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Brain imaging genetics can demonstrate the complicated relationship between genetic
factors and the structure or function of the humankind brain. Therefore, it has become
an important research topic and attracted more and more attention from scholars. The
structured sparse canonical correlation analysis (SCCA) model has been widely used to
identify the association between brain image data and genetic data in imaging genetics.
To investigate the intricate genetic basis of cerebrum imaging phenotypes, a great deal
of other standard SCCA methods combining different interested structed have now
appeared. For example, some models use group lasso penalty, and some use the
fused lasso or the graph/network guided fused lasso for feature selection. However,
prior knowledge may not be completely available and the group lasso methods have
limited capabilities in practical applications. The graph/network guided approaches
can use sample correlation to define constraints, thereby overcoming this problem.
Unfortunately, this also has certain limitations. The graph/network conducted methods
are susceptible to the sign of the sample correlation of the data, which will affect the
stability of the model. To improve the efficiency and stability of SCCA, a sparse canonical
correlation analysis model with GraphNet regularization (FGLGNSCCA) is proposed in
this manuscript. Based on the FGLSCCA model, the GraphNet regularization penalty is
imposed in our study and an optimization algorithm is presented to optimize the model.
The structural Magnetic Resonance Imaging (sMRI) and gene expression data are
used in this study to find the genotype and characteristics of brain regions associated
with Alzheimer’s disease (AD). Experiment results shown that the new FGLGNSCCA
model proposed in this manuscript is superior or equivalent to traditional methods in
both artificially synthesized neuroimaging genetics data or actual neuroimaging genetics
data. It can select essential features more powerfully compared with other multivariate
methods and identify significant canonical correlation coefficients as well as captures
more significant typical weight patterns which demonstrated its excellent ability in finding
biologically important imaging genetic relations.

Keywords: sparse canonical correlation analysis (SCCA), GraphNet regularization, Alzheimer’s disease (AD), brain
imaging genetics, SNP, gene expression
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INTRODUCTION

Alzheimer’s disease (AD) is an irreversible long-time
neurodegenerative disease and not only brings misfortune
to the patient, but also brings a heavy economic and emotional
burden to the family (Alzheimer’s Association, 2013). AD is the
most common form of dementia and its incidence increases
with the aging of the population (Goldberg, 2007). In the past
ten years, image genetics has become a crucial research topic in
biomedicine and bioinformatics. The reason is that the potential
influence of genes on brain structure and function can be
found by genetic research. As a powerful tool for data-driven
association analysis, statistical learning methods can make full
use of the inherent structural information of biomarker data
to build models to analyze the correlation between susceptible
genes and brain structure or function which can indicate the
pathogenesis of brain cognitive behavior or related diseases
well. Image genetics can be used to identify the relationship
between imaging results and genetic variables (Chen et al., 2013;
Hashimoto et al., 2015; Aghakhanyan et al., 2018). Therefore,
imaging genetics has become a hot research topic in biomedicine
and bioinformatics research.

Correlated canonical analysis (CCA) (Hotelling, 1936) is a
classic algorithm and a hot spot in imaging genetics. CCA can be
used to mine the correlation between data. However, when using
the traditional CCA method, a serious over-fitting phenomenon
may appear. For the sake of dealing with this issue, some
scholars have introduced sparse canonical correlation analysis
(SCCA), which can be used to identify bivariate contacts between
a great number of genes and dozens of imaging quantitative
traits (QTs). Then, to more effectively distinguish the bivariate
correlation about a series of genes with a large number of
imaging QTs, some researchers have made different amendments
for SCCA. The GraphNet based sparse canonical correlation
analysis model (GNSCCA) used graph-constrained resilient
network regularization, which not only can find meaningful
connections, but also contribute to the smoothness between
adjacent coefficients (Du et al., 2015). The an improved GNSCCA
method (AGNSCCA) introduced one new penalty to improve
SCCA model and developed an effective optimization algorithm
to get a better typical correlation coefficient (Du et al., 2016).
Sparse canonical correlation analysis based on joint connectivity
(JCBSCCA) proposed a connectivity-based penalty measure to
incorporate prior biological information and had sound anti-
noise performance (Kim et al., 2020). Some scholars have
considered that genetic data and imaging features had different
group-level structures. Because prior knowledge is not fully
available in real life, they improved the lasso penalty combined
lasso with graph/network guidance in structured sparse learning.
Du et al. (2020) proposed the FGLSCCA (Grosenick et al.,
2013) adding two new penalty conditions to the SCCA model,
namely, the fusion paired group lasso (FGL) as well as the
graph guided paired group lasso (GGL). However, FGLSCCA also
has certain shortcomings. The stability and anti-interference of
the FGLSCCA algorithm are not good enough, and it cannot
incorporate physiological restraints such as connectivity.

In response to the above problems, FGLGNSCCA algorithm
is proposed in our present study. First of all, GraphNet

regularization (Grosenick et al., 2013) is added to the punitive
measure in FGLGNSCCA model. GraphNet regularization is an
upgraded version of resilient network regularization and can
validly incorporate physiological restraints. Moreover, JCBSCCA
has confirmed its stability and noise resistance. To make
the model’s results more biological explanatory power, this
manuscript applies it as prior knowledge to the model. Secondly,
this manuscript derives an efficient iterative optimization
algorithm, which proves that the algorithm converges to the
optimal local solution. Firstly, we use synthetic data for testing.
These experiments illustrate that the algorithm has better noise
immunity than other algorithms. When the data set is small,
it has more smoothness. Then we use the accurate data set.
These results suggest that it has a better canonical correlation
coefficient. It is effective to recognize salient features on the
actual data set.

METHOD

Sparse Canonical Correlation Analysis
In the formulas, bold lowercase letters represent vectors and
bold uppercase letters describe matrices. Expressly, we set X ∈
Rn × p,Y ∈ Rn × q in this article. X has n samples and p features,
while Y has n samples and q features. Meanwhile, X is the
genotype data set as well as Y is the image data set. CCA is used to
analyze the correlation between two data sets. The purpose of the
CCA model is to find the weight vectors u and v of the features in
X and Y that maximize the relation. The formula is as follows:

max
u,v

uTXTYv (1)

s.t.uTXTXu = vTYTYv = 1,

In image genetics, the feature dimensions of data are often
much higher than the sample size which lead to over-fitting.
Witten et al., proposed sparse SCCA (Parkhomenko et al., 2009;
Du et al., 2020) to solve excessive feature dimensionality. The
definition is as follows:

min
u,v
−uTXTYv + λu

∣∣|u| |11 + λv

∣∣ |v| |11 (2)

s.t.| |u| |22 = | |v| |
2
2 = 1

FGLSCCA Model
Du et al. (2020) imposed two new penalties FGL and GGL on the
SCCA model (Grosenick et al., 2013).

min
u,v
−uTXTYv + �FGL (u) + �GGL (v) (3)

s.t.||Xu||2 ≤ 1, ||Yv||2 ≤ 1

Among them, the FGL and GGL penalties are defined as:

�FGL (u) = λ1

p−1∑
i = 1

ωi,i + 1

√
u2
i + u2

i + 1 (4)

�GGL (v) = λ2
∑
(j,k)∈E

ωj,k

√
v2
j + v2

k (5)
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Here, ωj,k is the weight value of the edge. GGL is an effective
technique for estimating the inverse covariance matrix.

New Connectivity Penalties
This article used a new penalty term based on connectivity,
and it was graphed (Grosenick et al., 2013). GraphNet
regularization is one restraint by an amended version
of the resilient network regularization, which allows the
effective integration of physical constraints of connectivity
(Grosenick et al., 2013).

First of all, connectivity methods can quantify meaningful
neurobiological measurements and are a good source of
information (Hagmann et al., 2008). Second, the GraphNet
regularization program encourages the similarity of the relevant
elements of the canonical vector (Du et al., 2016). The formula is
as follows:

P (u) =
∑

i,j

Cu(i,j)(ui−uj)
2

P (v) =
∑

i,j

Cv(i,j)
(
vi−vj

)2 (6)

From the literature (Grosenick et al., 2013), the following
formula can be obtained:

P (u) = uTLuu, P (v) = vTLvv (7)

Lu and Lv mean the Laplacian matrix.

The Proposed FGLGNSCCA Model
A new structured sparse canonical correlation analysis method
(FGLGNSCCA) was proposed in this manuscript. In the
presented model, X ∈ Rn × p and Y ∈ Rn × qrepresented the gene

variable matrix and the brain image variable matrix, respectively.
Meanwhile, u and v represented the characteristic weights or
regular loads of X and Y , respectively.

The model formula is as follows:

min
u,v
−uTXTYv + �FGL (u) + �GGL (v) +

γ1

2
(||Xu||2−1)

+
γ2

2
(||Yv||2−1) +

λ1

2
uTLuu +

λ2

2
vTLvv (8)

s.t.||Xu||2 ≤ 1, | |Yv| |2 ≤ 1,

Figure 1 is the schematic diagram of the proposed
algorithm FGLSCCA.

Agency Goals and Optimization
Algorithms
If this article directly used the Lagrangian method to find the
partial derivatives of u and v in equation (8), it was quite difficult.
Therefore, we used the results of Grosenick et al. (2013), Du et al.
(2020) and used the substitution functions�APP

FGL(u) and�APP
GGL(v)

derived when processing the data. In addition, set ||Xu||2 = 1
and ||Yv||2 = 1, and L(u, v) is as follows:

L(u, v) = −uTXTYv + �APP
FGL(u) + �APP

GGL(v) +
γ1

2
(||Xu||2−1)

+
γ2

2
(| |Yv| |2−1) +

λ1

2
uTLuu +

λ2

2
vTLvv (9)

γ1, γ2, λ1, and λ2 are artificially set positive tuning parameters,
and this Lagrangian function is continuous. Therefore, the
vectors u and v can be differentiated. The partial derivatives of
U and V need to be calculated, and then set L(u, v) = 0 to get

FIGURE 1 | The schematic diagram of the proposed algorithm FGLGNSCCA.
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TABLE 1 | Pseudo code for FGLGNSCCA.

Algorithm 1: Algorithm for FGLGNSCCA

Require: Normalized data X ∈ Rn × p,Y∈Rn×q , set parameters λ1,λ2, γ1, γ2

Ensure: Canonical vectors u, v

1:Initialize u ∈ Rp × 1,v ∈ Rq× 1

2:While not converged do

3: Update the diagonal matrix DX, P (u)

4: Fix v and solve u = XTYv
λ1DX + γ1XT X + λ1Lu

5: Scale u = u./sqrt(uTXTXu)

6: Update the diagonal matrix DY , P (v)

7: Fix u and solve v = YT Xu
λ2DY + γ2YT Y + λ2Lv

8: Scale v = v./sqrt(vTYT Yv)

9:End while

the extreme value:

0 = −XTYv +
(
λ1DX + γ1XTX + λ1Lu

)
u, (10)

0 = −YTXu +
[
λ2DY + γ2YTY + λ2Lv

]
v, (11)

Here, DX ∈ Rp × p and DY ∈ Rq × q are diagonal matrix.

dXii =
ωi−1,i√

u2
i−1 + u2

i

+
ωi,i + 1√

u2
i + u2

i + 1

s.t.ω0,1 = ωp,p + 1 = 0, (12)

dY
j
j =

q∑
m = 1,(j,m)∈E

ωj,m√
v2
j + v2

m

(13)

Here, dXii is the i-th element of DX, and dY
j
j is the j-th element

of D Y .

The following formula can be obtained by the formulas (10)
and (11):

u =
XTYv

λ1DX + γ1XTX + λ1Lu
, (14)

v =
YTXu

λ2DY + γ2YTY + λ2Lv
, (15)

The pseudo code of the model is shown in Table 1.

RESULTS

Simulation Data Experiment
In this part, simulated data has been used for experiments.
Therefore, the accuracy of the proposed algorithm for detecting
highly correlated biomarkers can be more intuitively estimated.
First, we simulated the generation of two loading vectors as
ground truth to simulate gene and image features. The number
of the samples was set up n. In the data (gene data and image
data), the gene data had p = 800 feature dimensions, and the
image data had q = 100 dimensions. Secondly, this manuscript
generated a latent variable εN(0, δ2) to express the correlation
between genetic data and images (Lin et al., 2014). Finally, this
manuscript imposed different noise levels on the generated data
matrix to evaluate the anti-noise performance of the model. We
compared with the proposed model with FGLSCCA, L1-SCCA,
AGNSCCA as shown in Figure 2 which shown the influence of
different noise levels on the sample correlation results under 100
times of fivefold cross-validation.

In Figure 2, it can be seen that as the noise level continues
to increase, the calculated typical correlation coefficients of each
model are decreasing, and the stability of the correlation results
also decreases to varying degrees. Under the low-level noise,

FIGURE 2 | The test results of different models under different noise levels. The horizontal axis is the noise level, and the vertical axis is the typical correlation
coefficient.
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TABLE 2 | Characteristics of the subjects.

Groups AD EMCI LMCI HC

Number 25 186 62 113

Gender (M/F) 10/15 101/85 32/30 58/55

Age (mean ± SD) 75.99 ± 10.22 71.56 ± 7.51 72.91 ± 6.82 75.06 ± 5.68

EMCI stands for Early Mild Cognitive Impairment, LMCI stands for Late mild
cognitive impairment, HC stands for Healthy Contro.

the difference in the typical correlation coefficients of different
models is slight, but the proposed algorithm FGLGNSCCA still
has a weak advantage. Under the high-level noise, the new model
presented has higher correlation typical coefficients. Therefore,
our model is better than other three models. In general, under
the same conditions, the model proposed in this manuscript
has better anti-noise performance and sample correlation,
which is more conducive to the analysis of data correlation
results and the discovery of the pathogenic mechanism of AD’s
related biomarkers.

Subject Data and Preprocessing
The genetic data and imaging phenotype data used in this
article are all from the Alzheimer’s Disease Neuroimaging Project
(ADNI) database1. The main contribution of ADNI is the
development of clinical, imaging, genetic and biomarkers for
early detection and tracking of AD.

Consistent with the previous preprocessing method, this
article downloaded the data of 386 non-Hispanic white subjects
in ADNI1, including imaging and genotyping data (Wei et al.,
2021). First, for raw structure magnetic resonance imaging
(sMRI), DiffusionKit (Gorski et al., 2007) is used to perform

1http://ADNI.loni.usc.edu/

head movement correction on sMRI. Secondly, using the SPM
software package (Saykin et al., 2010). CA T toolkit to achieve
sMRI segmentation, the image phenotype feature comprises 140
regions of interest (ROI).

This article uses PLINK (Jung and Hu, 2015) to preprocess the
genotype data and screen it according to the following criteria:
HWEp < 10−6, extract genes with variance more significant
than 0.5. In the end, 4,026 genes were obtained in this article. The
characteristics of the subjects are counted in Table 2.

Experimental Setup and Parameter
Selection
In this part, this article will use the algorithm to experiment on
accurate data, and finally select the appropriate parameters. In the
FGLGNSCCA model, there are four parameters (λ1,λ2, γ1, γ2)
that need to be set manually. In this study, the values of λ1and
λ2 will be fixed, and the values of γ1 and γ2 will be constantly
changed for experimentation. When a certain set of values makes
the experiment get the largest canonical correlation coefficient,
then a set of parameters needed in this research is obtained.

Because of the limited number of samples collected in this
article, this article finally chose fivefold cross-validation (Wang
et al., 2010). After a complete fivefold cross-validation, this study
obtained five typical correlation coefficients (CC).

In this article, λ1 = λ2 = 1 will be fixed. This article
applies the proposed algorithm to image data and gene expression
data. The goal of this article is to obtain the most significant
canonical correlation coefficient (CC) between gene and image
data. Therefore, when the CC is the largest, the parameter results
required in this article can be obtained. Then by repeating the
experiment 50 times, the average CC and standard deviation are
calculated, which are used as the experimental results of this

FIGURE 3 | The bar graphs of different colors represent different γ1, the vertical axis coordinate represents different γ2, and the horizontal axis coordinate represents
the typical correlation coefficient under different γ1 and γ2 conditions.

Frontiers in Aging Neuroscience | www.frontiersin.org 5 January 2022 | Volume 13 | Article 817520

http://ADNI.loni.usc.edu/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-817520 December 31, 2021 Time: 12:5 # 6

Wang et al. Related Research on Alzheimer’s Disease

article. However, the blind grid search of parameters is very time-
consuming. Therefore, this article matches the values of γ1 and
γ2 one by one from (0.1, 1, 10, 100). After testing with different
parameters, γ1 = 100 and γ2 = 1 are selected in this article.
Finally, the maximum correlation coefficient of the model in this
manuscript is CC = 0.3665± 0.0126. The correlation coefficients
obtained by different parameters are shown in Figure 3.

FIGURE 4 | The heat maps obtained by 250 runs of different models. The
upper figure in each part is the canonical weight of the genes which is u and
the following figure is the image canonical weight which is v. The dimension of
standard gene weight is R250 × 4026 (each row represents the number of the
algorithm runs, and each column represents a feature). The size of the
standard sMRI weight is R250 × 140.

TABLE 3 | TOP10 Brain ROI.

ROI Weight

lCau
rThaPro
rAngGy
lVenVen
lMedFroCbr
rCau
rSupMarGy
rPosIns
rCbeLoCbe6-7
rPoCGy

3.39E-02
1.24E-02
5.22E-03
2.63E-03
2.31E-03
2.14E-03
9.65E-05
7.22E-05
6.15E-05
5.37E-05

Experimental Results of Real Data
The fresh model proposed in this study does not use the
common generalized fusion lasso, but uses the penalty term
using FGL, GGL, and GraphNet normalized form. This study
selected 386 sample data, including genetic data and image data.
This manuscript compares the FGLGNSCCA model with other
models, and finally can confirm whether the algorithm in this
manuscript has better performance. To ensure the reliability
of the experimental results, this manuscript uses FGLGNSCCA
and the other three models to conduct 50 times fivefold cross-
validation training, respectively. Each time, a load vector is
generated and stored in the matrix. In the end, this research will
get a 250 × 4026 matrix and a 250 × 140 matrix. For the above
research results, respectively, as shown in Figure 4.

It can be seen from Figure 4 that the L1-SCCA model
cannot accurately identify the brain regions and genes from a
large amount of data. Although the FGLSCCA and AGNSCCA
models can identify a certain number of brain regions and genes,
some of their features show disorder and do not have excellent
stability. The models of L1-SCCA,FGLSCCA, and AGNSCCA
extract too many feature genes and brain regions, which may
not be used as effective biomarkers related to AD. First of all,
the heat map of the FGLGNSCCA algorithm in Figure 4 clearly
displayed the significant genes and brain regions, which is helpful
for accurate positioning. Secondly, fewer distinctive features
eliminate some interferences, and may help drug research for
the treatment of AD. In general, the method in this manuscript
was more conducive to discovering relevant biomarkers for the
pathogenesis of AD by analyzing the correlation and biological
significance between gene expression data and sMRI.

In addition, the TOP10 brain regions identified by the
proposed model has been shown and the absolute values of the
average weight of 50 × 5 times are listed in Table 3. Due to the
high dimensionality of the genes, this article separately displayed
the TOP30 genes and average weights identified by the new
model proposed in this article in Table 4. At the same time, this
article also gave the typical correlation coefficients (Mean ± SD)
between gene and sMRI of different models. Through 50 times
fivefold cross-validation, the comparison results of canonical
correlation coefficients are shown in Table 5.

This research, respectively, counted the TOP30 genes and
the TOP10 brain regions obtained by the four algorithms, and
respectively, drew the gene venn diagram and the brain region
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TABLE 4 | TOP30 gene genetic feature weight.

Gene Weight

PRKY 9.79E-03

RPS4Y1 8.62E-03

PRKX| | PRXY 8.37E-03

RPS4Y2 6.81E-03

KDM5D 5.26E-03

EIF1AY 4.83E-03

TXLNG2P 4.51E-03

DDX3Y 3.54E-03

UTY 3.19E-03

XIST 2.76E-03

KDM6A 1.03E-03

EIF1AX 7.13E-04

TXLNG 6.23E-04

TTTY10 3.08E-04

DDX58 1.23E-04

USP9Y 1.13E-05

ZFX 9.10E-06

DDX3X 8.64E-06

PPAPDC1B 8.51E-06

POU2AF1 6.65E-06

ZFY 6.55E-06

DDX60 6.01E-06

FCRL1 3.60E-06

NT5E 3.21E-06

PTPRK 2.37E-06

CXCR5 2.09E-06

E2F5 1.23E-06

AFF3 1.15E-06

CXCL5 1.08E-06

FCRL2 9.98E-07

TABLE 5 | Canonical correlation coefficients of different models.

Model CC (Mean ± SD)

FGLGNSCCA 0.3665 ± 0.0126

FGLSCCA 0.2891 ± 0.0296

AGNSCCA 0.3056 ± 0.0362

L1-SCCA 0.3102 ± 0.0281

venn diagram as shown in Figures 5, 6 (Jia et al., 2021). It can
be seen from Figure 6 that the FGLGNSCCA algorithm has
obtained ten genes that are not duplicated with other algorithms.
The genes, E2F5 and PTPRK, have been confirmed to be related
to AD. In the venn diagram of the brain area, the TOP10
brain areas selected by AGNSCCA are not repeated with other
algorithms, indicating that the effect of AGNSCCA is not good.
FGLGNSCCA, L1-SCCA, and FGLSCCA obtained a total of
six identical brain regions, some of which proved to be related
to AD, while FGLGNSCCA alone has a brain region named
Right Caudate (rCau), which may be a biomarker of AD. With
FGLGNSCCA algorithm, more AD-related biomarkers have been
found. Therefore, the algorithm proposed in this manuscript
is more superior.

FIGURE 5 | The venn diagram of the brain area.

FIGURE 6 | The venn diagram of the gene.

DISCUSSION

In the research of this article, this article used data from
386 samples, including genetic data and image data. When
comparing with different models, the new models presented in
this article all show better performance. First of all, the new model
proposed in this article can display several brain areas more
prominently. In contrast, the display of other models is more
confusing and cannot effectively identify the prominent brain
areas. Secondly, the new model proposed in this article can also
identify significant genes and the correlation between image and
genetic data, which is incomparable to the other three models.

Prediction of Region of Interest
Figure 7 shows a schematic diagram of the first ten brain regions.
The color in Figure 7 represents the typical weight of the TOP10
brain regions, which is v. The value indicated by the color has
been shown on the right side of the picture. The new model
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FIGURE 7 | The first row is 1–5 brain areas, and the second row is 6–10 brain areas.

proposed in this manuscript identifies the first ten brain regions,
among which Left Supramarginal Gyrus (lSupMarGy) (Penniello
et al., 1995), Right Thalamus Proper (rThaPro) (de Jong et al.,
2008), Left Caudate (lCau) (Baik et al., 2021), and Left Medial
Frontal Cerebrum (lMedFroCbr) (Johannsen et al., 1999) are
associated with AD. And Left Caudate has the most remarkable
correlation in the recognition results of this manuscript, so it
further proves the reliability and authenticity of the algorithm
in this manuscript, which is due to the excellent performance
of the algorithm in this manuscript. Although the other three
algorithms can also identify a certain number of brain regions
to a certain extent, the algorithm in this article has significant
differences. It can identify brain regions that are significantly
related to AD. In addition, the Right Angular Gyrus (rAngGy)
and self-awareness are functionally associated with the physical
disconnection (de Boer et al., 2020), which may be related to the
loss of self-awareness in patients with advanced AD. Moreover,
Right Angular Gyrus plays an essential role in language function
(Rosselli et al., 2015), which may be related to a series of
symptoms such as aphasia in AD patients. Right Angular Gyrus,
which has a high correlation, has not yet been confirmed to be
highly correlated with AD. This may be the next direction for
clinical research.

Over-Representation Analysis
Gene Ontology Enrichment Analysis
DAVID is a robust database. It has two absolute advantages.
First, there are many identifiers. Second, there are many types of
background species. It has data on a small number of research
objects, and its operation is convenient. Since 2003 Since its
inception, it has always had a good reputation. Therefore, this
article chooses the DAVID database for data analysis. First, this
article uses DAVID Bioinformatics Resources 6.82 to perform
gene ontology (GO) enrichment analysis on the first 500 genes
identified by the algorithm in this article (Ding and Zhang,
2017). In the results of GO enrichment analysis, this article finally
selected the first four more significant terms, as shown in Table 6.
A total of 16 different genes are enriched in these four terms.
From this result, it can be concluded that these 16 genes are

2https://david.ncifcrf.gov/

all involved in biological processes (BP), and the detailed GO
enrichment analysis is shown in the GO string diagram Figure 8.

Alzheimer’s disease not only damages the human brain, but
also can cause damage to other human organs. The early stage of
AD is not fatal, but in the middle and late stages, AD will bring
various complications (heart disease, thromboembolism, stroke,
and renal failure, etc.), which will bring death threats to the
patient. From this, we know that AD is not a simple neurological
disease, but a comprehensive disease. Mental functions such as
early and mid-term characteristic memory of AD patients are
weakened. Still the late symptoms of AD are aphasia, a decline
in physical fitness and loss of bodily control. It can be seen that
AD is a chronic disease with multiple genes working together, and
its pathogenesis includes a large number of biological processes.
Because AD’s toxic proteins can erode brain cells, the innate
immune response of the brain mucosa is a critical protective
mechanism. It can also be seen in the analysis results, innate
immune response in the mucosa is one of the most effective
terms. It has been confirmed in the literature (Stylianaki et al.,
2019) that when the antibacterial response of neutrophils outside
the patient’s body is damaged, the probability of getting sepsis
will increase, and sepsis is one of the complications of AD. This
can also be reflected in the analysis of this article. That is, the
antibacterial humoral response is one of the first four significant
terms. The above reveals the link between some diseases and AD.

Kyoto Encyclopedia of Genes and Genomes Pathway
Analysis
In this part, this article also used the DAVID database to perform
the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis on the first 1000 genes identified by the algorithm
(Kanehisa et al., 2017). The DAVID database identified 987 genes.
Other genes did not match. It may be because the database has not

TABLE 6 | Four sets of significant terms obtained by GO analysis.

Category ID Term FDR

BP GO:0002227 innate immune response in mucosa 6.24E-02

BP GO:0050832 defense response to fungus 6.24E-02

BP GO:0019731 antibacterial humoral response 7.99E-02

BP GO:0009615 response to virus 7.99E-02
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FIGURE 8 | Chord diagram obtained through GO analysis in the experiment. Among the first 500 genes entered, 16 genes were significantly enriched in 4 GO term.

been updated in time or the gene names are outdated. Among
all the genes compared to the database, a total of 351 genes
were enriched in the KEGG signal path, accounting for about
35.6%. To observe the significance of the input gene enrichment
in the pathway, after artificially setting P-value < 0.05, 11 signal
pathways were screened, as shown in Figure 9.

From Figure 9 that the cell adhesion molecules (CAMS)
signal pathway enrichment analysis is more significant than
other pathways. In the literature (Leshchyns’ka and Sytnyk,
2016), it is shown that the loss of synapses between brain
neurons is inevitable with Alzheimer’s disease (AD). The article
describes in detail that changes in synaptic adhesion play a
vital role in the destruction of neuronal networks in AD. From
Figure 10 that these 11 signal pathways can be divided into three
major categories, namely environmental information processing,
Organismal Systems, and Human Diseases. The signal pathways
we have identified are highly related to organism systems
and human diseases.

The above analysis proves that the new algorithm proposed in
this manuscript has identified the signal pathways related to AD,
proving that FGLGNSCCA has powerful performance.

Refinement Analysis
Among the TOP30 genes identified by FGLGNSCCA, genes such
as ZFX (Soleimani et al., 2020), XIST (Wang et al., 2018), E2F5
(Johanson et al., 2008), KDM6A (Davis et al., 2020), TXLNG
(Hotokezaka et al., 2015), and PTPRK (Chen et al., 2018) have
been confirmed to play an eventful role in the AD process or
participation in related biological processes. The RPS4Y1 gene
is associated with Parkinson’s disease (Sun et al., 2014). The
literature (Yue et al., 2020) deemed that XIST may become a
new underlying aim for the remedy of AD. At the same time,
the literature (Chanda and Mukhopadhyay, 2020) also discussed
the possibility of XIST-mediated therapeutic intervention and
the relationship between XIC and women’s preference for
AD. The PTPRK gene is associated with an increased risk of
neuropsychiatric diseases and cancer, and the literature (Sun
et al., 2014) provided evidence that the PTPRK gene is associated
with the risk of AD. The relationship between other genes and
AD needs to be studied in the future.

In addition, the paired correlation heat maps of TOP30 genes
and TOP10 brain regions are shown in Figure 11 in this article
which in Tables 3, 4. The Y-axis direction is the typical weights of
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FIGURE 9 | KEGG enrichment analysis results of the first 1000 genes.

FIGURE 10 | Environmental information processing includes 1 signal path. Organismal systems includes five signal paths; human diseases includes five signal paths.

genes arranged from small to large, and the X-axis is the typical
weights of brain regions from high to low. As expected in this
article, all Gene-ROI pairs have a strong correlation. And it can be

observed in this article that the first nine genes (PRKY, RPS4Y1,
PRKX | | PRKY, RPS4Y2, KDM5D, EIF1AY, TXLNG2P, DDX3Y,
and UTY) are negatively correlated with all brain regions. And
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FIGURE 11 | Gene-ROI pairwise correlation.

it can be found that the effects of the same genetic variable
on different brain regions show the same positive or negative
relationship as a whole.

This article used the z-test to analyze the pairwise correlation
of the Gene-ROI we got. The number of Gene-ROI pairwise
correlation coefficient is 300, z-test is selected in this article.
Next, this article selected the TOP10 data with p-value
less than 0.01 which are shown in Table 7. It can be
seen from the Table 7 that the XIST gene is extremely
related to five brain regions, and the XIST gene has been
confirmed to be related to AD. Caudate brain region is
extremely related to six genes, and Caudate has also been
shown to be related to AD. Therefore, this article believes
that XIST gene and Caudate brain region are likely to be
biomarkers of AD.

TABLE 7 | The TOP10 pairs with p <0.01.

Gene-ROI P-value

XIST-Left Caudate 0.00291

XIST-Right Thalamus Proper 0.00366

XIST-Left Ventral Ventricle 0.00441

XIST-Right Angular Gyrus 0.00470

KDM5D-Left Caudate 0.00534

XIST-Right Caudate 0.00546

RPS4Y2-Left Caudate 0.00577

PRKX | | PRKY-Left Caudate 0.00597

EIF1AY-Left Caudate 0.00604

TXLNG2P-Left Caudate 0.00609

Of course, the algorithm proposed in this article also has
certain shortcomings. First of all, the collected samples limited
the performance of the model. Due to the small number of
samples, various penalty items may cause over-fitting problems.
At the same time, we have not collected more image data to get a
closer image genetic association in addition to sMRI.

CONCLUSION

This article dedicates identifying biomarkers related to AD
through image genetics. Once they are clinically verified, they
can better predict the possibility of a person becoming an AD
patient and guide clinical decision-making. In this study, this
manuscript adds GraphNet regularization based on FGLSCCA.
GraphNet regularization is a constraint by a modified version of
the resilient network regularization, which allows the physical
limitations of connectivity to be effectively integrated. First of
all, in the research using artificially synthesized highly correlated
data sets for testing, these findings indicate that the algorithm
in this manuscript has better anti-noise capability than the three
methods (L1-SCCA, FGLSCCA, and AGNSCCA). Secondly, on
the actual ADNI data set, we used the data set of 386 non-
Hispanic white subjects. After the FGLGNSCCA model was run
through 50-fold cross-validation, it obtains a higher canonical
correlation coefficient of gene-ROI than other models, and more
significant biomarkers have been identified. Again, this article
uses the David database in the biological analysis. In the GO
and KEGG enrichment analysis, this study found that 16 genes
are present in 4 significant GO Term, and 351 genes are present
in 11 signal pathways. These intuitive biological analyses can
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make it easier for us to interpret AD pathology-related problems.
Finally, by displaying the pairwise correlation heat map of genetic
variables and image variables, this article shows that the effects
of the same gene on different brain regions are all related in
the same direction as a whole. And we found a combination of
ROI and gene, and this combination may be contacted to AD.
It further shows the close relationship between genetic variables
and brain regions. In the future, we will undertake to add other
data together for research, hoping to more effectively explore the
biological relationship between genetic data and imaging data.

Most people only think that AD is a chronic neurological
disease, which only has the characteristics of dementia, memory
loss, and other non-lethal features. But in fact, AD is a fatal
chronic neurological disease. The early stage of AD is just some
trivial things such as memory decline, and these things will
naturally occur with age, and people will naturally not pay more
attention. But in most cases, when a person is diagnosed as an AD
patient, his condition has reached the middle or late stage, and at
this time, the doctor is unable to recover. Therefore, it is hoped
that the new algorithm proposed in this article can effectively and
earlier identify patients with early AD or ordinary people who
may become AD patients.
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