detection compared to
the conventional detection methods. The superior sensitivity
of this method provides the possibility to use aptamers
to detect extremely low number (in single digital) of
pathogenic bacteria in foods, which is hardly achievable by
the conventional methods. Also, researchers have tried to
use biotinylated single-stranded (ss) DNA aptamers with
L. monocytogenes binding specificity to capture the bacteria,
and subsequently detected the organism in qPCR assay.
Biotinylated ssDNA aptamers are promising ligands that can
be used for concentrating foodborne pathogens prior to using
the conventional molecular approaches for detection (Suh and
Jaykus, 2013).

LATERAL CHROMATOGRAPHY TEST
STRIPS

Lateral chromatography test strips, whose mechanism is
illustrated in Figure 8, are also widely used. For example, Liu
H.X. et al. (2014) demonstrated a simple and sensitive method
for visual detection of viable pathogenic bacteria based on an
isothermal RNA amplification reaction-based bioactive paper-
based platform by using a two-dimensional barcode as the
receiving/transmitting media for rapid detection.

Numerous assays based on the specific binding of an
antibody to an antigen, such as enzyme-linked immunosorbent
assay (ELISA) (Zunabovic et al., 2011; Hsu et al., 2014)
and immunochromatographic lateral flow test strips (Ge
et al., 2012; Nash et al., 2012; Yan et al., 2012; Cho and
Irudayaraj, 2013), have been developed. However, rapid
immune tests, which are widely used in low resource settings,
are not suitable for fast foodborne pathogen detection due
to their low sensitivity. Finally, a low-cost platform was
constructed for viable pathogen detection with the naked
eyes (Liu H.X. et al., 2014). In that system, specifically
amplified products were applied to a paper-based platform
to perform sandwich hybridization and followed by a
visual exam. This method is suitable for point-of-care
applications to detect foodborne pathogens (Liu H.X. et al.,
2014).
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FIGURE 7 | Schematic representation of dual-aptamer-based electrochemical sandwich immunosensor for the detection of S. aureus (Abbaspour
et al., 2015).

FIGURE 8 | Schematic illustration of isothermal RNA amplification and the configuration of the bioactive paper-based platform (Chung et al., 2014).
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CONCLUSIONS AND PERSPECTIVES

In this review, we summarize the most commonly used SELEX
methods in selection of aptamers against bacterial foodborne
pathogens and the application of aptamer-based biosensors
in biomolecular screening. Although SELEX advanced rather
slowly initially, the selection of aptamers against pathogenic
bacteria has been stably progressing in the last decade and
nowadays, this technology has been evolved into a useful tool
in pathogen detection and biomolecular screening. Initially,
conventional steps and PCR were used in the SELEX procedures
in the early years and then, several novel approaches and new
biological materials were adapted in the SELEX procedures. On
the other hand, targeting bacterial cells for detection purpose
by SELEX also encounters some drawbacks, because bacteria’s
highly variable and complex structures may influence the
performance of aptamers. Therefore, it is necessary to continue
to develop simpler and more efficient SELEX methods (requiring
fewer rounds in selection) to generate specific and/or universal
aptamers against various bacterial pathogens.

Compared to traditional antibody generation process, SELEX
can efficiently generate specific nucleic acid probes against
various analytes in a relatively short period of time. More
importantly, the extraordinary properties of the selected
aptamers, such as easy scale-synthesis, easy modification and
long-term stability, make aptamers ideal alternatives to the

traditional antibodies. However, improvement in aptamer
selection efficiency by SELEX is needed in the future work. Also,
other platforms, including magnetic separation techniques, array
or microfluidic chips, can be integrated with initial SELEX to
further widen the applications of this promising technology. For
example, at present, biosensor-based detection technologies can
merely meet the basic requirements for testing in the laboratory
and clinic. Obviously, it can be expected that simpler, faster, more
efficient, and more economic aptamer-based methods will be
developed for pathogen detection and biomolecular screening in
the future.
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