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Abstract

Introduction: It is understood that cancer is a clonal disease initiated by a single cell, and that metastasis, which is
the spread of cancer from the primary site, is also initiated by a single cell. The seemingly natural capability of cancer
to adapt dynamically in a Darwinian manner is a primary reason for therapeutic failures. Survival advantages may be
induced by cancer therapies and also occur as a result of inherent cell and microenvironmental factors. The selected
“more fit” clones outmatch their competition and then become dominant in the tumor via propagation of progeny.
This clonal expansion leads to relapse, therapeutic resistance and eventually death. The goal of this study is to
develop and demonstrate a more detailed clonality approach by utilizing integrative genomics.

Methods: Patient tumor samples were profiled by Whole Exome Sequencing (WES) and RNA-seq on an Illumina
HiSeq 2500 and methylation profiling was performed on the Illumina Infinium 450K array. STAR and the Haplotype
Caller were used for RNA-seq processing. Custom approaches were used for the integration of the multi-omic
datasets.

Results: Reported are major enhancements to CloneViz, which now provides capabilities enabling a formal tumor
multi-dimensional clonality analysis by integrating: i) DNA mutations, ii) RNA expressed mutations, and iii) DNA
methylation data. RNA and DNA methylation integration were not previously possible, by CloneViz (previous
version) or any other clonality method to date. This new approach, named iCloneViz (integrated CloneViz) employs
visualization and quantitative methods, revealing an integrative genomic mutational dissection and traceability
(DNA, RNA, epigenetics) thru the different layers of molecular structures.

Conclusion: The iCloneViz approach can be used for analysis of clonal evolution and mutational dynamics of
multi-omic data sets. Revealing tumor clonal complexity in an integrative and quantitative manner facilitates
improved mutational characterization, understanding, and therapeutic assignments.

Background
It is recognised that cancer is a clonal disease instigated by
a single cell and that metastasis is also commenced thru a
single cell [1-3]. Tumors are composed of a variety of
clones or subpopulations of cancer cells that may differ,
for instance in their expression of cell surface markers,
sensitivity to therapeutic agents, karyotype, proliferation
rate. A cancer clone or subclone is a cell or group of cells
that have formed from an original cell as a result of a new

mutation [4]. Many cancers including multiple myeloma
(MM) are difficult to treat due to their dynamic adaptabil-
ity resulting from clonal evolution [5].
Evolution is an important scientific concept because it

works. It provides a framework to explain changes in
biological systems. Cancer is the result of an evolution-
ary process, but it is destructive, since it involves the
loss of mechanisms that are implemented to protect
against uncontrolled and undifferentiated growth. Ulti-
mately, natural selection has a harsh reality that worried
Darwin, namely, all that seems to matter is reproductive
success [6].
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MM is a cancer of the bone marrow characterized by a
malignant transformation and proliferation of plasma cells
[7]. Definitive therapies include combination chemother-
apy, autologous transplant regimens [8], and two new
classes of agents called immunomodulatory drugs (IMiDs)
and proteasome inhibitors [9-11]. A significant improve-
ment in patient survival has occurred over the last
~15 years [12]. However, there is still significant variation
in outcome and an explanation is tumor heterogeneity
with associated complex genomic landscapes [5,13,14].
There exist an array of computational methods/tools that

allow one to characterize various aspects of the clonal archi-
tecture of a tumor(s). Each method employs different com-
putational and visualization techniques, and are very briefly
described. SciClone [15] allows for the characterization of
the clonal structure of a tumor using multiple samples, in
an attempt to shed light on “cryptic subclones”, which can
appear when only one sample is analyzed. Several visualiza-
tions are available within SciClone, and clustering on the
variant allele frequencies of somatic mutations (using a var-
iational Bayesian mixture model on copy number neutral
regions) attempts to infer the number and composition of
subclones. PyClone [16] makes use of hierarchical Bayesian
clustering models to estimate the number and cellular pre-
valence of subclones from the variant allele frequencies of
somatic mutations. The method also takes into account
copy number variation and possible normal cell contamina-
tion in the model. TrAp [17], in addition to inferring the
subclones and their abundances within a single “aggregate
sample” (via “aberrant frequencies” aka variant allele fre-
quencies), constructs a phylogenetic tree–describing the
evolution of clones within the tumor. The problem is mod-
eled, and solutions based mathematically, on the deconvolu-
tion of a single aggregate signal.
Clomial [18] is another method used to infer subclonal

structure using a binomial expectation maximization
based approach (via somatic variant allele frequencies),
and was specifically designed to deal with multiple samples
from a single tumor sample. Rec-BTP [19] casts the pro-
blem of uncovering the clonal structure of a single sample,
using the variant allele frequencies of somatic mutations,
as a combinatorial one. A recursive algorithm using a bin-
ary tree partition is developed which approximates the ori-
ginally formulated NP-complete problem. THetA [20] uses
copy number aberrations to discover most likely clonal
subpopulations. In particular, the problem of subclonal
characterization is solved using a maximum likelihood
mixture decomposition method, in order to find the geno-
types “whose mixture best explains the observed sequen-
cing data.” PhyloWGS [21] is unique, in that it makes use
of both somatic mutational and copy number variation
data in its subclonal analysis. It additionally infers a phy-
logenetic tree (using non-parametric mathematical
approaches) explaining the evolutionary history of a

tumor’s clonal composition, as well as, each clone’s relative
abundance. The method is also able to take multiple sam-
ple inputs to aid subclonal reconstruction.
All of the aforementioned referenced methods only

make use of a single modality in their characterizations of
clonal architecture, namely, DNA-based mutational data,
culled from whole genome or whole exome sequencing
(WES) experiments. Some methods also attempt to
account for the effect of copy number variation on clonal
architecture. This is contrasted to the multiple modality
datasets employed in the characterization of clonal struc-
ture used within iCloneViz. iCloneViz is the only known
computational method for inferring clonal architecture,
which integrates multiple modality datasets to derive dee-
per biological meaning. For example, RNA variant calling
is performed (a relatively new method of variant calling)
to detect whether or not a mutation found within the
DNA (via a WES or WGS experiment) is detectable within
a RNA transcript. Further, if a mutation is found to be
present at the RNA level, the expression values associated
with the transcript(s) containing the mutation can be
quantified and visualized. Finally, DNA methylation data is
integrated into the analysis, which could lead to hypoth-
eses regarding methylation suppressing the expression of a
tumor suppressor gene (TSG). iCloneViz tracks TSGs
both by mutations and epigenetic/methylation events.
In the presented analysis, integrated clonal dynamics

from a single patient diagnosed with MM is explored.
Tumor material is investigated at initial diagnosis (i.e., Pre-
sentation) and then later when the cancer recurred (i.e.,
Relapse). A novel bioinformatic approach named CloneViz
[22] has been enhanced to allow for the rapid integra-
tion, quantitation, visualization, and investigation of
the mutational dynamics from i) WES, ii) RNA-seq, and
iii) DNA methylation.
The methodology is independent of any specific cancer

type and MM is used as a demonstrative example due to
its intrinsic heterogeneity. The novelty of the approach
concerns the rapid integration and dissection of large and
complex multi-omic datasets. Discovered in this study is
first, the existence of an amplified and mutated MYC
oncogene in both Presentation and Relapse. Second, the
occurrence of hotspot mutations in MTOR with rationale
to treat, and in KRAS, with evidence not to treat. Third, is
progressive evidence of tumor suppressor gene silencing.
Overall, the molecular profiling and advanced bioinfor-
matics (iCloneViz) provide for a more precise understand-
ing of tumorigenesis with potential for an improved
outcome via precision medicine-based approaches.

Methods
Sample and library preparation
All samples were obtained from a single patient with MM
at the Myeloma Institute, University of Arkansas for
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Medical Sciences (UAMS), Little Rock, AR. Sample col-
lection protocols were approved by the UAMS Institu-
tional Review Board (IRB). Collected samples include
bone marrow aspirate with biopsy and peripheral blood.
Tumor plasma cells were obtained from the bone mar-
row aspirate after enrichment by anti-CD 138 immuno-
magnetic bead selection at a central laboratory, in a man-
ner previously described [23]. Selected tumor material
had a purity greater than 96% for the presentation sample
and 99% for relapse. CD-138 is a marker for malignant
plasma cells in a patient with clinical MM. The patient’s
first (Presentation) and second (Relapse) tumor samples
were obtained in 2010 and 2013 respectively. Normal
(germline) material was obtained from the buffy coat of
peripheral blood in 2010, after density gradient centrifu-
gation. To ensure the absence of plasma cells buffy coat
material was also examined by flow cytometry.
Tumor and normal whole exome libraries were con-

structed from 50 ng of DNA material after shearing, end
repair, phosphorylation, and ligation to bar coded
sequencing adapters. DNA material was further fragmen-
ted using the S220 focused-ultrasonicator (Covaris), for a
target base pair (bp) length of 300. DNA was size selected
for lengths between ~ 250 - 330 bp. DNA regions were
captured using the Agilent SureSelectQXT Human All
Exon v5 Plus hybrid capture kit. Samples were then mul-
tiplexed and subjected to sequencing (101 bp paired-end
reads) on an Illumina HiSeq 2500. Whole exome libraries
were sequenced to an average depth of 100x.
RNA-seq tumor libraries were constructed using 200 ng

of total RNA material, using the Illumina TruSeq mRNA
v2 kit according to the manufacturer’s instructions. Poly-A
selection for mRNA was first performed using streptavi-
din-coated magnetic beads, which was followed by thermal
mRNA fragmentation. mRNA was then subjected to
cDNA synthesis using reverse transcriptase. Resulting
cDNA was converted to double stranded cDNA, followed
by end repair, and then ligated to paired-end adapters.
Size selection was performed using AMPure XP beads
(Beckman Coulter), for sequences ~ 300 - 350 bp in
length. The library was further enriched using 15 cycles of
PCR and purified again with AMPure XP beads. The con-
centration of material run was 8 pM. The libraries were
then multiplexed and subjected to sequencing (101 bp
paired-end reads) on an Illumina HiSeq 2500. RNA-seq
libraries were sequenced to a total of 100M reads.
Genome-wide DNA methylation was assessed in bisul-

fite-converted genomic DNA using the Illumina Infi-
nium HumanMethylation450 (HM450K) BeadChip
array, which contains 485,577 probes covering 99% of
RefSeq genes, 96% of CpG islands (CGI) and coverage
across promoters, 5’ and 3’-UTRs, first exons and gene
bodies. Genomic DNA (500 ng) was bisulfite treated
and purified using the EZ DNA Methylation-Gold kit

(Zymo Research, Irvine, CA) according to the manufac-
turer’s protocol. The resultant bisulfite-converted DNA
was processed, hybridized to Illumina HumanMethyla-
tion450 BeadChips, fluorescently stained and scanned
according to the Infinium HD Assay Methylation Protocol
User’s Guide provided by Illumina. Processed BeadChips
were scanned on an Illumina iScan and methylation values
were determined for all probes using the GenomeStudio
Methylation module (Illumina).

Whole exome sequencing processing
FASTQ file generation and demultiplexing from BCL
files was performed using CASAVA v1.8.2 [24]. Quality
control and assessment was performed on FASTQ files
using FastQC v0.11.2 [25]. Unidentified bases at read
ends (i.e., those recorded as ‘N’) were removed using a
custom utility–creating final read lengths between 93 to
101 bps. Each sample’s FASTQ paired-end files were
aligned to the Ensembl reference genome (build
GRCh37.75) using a hybrid approach that employed
BWA v0.7.12 [26] and then STAMPY v1.0.22 [27].
Quality control and assessment of the aligned sequence
alignment/map (binary alignment/map) SAM/BAM files
were assessed with QualiMap v2.0.2 [28]. SAM/BAM
post-processing steps were performed to mark duplicates,
add read group information, sort, and reorder aligned
reads (Picard Tools v1.119 [29]). GATK v3.3-0 [30] was
used to perform local realignment and base quality recali-
bration. Copy number data was computational inferred
using ExomeCNV v1.4 [31]. Single nucleotide variants
(SNVs) and small insertions and deletions (InDels) were
called using Strelka v1.0.14 [32] (tumor and normal
pairs), resulting in variant call format (VCF) files. SnpEff
v4.0e [33] was used to annotate each variant with its pre-
dicted functional effects.

RNA sequencing processing
Transcriptome reconstruction
RNA-seq samples were first demultiplexed and FASTQ
files were created from BCL files using CASAVA v1.8.2.
Quality control and assessment was performed on
FASTQ files using FastQC v0.11.2. Trimmomatic v0.32
[34] (utilizing a sliding window approach) was used to
trim low quality reads and remove possible adapter
sequences. Alignment of reads and transcriptome recon-
struction was performed using the Tuxedo suite of tools.
TopHat v2.0.12 [35] was used to align each sample’s
paired-end reads to the Ensembl reference genome build
GRCh37.75. Quality control and assessment of resulting
BAM files was performed using SAMtools v0.1.8 [36].
BAM files were then used to reconstruct the transcrip-
tome and quantify each isoform’s fragments per kilobase
of transcript per million mapped reads (FPKM) using
Cufflinks v2.2.1 [37], and Cufflinks was run in a mode
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which allows for the discovery of novel isoforms. HTSeq
v0.6.1 [38] was used to quantify raw (non-normalized)
gene-based read counts.
RNA-seq based variant calling
After demultiplexing and creating FASTQ files using the
previous subsection’s description, RNA variants were
called using the Broad Institute’s GATK Best Practices
for RNA-seq variant calling [39]. These steps include the
following: STAR v2.3.0e [40] was used to align reads to
the Ensembl reference genome (build GRCh37.75), using
the recommended “2-pass” approach. Duplicates were
marked and the aligned reads sorted with Picard Tools.
Next, the tool SplitNCigarReads (GATK component) was
used to split reads into exon segments, clip reads which
overhang intronic regions, and assign a default MAPQ
score of 60 to all reads. Variants were called using the
HaplotypeCaller tool (GATK component).

Variant quantification and classification
The variant allele frequency (VAF) was determined by
dividing the total reads for the variant (TRV) by the sum
of the total reads for the variant (TRV) plus total reads
for the reference (TRR). Copy number data was derived
using ExomeCNV v1.4. The selection and retention of
variants were based on the following filtering parameters:
i) VAF ≥ 4%, and ii) 20 ≤ DP ≤ 1000. A manual evalua-
tion of the read alignments using the Integrative Geno-
mics Viewer (IGV) v2.3.32 was also performed [41]. At
times a second selection of variants utilized an intersec-
tion against a key gene (KG) list. The KG group was con-
structed from the following public sources: i) known
drivers and cancer predisposition genes cited in Vogel-
stein, et. al. [42], ii) Foundation One Heme™ Genes
(http://foundationone.com/genelist2.php) and, iii) the
MD Anderson listing of human DNA repair genes [43].

Quantifying clonal diversity
Diversity measures from ecology were adapted to quantify
clonal diversity in MM serial samples [44]. Each sample is
not a single organism/species, but rather consists of thou-
sands of cells from a purified bone marrow aspirate. The
abundance of a molecular species (variant/mutation) is the
product of VAF * DP * CN. The number of clones in a neo-
plasm is a simple measure of diversity. Diversity measures
typically incorporate both the number and abundance of
clones [44]. The Shannon diversity index (SDI) [45] is

SDI = −
∑N

i
p(i)ln(p(i)) (1)

where p(i) is the frequency of clone i in the neoplasm.
The SDI computes a single quantitative value based on

the number of different mutations in the cancer sample
and how evenly distributed each mutation is among the
entire group. The SDI value will increase when the

number of distinct mutations increases and also when the
evenness among the mutations increases [44]. There are
other diversity measures (e.g., Simpson, Berger-Parker)
but, the Shannon diversity index is preferable because it is
not dominated by the most frequent clone, and it has been
utilized in previous studies of cancer [46,47].

Software engineering and integrative analysis
This section and its constituent sub-sections documents
and describes all software components, data structures,
and algorithms used to construct the extended and inte-
grated CloneViz (iCloneViz), especially the data calcula-
tions, visualizations and the rationale for their use.
General technology and frameworks
The C# programming language, targeting the .NET Fra-
mework v4.5 [48] (utilizing the integrated development
environment Visual Studio 2013 [49]), was used to con-
struct iCloneViz. This programming platform was used
to facilitate the rapid development of an interactive Win-
dows-based application. To minimize the amount of cus-
tom data access layer code needed to perform the data-
intensive functions of iCloneViz, the object-relational
mapping software Entity Framework v6.1.1 [50] (using
the database-first model) was utilized along with the
molecular profiling modality database (MPMDB), which
is further described later in this study. The built-in .NET
Framework charting package (i.e., namespace System.
Windows.Forms.DataVisualization.Charting), was used to
provide visualization primitives. This package was used
in favor of others, because of its relative ease-of-use and
built-in functions, in particular, its ability to perform
smart label positioning. The relational database manage-
ment system SQL Server 2012 Developer Edition [51]
was used to store all patient data and meta-data. The
database system was chosen for its robustness, ability to
scale, and its low cost for academic and research use.
(The database system is described in further detail in the
“Data storage, retrieval and annotation” section below).
Mathematics and statistics
To assist in kernel density estimation (KDE) and perform
probability density calculations necessary to estimate the
unknown distribution of the mutations found, the pack-
age Math.NET Numerics v3.2.3 [52] was used. The stan-
dard normal (Gaussian) kernel was used in the
estimation. The equation used to estimate the probability
density function induced by the mutations is as follows:

f̂h(x) =
1
nh

∑n

i=1
K

(
xi − x

h

)
(2)

Where x is the point at which density is to be esti-
mated, (x1, x2,..., xn) is the array of independent and
identically distributed (i.i.d) sample (mutations) of some
unknown distribution, n is the array size, h is the band-
width, and K is the standard normal kernel function.
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To account for the effect of copy number variation
(CNV) on mutations found within regions containing copy
number alterations, the following was done: i) copy num-
ber information was inferred using ExomeCNV for each
loci of the tumor exome; ii) each mutation’s loci was asso-
ciated with those regions found in (i); iii) each mutation
was weighted based on the copy number for the loci it lied
within. The statistical software package R v3.1.3 [53], in
particular, the KernSmooth (ks) package v1.9.4 [54] (hpi
function) was used to calculate a data-derived univariate
kernel density “plug-in” bandwidth [55]. The package
R.NET v1.6 [56] was utilized to provide an application pro-
gramming interface from .NET to R and the ks package.
Data storage, retrieval and annotation
At the Myeloma Institute the MPMDB is a pre-existing,
research-driven molecular profiling repository. The design
philosophy of the database was to provide a centralized
information architecture for interfacing additional custom
tools (e.g., iCloneViz) via various abstractions. The
MPMDB provides many other features to facilitate the
analysis of complex next generation sequencing (NGS)
data, including extensive extract-transform-load (ETL)
capabilities for data cleaning as well as data association
and integration with various knowledge databases.
The integration of various modality datasets (aka tables or

relations), which allow for the visualizations of iCloneViz are
now described (N.B. not all attributes are defined for brevity).
Standard database related theory and relational algebra nota-
tion are used [57]. A diagram titled,Multi-Omic Relational
Integration (Additional File 1) illustrates the relations
between the various relational algebra equations.
Let the schema of a relation be denoted as A(a0, a1, ...,

an), where A is the relation’s name and each ai (0 ≤ i ≤ n)
is a name or identifier of an attribute within A (the domain
or data type for each attribute ai are excluded for brevity ).
Let:

i. W be the resulting data from a whole exome
sequencing experiment, that is, the SnpEff annotated
results from the variant-calling application Strelka;
ii. M be the data resulting from a methylation
experiment;
iii. C be the copy number data computationally
inferred from a WES experiment using ExomeCNV;
iv. H be the raw count (unnormalized) data for each
gene in an RNA-seq experiment using the htseq-
count function from the HTSeq application;
v. RV be the data resulting from RNA-seq variant call-
ing using the Haloptype Caller (GATK);
vi. R be RNA-seq transcript quantification data (FPKM)
following transcriptome reconstruction by Cufflinks;
vii. K be a list of key genes representing cancer drivers
and Variants of Uncertain Significance (VUS) the user
is interested in labeling in each visualization; and

viii. P be patient and experimental meta-data.

The schema of each of the aforementioned relations to
be integrated is defined as follows:

i. W (Chromosome, Position, DNADepth, DNAAllelic-
Freq, EnsemblGeneId, GeneSymbol, DNAChange,
AminoAcidChange, EffectImpact, ExperimenId)
ii. M (TargetId, AvgBeta, Annotation, EnsemblGen-
eId, ExperimentId)
iii. C (Chromosome, Start, Stop, CopyNumber,
ExperimentId)
iv. H (EnsemblGeneId, Count, ExperimentId)
v. RV (Chromosome, Position, EnsemblGeneId, RNA-
Depth, RNAAllelicFreq, ExperimentId)
vi. R (EnsemblTranscriptId, EnsemblGeneId, FPKM,
ExperimentId)
vii. K(EnsemblGeneId)
viii. P (PatientId, FirstName, LastName, Experiment-
Description, ExperimentId, ExperimentDate, Sample-
Type, SampleDescription, SampleCollectionDate)

Let ⋈A.a=B.b denote the theta-join (in particular the equi-
join) between relations A and B on attributes a and b
respectively. Let ��LA.a=B.b denote the left-outer join between
relations A and B on attributes a and b respectively. Let
π(a0,...,an) denote the projection operator over attributes
(a0,...,an). Finally, let sE(A) denote the selection operator,
where A is the relation to be selected from and E is the
conditional expression used for selecting tuples/rows from
relation A. Given these definitions, and assuming each
relation is selected for the experiment that is to be inte-
grated, the final integration of the various multi-omic
datasets can be defined as:

I = σW.EffectImpact

=′ MODERATE′∨
W.EffectImpact

=′ HIGH′

(
W �� LW.EnsemblGeneId

=M.EnsemblGeneId
M

)

(3)

J = σR.FPKM>0

⎛
⎜⎜⎝RV �� RV.EnsemblGeneId

= R.EnsemblGeneId

R

⎞
⎟⎟⎠ (4)

D = σH.Count>0

(
RV ��RV.EnsemblGeneId

=H.EnsemblGeneId
H

)
(5)

L = I ��L W.Chromosome

= RV.Chromosome∧
W.Position

= RV.Position

J

(6)
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N = L ��L W.Chromosome

= RV.Chromosome∧
W.Position

= RV.Position

D

(7)

IntegratedRelation = N ��L W.Chromosome

= C.Chromosome∧
W.Position ≥

C.Start∧
W.Position

≤ C.Stop

C

(8)

Where IntegratedRelation denotes the final integrated
relation. Given this final relation (and the key gene list
K to visually label), aggregations and selections can be
performed to filter data and encode all visual aspects
within iCloneViz. Some of those aggregations and selec-
tions are now defined for later reference:

W1∩(Chromosome,Position)W2 (9)

Where Wi denotes sW.ExperimentId=i(W) and ∩(a0,...,an)
is the intersection operator based on common attributes
(a0,...,an).

W1\(Chromosome,Position)W2 (10)

Where \(a0,...,an) denotes the set difference operator
based on common attributes (a0,...,an).

Ŵ = distinct

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

πChromosome,

Position,

DNADepth,

CopyNumber,

DNAChange,

AminoAcidChange,

DNAAllelicFreq,

GeneSymbol,

Glyph

(IntegratedRelation)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11)

Where Glyph = [1: Only WES Data, 2: WES + RNA
Data], is a computed attribute on IntegratedRelation
indicating what type of data is available (not null) in
each tuple of IntegratedRelation.

R̂(Ŵ) = distinct

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

π GeneSymbol
EnsemblTranscriptId,

FPKM

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ ŵ.Chromosome

= IntegratedRelation.Chromosome

∧ŵ.Position

= IntegratedRelation.Position

(IntegratedRelation

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(12)

Where ŵ is a tuple within relation Ŵ from Eq. (11).

M̂ = distinct

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

π TargetId,

AvgBeta,

GeneSymbol,

Annotation,

EnsemblGeneId,

Count

(IntegratedRelation ��IR.EnsemblGeneId
=K.EnsemblGeneId

K)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13)

R̂ = distinct

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

π GeneSymbol,

RNADepth,

RNAAllelicFreq,

FPKM,

EnsemblTranscriptId

(IntegratedRelation)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(14)

Pseudocode describing the algorithms of iCloneViz
can be found in the appendix.

Results and discussion
This study illustrates the integrated analysis of tem-
poral-based clonal dynamics from a patient with MM.
Examination of Presentation and Relapse samples from
purified bone marrow aspirates are compared and con-
trasted using a bioinformatic approach named iClone-
Viz, which has been enhanced and redesigned to
perform clonality analysis utilizing an integrative geno-
mic (DNA, RNA, methylation) methodology, not pre-
viously possible. All graphs and visualizations in this
study were generated by iCloneViz, unless indicated
otherwise. It has been established that there is intraclo-
nal heterogeneity at the level of single nucleotide var-
iants (SNVs) in myeloma [58]. As a means to study the
genetic heterogeneity and Darwinian nature that is ger-
mane to cancer, clonal analysis and integrative genomics
has been advocated [59,60].
iCloneViz makes available a global view of all muta-

tional events in a WES experiment. This is illustrated in
Additional File 2. Subfigure A corresponds to the Pre-
sentation and B to the Relapse sample. The x-axis
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contains an ordered list of chromosomes (1-22, X, Y).
Each chromosomal region is sized by the number of
base pairs it contains. The y-axis is organized by variant
allele frequency (VAF). Each variant is a point on the
plot and the color scale indicates the depth of coverage
(depth). A global view of mutations on a chromosomal
basis is provided by these plots. A higher degree of
mutations are evident on chromosomes eight and 14 for
both Presentation and Relapse. Chromosome 18 con-
tains more mutations in the Relapse sample vs. Presen-
tation. Global views may provide rapid insights,
especially as newly discovered types of complex genomic
rearrangements, such as chromothripsis [61], katageis
and the underlying roles for APOBEC and similar family
enzymes [62], have their signatures or motifs become
more understood.
A scatter plot of paired samples from Presentation and

Relapse are profiled in Additional File 3. The x-axis con-
tains the Presentation and y-axis the Relapse, and both
axes are ordered by VAF. Key genes are labelled. Color
discriminates paired mutations (blue) from those appear-
ing only in the Presentation (green) and Relapse (red). A
summary illustration of the mutational landscape is pro-
vided by this graphic, namely what is common and differ-
ent between the two samples. There are a noteworthy
fraction of shared mutations but also a reasonable
amount of variants unique to each sample.
A visual exploration of integrated mutational data

revealing the evolutionary trajectories is provided by
iCloneViz. Figure 1 demonstrates Gaussian kernel den-
sity plots with paired scatter plots for the Presentation
(A) and Relapse (B) samples. The paired plots serve to
profile the magnitude and frequency of DNA mutations
found in these tumor samples. The x-axis for each
graph is VAF. The output of the kernel density function
is contained on the y-axis. Peaks on the kernel density
plots may infer dominant clones and subclones. A mea-
sure of relative abundance (Depth) [15] is contained on
the y-axis of the scatter plot. Key genes are labelled, and
two glyphs are used to signify if a mutation was found
only in WES (blue circle) or found in both WES and
RNA-seq (red star). A level of heterogeneity across the
Presentation and Relapse samples is evident by the dis-
tinct peaks seen in the two kernel density plots.
iCloneViz has a number of filtering options. Figure 2

shows a series of kernel density plots with associated
scatter plots for the key genes found in the Presentation
(A) and Relapse (B) samples. The units associated with
the × and y axes are unchanged. The mutational glyph
assignments are also without change. Distinct peaks are
evident in both samples indicating heterogeneity.
The temporal DNA-based mutational dynamics and

clonal evolution observed in the Presentation and
Relapse samples are shown in Figure 3A. This is an

extension of the iCloneViz analysis. The Presentation
sample was obtained when the patient was initially diag-
nosed with MM in year 2010. It contains 89 mutations
that passed filtering criteria and was found to have a
Shannon Diversity Index (SDI) of 3.89. There are five
mutations classified from the key genes (KG) group and
are: DNA2, MYC, SETD2, TET2, and TNFRS11A.
An evolutionary selection event occurred later in year

2010, as a result of the patient receiving definitive ther-
apy for MM. The patient did well until year 2013 when
a relapse occurred and a new bone marrow aspirate was
obtained. Comparing the Presentation to Relapse reveals
that all the key genes survive, including the amplified
MYC oncogene, which also contains a VUS missense
mutation. In addition three more mutated genes are
gained including the histone methyltransferase MLL3,
along with the KRAS and MTOR oncogenes.

Figure 1 Kernel density and scatter plot (all mutations) .
Gaussian kernel density plot and a paired scatter plot, for
Presentation (A) and Relapse (B) samples, for all mutations found
within the filtering criteria. The x-axis for all plots is the variant allele
frequency (VAF). A Gaussian kernel density estimator is used to
approximate the mutational density (weighted by copy number) of
the mutations plotted in the upper subfigures. Lower subfigures
(scatter plots) plot each mutation found (with key genes labelled).
The y-axis of each lower subfigure is the depth of coverage.
Mutations in the scatter plot are given a glyph that indicates the
level of multi-omic data available for the given mutation, blue circle
(WES only) and red star (WES and RNA-seq)
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A higher number of mutations (122) are found in the
Relapse sample. It also has an increased SDI (4.25),
which implies more uncertainty or randomness in the
process, from an information theory viewpoint [45].
From a cancer biology view, it indicates a progression of
disease or diversification in the mutational landscape.
Table 1 lists the summary information for the Presen-

tation key genes, and Table 2 for the Relapse key genes.
Columns are Gene for gene symbol, DNA Mutation, AA
Change for the corresponding amino acid change, CN
for copy number, DP for depth, AF for allelic frequency,
RNA Mutation to indicate expressed mutations, and
Notes that contains the gene class. Noted are three
mutations in the Presentation group (MYC, SETD2,
TET2), which have their DNA mutations also found to
be expressed in mRNA. The Relapse key genes also con-
tain three DNA variants found to have their mutations
expressed in RNA, and include the still amplified and
mutated MYC oncogene, SETD2, and the MTOR onco-
gene that contains a hotspot mutation (p.Val2006Leu).

Figure 3B illustrates the temporal RNA-based muta-
tional dynamics and clonal evolution. This is also an
extension of the iCloneViz analysis. The MYC oncogene
and SETD2, in addition to having their DNA mutations
found in mRNA, have two transcripts in the Presentation
that are also found in the Relapse sample. SETD2 also
has two new transcripts appearing in the Relapse sample.
CUFF.29743.3 is a novel transcript due to a new exon.
However, this exon was found to have only one support-
ing read by IGV, and thus not seriously considered to be
viable. The TET2 transcripts do not survive and are listed
in the “Non Surviving Mutations” box along with passen-
gers. MTOR, which was a new DNA mutation found in
the Relapse sample, has two viable mRNA transcripts
now appearing in the Relapse. Table 3 lists the expressed

Figure 2 Kernel density and scatter plot (key genes only).
Gaussian kernel density plot and a paired scatter plot for
Presentation (A) and Relapse (B) samples, showing key genes found
within the filtering criteria only. The x-axis for all plots is the variant
allele frequency (VAF). A Gaussian kernel density estimator is used
to estimate the mutational density (weighted by copy number) of
the mutations plotted in the upper subfigures. Lower subfigures
(scatter plots) display each mutation found. The y-axis of each lower
subfigure is the depth of coverage. Each mutation in the scatter
plot are given a glyph that indicates the level of multi-omic data
available for the given mutation. See legend for glyph assignments.

Figure 3 DNA and RNA-based mutational dynamics and clonal
evolution. The temporal variant dynamics and clonal evolution of
key genes across the Presentation (blue) and Relapse (grey) samples
are illustrated. Subfigure A illustrates DNA level mutational dynamics
and B, mRNA expressed mutations. Information regarding the year
each sample was obtained, total number of mutations (N),
computed Shannon Diversity Index (SDI), and the number of key
genes (KG) are provided for each sample. Key genes identified
within each sample are listed. An arc from a gene symbol into
another sample indicates the survival of the mutation through the
selection event (definitive therapy). Non-surviving key gene (as well
as passengers) mutations are listed.
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RNA mutated key gene transcripts for the Presentation
sample and Table 4 for Relapse.
Table 5 lists the DNA methylation of tumor suppres-

sor genes (TSGs) for the Presentation sample passing
iCloneViz filtering criteria from ~485,000 possible can-
didates. The filtering criteria consisted of: i) Avg-Beta ≥
25%, ii) “Promoter Associated“ regulatory feature, and
iii) being from a CpG Island. The methylation data set
was integrated with RNA-seq to directly associate the
raw (unnormalized) RNA Read Counts for the TSGs
identified by filtering criteria. The majority of TSGs in
the Presentation (Table 5) and Relapse (Table 6) have
zero or very low read counts, indicating a lack of
mRNA expression and thus no protein production. Loss
of TSG(s) is associated with both the onset and progres-
sion of many cancers [63,64].

Why did the patient’s cancer recur following definitive
therapy? Does the experimental information from DNA,
RNA, and methylation analyses provide answers or
insights concerning the relapse? Regarding the Presenta-
tion sample, associating the findings from Figure 1A, and
Figure 2A, the founder clone contains an amplified and
mutated MYC oncogene. Table 1 reports a missense
mutation in MYC having the base substitution of
c.226G>A, resulting in alanine being replace by threonine
at position 76 (p.Ala76Thr) in the amino acid chain. The
copy number is 3 (amplified), depth of coverage is 207
and the allelic fraction is 31. This mutation is also
expressed in mRNA. Additional File 4 shows a MYC lolli-
plot diagram made by the Protein Paint [65] application

Table 1. DNA-based Presentation key genes

Gene DNA Mutation AA Change CN DP AF RNA Mutation Notes

DNA2 c.146delG 1 82 17 N DNA repair

MYC c.226G>A p.Ala76Thr 3 207 31 Y Amp oncogene + VUS

SETD2 c.7085A>G p.Gln2362Arg 1 94 24 Y HMT

TET2 c.2725C>T p.Gln909* 3 117 24 Y Oncogene

TNFRSF11A c.1097C>T p.Pro366Leu 3 244 14 N Bone remodelling

A tabular version of the clonal dynamics displayed in Figure 3A lists changes in allelic frequency, depth and copy number for the Presentation sample. Also
indicated is whether or not the DNA mutation was expressed in the sample’s associated mRNA. Abbreviations: CN (Copy Number), DP (Depth), Allelic Frequency
(AF), VUS (Variant of Uncertain Significance), HMT (Histone Methyltransferase), AA (Amino Acid) and Amp (Amplified).

Table 2. DNA-based Relapse key genes

Gene DNA Mutation AA Change CN DP AF RNA Mutation Notes

DNA2 Same same 3 70 38 N

MYC Same same 3 257 33 Y

SETD2 Same same 2 105 35 Y

TET2 Same same 3 129 36 N

TNFRSF11A Same same 3 283 15 N

KRAS c.183A>C p.Gln61His 3 175 4 N Oncogene

MTOR c.6016G>C p.Val2006Leu 1 69 23 Y Oncogene

MLL3 c.944G>A p.Gly315Asp 1 392 4 N HMT

A tabular version of the clonal dynamics showed in Figure 3A lists changes in allelic frequency, depth and copy number for the Relapse sample.

Table 3. mRNA expression of key gene mutations in the
Presentation sample

Gene DP AF Transcript FPKM

MYC 192 100 ENST00000377970 42

MYC 192 100 ENST00000524013 58

SETD2 25 50 ENST00000409792 9.5

SETD2 25 50 ENST00000431180 2.2

TET2 6 50 ENST00000380013 2.0

TET2 6 50 ENST00000265149 1.2

A tabular version of the clonal dynamics as shown in Figure 3B, lists changes
in depth, allelic frequency and FPKM in the Presentation sample.
Abbreviations: DP (Depth) and Allelic Frequency (AF).

Table 4. mRNA expression of key gene mutations in the
Relapse sample

Gene DP AF Transcript FPKM

MYC 100 100 ENST00000377970 24

MYC 100 100 ENST00000524013 55

SETD2 29 50 ENST00000409792 3.2

SETD2 29 50 ENST00000431180 1.5

SETD2 29 50 ENST00000445387 1.2

SETD2 29 50 CUFF.29743.3 9.4

MTOR 20 50 ENST00000361445 4.7

MTOR 20 50 ENST00000376838 2.2

A tabular version of the clonal dynamics as shown in Figure 3B, lists changes
in depth, allelic frequency and FPKM for the Relapse sample.
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showing the possible missense mutations, depending on
splicing, in the coding region. Table 3 shows the MYC
transcripts with good depth of coverage and FPKMs.
Finally, Table 5 shows four TSGs (BRCA1, CEBPA,
MSH2, SOCS1) with a CpG Island, promoter associated
regulatory feature being methylated by more than 25%
and having RNA read counts of zero, indicating these
genes have been silenced.
Concerning the Relapse sample, integrating findings

from Figure 1, B and Figure 2, B shows that the founder
clone continues to contain the mutated MYC oncogene.
Table 2 reports the same MYC DNA mutation, the copy
number is still amplified at three, DP is 257, allelic fre-
quency is 33%, and the mutation is present in mRNA.
The MTOR oncogene is new, and contains a hotspot
mutation (c.6016G>C, p.Val2006Leu), which is also
found in RNA. Figure 3B shows survival of MYC related

transcripts from Presentation to Relapse, and the tran-
scripts for MTOR. Table 4 shows the two MYC tran-
scripts with good depth of coverage and FPKMs, and
the MTOR transcripts have reasonable values. Table 6
displays six TSGs (AXIN1, BRCA1, MEN1, MSH2,
RUNX1, SOCS1) with CpG Island promoter associated
regulatory feature being methylated by more than 25%
and having RNA read counts of zero, indicating a pro-
gression of gene silencing. The KRAS oncogene appears
in the Relapse but the mutation was not expressed in
RNA (Table 2) therefore would not be considered for
therapeutic targeting.
Deregulated expression of MYC is a hallmark feature of

cancer and serves to uncouple growth factor dependent
proliferation [66], and may occur through a variety of
mechanisms (e.g., gene amplification, translocation, focal
enhancer amplification, or constitutive activation of

Table 5. DNA methylation of TSGs in the Presentation sample

Target ID Avg-Beta Gene Ensembl GeneID RNA Read Count Classification Regulatory Feature Relation to CpG Island

cg27549619 0.3934072 AXIN1 ENSG00000103126 4 TSG Promoter Associated Island

cg26370022 0.6804651 BRCA1 ENSG00000012048 0 TSG Promoter Associated Island

cg11529738 0.7789396 BRCA1 ENSG00000012048 0 TSG Promoter Associated Island

cg24900425 0.9020266 BRCA1 ENSG00000012048 0 TSG Promoter Associated Island

cg13601799 0.2905587 CDKN2A ENSG00000147889 13 TSG Promoter Associated Island

cg01437571 0.3243266 CEBPA ENSG00000245848 0 TSG Promoter Associated Island

cg00976692 0.291538 MEN1 ENSG00000133895 8 TSG Promoter Associated Island

cg14803009 0.3387372 MSH2 ENSG00000095002 0 TSG Promoter Associated Island

cg22866426 0.4628801 RUNX1 ENSG00000159216 1 TSG Promoter Associated Island

cg27003951 0.2562254 SOCS1 ENSG00000185338 0 TSG Promoter Associated Island

Listed are the DNA methylation of tumor suppressor genes (TSGs) passing iCloneViz filtering criteria from ~485,000 possible candidates, for the Presentation
sample. The filtering criteria consisted of: i) Avg-Beta ≥ 25%, ii) “Promoter Associated“ regulatory feature, and iii) being from a CpG Island. The methylation data
set was integrated with RNA-seq to directly associate the raw (unnormalized) RNA Read Counts for the identified TSGs.

Table 6. DNA methylation of TSGs in the Relapse sample

Target ID Avg-Beta Gene Ensembl Gene ID RNA Read Count Classification Regulatory Feature Relation to CpG Island

cg27549619 0.443731 AXIN1 ENSG00000103126 0 TSG Promoter Associated Island

cg02086790 0.4921295 AXIN1 ENSG00000103126 0 TSG Promoter Associated Island

cg26370022 0.6747859 BRCA1 ENSG00000012048 0 TSG Promoter Associated Island

cg24900425 0.8910863 BRCA1 ENSG00000012048 0 TSG Promoter Associated Island

cg11529738 0.7637555 BRCA1 ENSG00000012048 0 TSG Promoter Associated Island

cg13601799 0.467826 CDKN2A ENSG00000147889 38 TSG Promoter Associated Island

cg00976692 0.293402 MEN1 ENSG00000133895 0 TSG Promoter Associated Island

cg14803009 0.4267139 MSH2 ENSG00000095002 0 TSG Promoter Associated Island

cg22073802 0.2875548 PTCH1 ENSG00000185920 23 TSG Promoter Associated Island

cg22866426 0.5251715 RUNX1 ENSG00000159216 0 TSG Promoter Associated Island

cg17339910 0.399428 RUNX1 ENSG00000159216 0 TSG Promoter Associated Island

cg04004558 0.2809271 SOCS1 ENSG00000185338 0 TSG Promoter Associated Island

cg27003951 0.2598022 SOCS1 ENSG00000185338 0 TSG Promoter Associated Island

Listed are the DNA methylation of tumor suppressor genes (TSGs) passing iCloneViz filtering criteria from ~485,000 possible candidates, for the Relapse sample.
Filtering criteria and integration with RNA-seq is the same as is reported for the Presentation sample (Table 5).
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upstream signalling pathways) [67]. MYC over-expression
occurs in ~30% of human cancers and commonly is a
harbinger for a poor clinical outcome, aggressive biologi-
cal behavior, increased chance of relapse and advanced
stage of disease at initial diagnosis [68]. Studies in trans-
genic mouse models have identified MYC inactivation
leads to prompt tumor regressions [69].
There are now a number of new agents in clinical

trials for targeting MYC, for instance the BET bromodo-
main inhibition [70,71], and this should be considered
for subsequent therapy. Additionally, the Relapse sample
contained a hotspot mutation in MTOR and targeting
with a “rapalog” (rapamycin and its analogs) should also
be considered. Precision medicine and therapeutic com-
binations with new and more targeted agents are chal-
lenging and an active area in clinical trials and
translational research [72,73]. Essential to these efforts
are advanced bioinformatics with abilities to integrate
multi-omic datasets, combat cancer heterogeneity via
clonal and evolutionary approaches, and ultimately pro-
vide clinical utility thru an improved understanding of
the disease process at hand. This was demonstrated in
this study.

Conclusions
Illustrated in this study has been the temporal-based
analysis of integrated clonal dynamics of a single patient
with MM by examining the Presentation and Relapse
tumor samples. This involved the visualization and
quantification of variant/mutational dynamics in the
context of integrated evolution of WES, RNA-seq, and
DNA methylation. Subpopulations of mutations will
evolve over time due to natural selection events related
to cell intrinsic or micro-environmental factors, as well
as selection events induced therapeutically. Selection
events eliminate some mutations and provide a survival
advantage to others. iCloneViz provides global views of
mutational events as well as rapid data integration of i)
WES, ii) RNA-seq, and iii) DNA methylation. This
results in an enriched picture with a more focused spe-
cificity of mutational events, and provides evidence and
more confidence for therapeutic assignments.
Heterogeneity is found in many cancers and limits

aggregate approaches for scientific and clinical utility.
MM is known as a heterogeneous cancer with a complex
molecular landscape. Clonality and integrated genomics
has been advocated as means to combat heterogeneity
[59,60]. The illustrated novelty and precise contribution
of iCloneViz is the ability to perform integrative clonality
analysis utilizing data sets from: i) WES, ii) RNA-seq,
and iii) DNA methylation. To date, there is no other soft-
ware based clonality tool available (commercially or open
source) that can perform integrative clonality analysis.
Given the repeated findings of multiple TCGA studies

reporting heterogeneity with a complex mutational land-
scape [14,74], additional analytical approaches are
needed; since it is evident that DNA analysis is necessary
but not sufficient. Our approach, which builds on pre-
vious work now employs clonality and integrative geno-
mics, both of which have been recommended to combat
heterogeneity.
In this study, observed in all serial MM samples was

the presence of an amplified MYC oncogene species
with a VUS missense mutation. MYC is a transcription
factor and master regulator of ~15% of all gene expres-
sion, and also functions to regulate chromatin structure.
A permanent remission or cure was not achieved
despite definitive therapy. The dominant genetic altera-
tions in the founder clone was never targeted specifically
for therapy thus cure or a lasting remission was unlikely.
For major advances in cancer management, a systematic
approach to collect tissue samples at diagnosis, and seri-
ally at relapse(s), in order to profile the dynamic clonal
evolution is critical.

Appendix
iCloneViz pseudocode
The pseudocode for iCloneViz is now presented, and is
described and documented using a PDL (Program
Design Language) structure as described in Pressman
[75]. A C-style notation was utilized. A flow diagram of
the pseudocode is shown in Additional File 5. The
multi-omic relational integration is illustrated in Addi-
tional File 1.
Symbol Definitions:

● patient_id: Patient identifier.
● button_selection: An instance of the button
that was clicked.
● button_click_filter: Boolean indicating
whether an instance of the button labeled “Filter”
was clicked.
● button_click_show_tsg_methylation_-
table: Boolean indicating whether an instance of
the button labeled “Show TSG Methylation Table”
was clicked.
● button_click_show_wes_table: Boolean
indicating whether an instance of the button labeled
“Show WES Table” was clicked.
● button_click_show_rna_table: Boolean
indicating whether an instance of the button labeled
“Show RNA Table” was clicked.
● exp_id []: Array of one or two patient experi-
ment identifiers. Can be referenced via subscripting
(e.g., exp_id [0]).
● exp_id[i].W: WES data in relation W for the
patient experiment with the experiment identifier
exp_id[i].
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● filter_settings: Data structure containing
all filter settings including:

○ min_vaf: Minimum variant allele frequency
(default 4%).
○ max_vaf: Maximum variant allele frequency
(default 100%).
○ min_depth: Minimum read depth (default
20).
○ max_depth: Maximum read depth (default
1000).
○ min_meth: Minimum methylation percent
(default 25%).
○ opacity: Opacity of scatter plot points
(default 50%).
○ show_kg_only: Boolean indicating whether
to show only mutations found in the key genes
list K (default False).

● default_filter_settings: Default values
used for filtering.

/*************************************
Name & Purpose: Main, program entry point
Inputs: None
Processing: Establish main processing

loop for iCloneViz
Outputs: None
Returns: None
Authors: D. Johann, E. Peterson
*************************************/
main()
{

while (window is open)
{

patient_id = display_patient_search
();
button_selection, exp_id[] = dis-
play_patient_experiments
(patient_id);
process(button_selection, exp_id
[]);

}

}
/*************************************
Name & Purpose: Display Patient Search,

via patient ID display patient meta-data
Inputs: none
Processing: Display patient meta-data
Outputs: None
Returns: ID of selected patient from

MPMDB
Authors: D. Johann, E. Peterson
*************************************/

display_patient_search()
{

patient_id = input from user;
- get / display patient meta-data via
relation P;
return patient_id;

}
/*************************************
Name & Purpose: Display Patient Experi-

ments, show available experiments for
iCloneViz analysis
Inputs: Patient ID
Processing: Retrieve patient experimen-

tal meta-data from MPMDB
Outputs: Patient experimental data now in

memory
Returns: Array of experiment IDs, Button

selection for selected analysis, eg, Geno-
mic Real Estate or Paired Scatter Plot or
KDE plus Scatter Plot
Authors: D. Johann, E. Peterson
*************************************/
display_patient_experiments

(patient_id)
{

- get / display all experimental data
from database (MPMDB) for patient via
relation P;
exp_id[] = selected experiment ids;
return button_selection, exp_id[]

}
/*************************************
Name & Purpose: Process, process data and

display visualization based on the user’s
choice of visualization
Inputs: Button selection, & Experiment

IDs
Processing: Execute specific function to

handle processing based on user’s choice
of visualization
Outputs: None
Returns: None
Authors: D. Johann, E. Peterson
*************************************/
process(button_selection, exp_id[])
{

if (button_selection == ‘Genomic Real
Estate’)

genomic_real_estate(exp_id[0]);

Peterson et al. BMC Bioinformatics 2015, 16(Suppl 13):S7
http://www.biomedcentral.com/1471-2105/16/S13/S7

Page 12 of 17



else if (button_selection == ‘Paired
Scatter Plot’)

paired_scatter_plot(exp_id[0...1]);
else if (button_selection == ‘KD + Scat-
ter Plot’)

kd_plus_scatter_plot(exp_id[0]);

}
/*************************************
Name & Purpose: Genomic Real Estate,

fetch WES-based mutation data, using R.NET
to generate R plot and visualize
Inputs: Experiment ID of experiment to

visualize
Processing: Using R.NET API, generate

plot image and display in window
Outputs: Scatter plot of all mutations by

chromosome and variant allele frequency,
read depth is encoded by color, see Addi-
tional File 2
Returns: None
Authors: D. Johann, E. Peterson
*************************************/
genomic_real_estate(exp_id)
{

- execute query to MPMDB to fetch muta-
tion data based on the exp_id and DB
relation W;
- establish the R.NET interface and
invoke R;
- divide x-axis into 24 sections (22
chromosome + X,Y)
- scale each section by the length of
each chromosome
for each w in W
{

- plot w along x-axis by position, the
y-axis by variant allele frequency,
and color by read depth;

}
- export plot as image file;
- return execution to .NET;
- display image file in windows form;

}
/*************************************
Name & Purpose: Paired Scatter Plot,

fetch filter settings and call function to
display paired scatter plot
Inputs: Experiment IDs
Processing: If first time displaying, use

default filter settings to display paired

plot, otherwise, fetch filter settings
from user and display paired plot
Outputs: None
Returns: None
Authors: D. Johann, E. Peterson
*************************************/
paired_scatter_plot(exp_id[])
{

display_paired_scatter_plot(default_-
filter_settings, exp_id[]);
while (window is open)
{

filter_settings = read_filter_tool-
bar();
display_paired_scatter_plot(fil-
ter_settings, exp_id[]);

}

}
/*************************************
Name & Purpose: Display Paired Scatter

Plot, calculate WES mutations in common
and exclusive to each experiment and gener-
ate paired scatter plot
Inputs: Filter settings fetched from user

input, and Experiment IDs
Processing: Fetch WES mutations, and using

filter settings and referenced equations,
calculate mutations in common and exclusive
to each experiment; display paired scatter
plot with data, see Additional File 3
Outputs: A paired scatter plot for each

experiment in exp_id array, based on var-
iant allele frequency
Returns: None
Authors: D. Johann, E. Peterson
*************************************/
display_paired_scatter_plot(filter_set-

tings, exp_id[])
{

// Relational algebra Eq. (9)
common = exp_id[0].W ∩ exp_id[1].W;
// Relational algebra Eq. (10)
exp0_unique = exp_id[0].W \ exp_id[1].
W;
// Relational algebra Eq. (10)
exp1_unique = exp_id[1].W \ exp_id[0].
W;
- label all genes in K;
if (filter_settings.show_kg_only ==
true)
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- hide all non-labelled points;
- plot common, exp0_unique, and exp1_u-
nique based on DNAllelicFreq (variant
allelic frequency) using filter-
settings;

}
/*************************************
Name & Purpose: Read Filter Toolbar,

gather user-defined filter settings, and
display “TSG Methylation Table”, “WES
Table”, or “RNA Table” if the user so
desires
Inputs: None
Processing: Collect filter settings from

user; if the user clicks on “Filter” the fil-
ter settings are returned and they are used
when displaying a desired plot; if the user
clicks on “Show TSG Methylation Table”,
“Show WES Table”, or “Show RNA Table”, the
desired table is displayed using the refer-
enced equations
Outputs: Tables selected if clicked
Returns: User-defined filter settings
Authors: D. Johann, E. Peterson
*************************************/
read_filter_toolbar()
{

while (true)
{

filter_settings.min_vaf = user input
minimum VAF;
filter_settings.max_vaf = user input
maximum VAF;
filter_settings.min_depth = user
input minimum read depth;
filter_settings.max_depth = user
input maximum read depth;
filter_settings.min_meth = user
input minimum methylation percent;
filter_settings.opacity = user input
scatter plot point opacity;
filter_settings.show_kg_only = user
input show key gene only;
if (button_click_filter)
return filter_settings;

else if (button_click_show_tsg_
methylation_table)
- display TGS Methylation Table via

Relational algebra Eq. (13);
break;

else if (button_click_show_wes_table)
- display WES Table Eq. (11);

break;
else if (button_click_show_rna_table)
- display RNA Table Eq. (14);
break;

}
return filter_settings;

}
/*************************************
Name & Purpose: KD Plus Scatter Plot, call

subroutines to process and render data for
each of the individual plot areas, as well
as, to calculate various metircs
Inputs: Experiment ID of experiment to

visualize
Processing: Call subroutines to process

and render the individual plot areas; call
subroutine to calculate various metrics
Outputs: None
Returns: None
Authors: D. Johann, E. Peterson
*************************************/
kd_plus_scatter_plot(exp_id)
{

display_kd_plot(default_filter_set-
tings, exp_id);
display_scatter_plot(default_filter_-
settings, exp_id);
calculate_metrics(default_filter_set-
tings, exp_id);
while (window is open)
{

filter_settings = read_filter_tool-
bar();
display_kd_plot(filter_settings,
exp_id);
display_scatter_plot(filter_set-
tings, exp_id);
calculate_metrics(filter_settings,
exp_id);

}

}
/*************************************
Name & Purpose: Display KD Plot, displays

the kernel density estimation curve, using
the ‘ks’ R package to calculate an appro-
priate bandwidth
Inputs: User-defined filter settings and

the experiment ID to be visualized
Processing: Calculate the KDE for DNA

mutations, use R.NET to utilize the ‘ks’
package (used for bandwidth calculation)
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Outputs: KD curve, see Figures 1 & 2
Returns: None
Authors: D. Johann, E. Peterson
*************************************/
display_kd_plot(filter_settings,

exp_id)
{

- calculate KDE based on Relational
algebra Eq. (11) and Eq. (2) for all
mutations in Ŵ and weighted by copy
number;
- utilize R.NET to call ‘hpi’ function
in the R ‘ks’, for bandwidth
calculation;
- display KD plot using filter_settings;

}
/*************************************
Name & Purpose: Display Scatter Plot,

displays the DNA mutational scatter plot,
and tooltip containing RNA expression
based info if available
Inputs: User-defined filter settings and

the experiment ID to be visualized
Processing: Displays a scatter plot point

for each DNA mutation, set each glyph
depending on the degree of modality data
available, and populate tooltip with RNA
expression data if available
Outputs: Mutational scatter plot, see

Figures 1 & 2
Returns: None
Authors: D. Johann, E. Peterson
*************************************/
display_scatter_plot(filter_settings,

exp_id)
{

- calculate Ŵ by Relational algebra Eq.
(11) using filter_settings;
- set glyph for all DNA mutations to be a
blue circle and place along a-axis
according to variant allele frequency
and along y-axis by depth
for each tuple ŵ in Ŵ having RNA data cal-
culate R̂(ŵ) by Relational algebra Eq. (12)
{

- update point glyph, (red star,
expressed RNA mutation);
- build hover-over tooltip to con-
tain: gene name, transcript(s) ids
and FPKM(s) from R̂(ŵ);

}

- display scatter plot for each mutation
in Ŵ with associated tooltip (if RNA
data is available);

}
/*************************************
Name & Purpose: Calculate Metrics, calcu-

late various metrics for display
Inputs: User-defined filter settings and

the experiment ID to be visualized
Processing: Calculate SDI, total number

of mutations, and total number of key gene
mutations, for the data being visualized
Outputs: Calculated metrics
Returns: None
Authors: D. Johann, E. Peterson
*************************************/
calculate_metrics(filter_settings,

exp_id)
{

- calculate SDI using Eq. (1) and rela-
tion Ŵ (Relational algebra Eq. (11))
using filter_settings;
- calculate total number of mutations in
relation Ŵ using filter_settings;
- calculate total number of key genes
from K which are found in relation Ŵ
using filter_settings;
- display metrics;

}

Additional material

Additional File 1: Muti-omic relational integration. Illustration of
relations used to integrate multi-omic datasets. The upper-right box
(Relations & Attributes) defines all relations and their attributes. The left-
most section (iCloneViz DB) lists each dataset and a name / identifier for
each. Middle section (Multi-Omic Integration) illustrates the relationships
and integration of each dataset using intermediate relations. Each
intermediate integration is annotated with the attributes used in each
combination. Each intermediate relation is further annotated with the
equation used in the manuscript to form the given relation. The final
multi-omic “Integrated Relation” is shown in the lower right.

Additional File 2: Genomic mutational overview. A genomic mutational
overview of two experiments is computed and displayed. A corresponds
to the Presentation sample and B to Relapse. These provide a general
view of the inherent mutational events on a chromosomal basis. The x-
axis contains an ordered list of chromosomes (1-22, X, Y), each sized by
the number of base pairs (bp) it contains. The y-axis is ordered by variant
allele frequency (VAF), and the color scale indicates sequence depth.
Each variant is a point in the plot.

Additional File 3: Scatter plot of paired samples. Displayed are variants
in the Presentation on the x-axis compared to Relapse on y-axis. Both the
× and y-axes are based on VAF. Variants are colored to indicate whether
they are shared or unique. See legend for color assignments.
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Additional File 4: MYC oncogene with mutation showing possible
splicing events. Illustrated is a lolliplot diagram of MYC showing the
possible missense mutations in the coding region depending on splicing.

Additional File 5: iCloneViz pseudocode flow diagram. Illustrated is
the execution flow of iCloneViz and its associated subroutines. Each
subroutine and its formal parameters is represented as a node. Each arc
represents a subroutine call from one subroutine to another.
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