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Abstract

Background.—There is an increasing trend to represent domain knowledge in structured graphs, 

which provide efficient knowledge representations for many downstream tasks. Knowledge 

graphs are widely used to model prior knowledge in the form of nodes and edges to represent 

semantically connected knowledge entities, which several works have adopted into different 

medical imaging applications.

Methods.—We systematically searched over five databases to find relevant articles that applied 

knowledge graphs to medical imaging analysis. After screening, evaluating, and reviewing the 

selected articles, we performed a systematic analysis.

Results.—We looked at four applications in medical imaging analysis, including disease 

classification, disease localization and segmentation, report generation, and image retrieval. We 

also identified limitations of current work, such as the limited amount of available annotated data 

and weak generalizability to other tasks. We further identified the potential future directions 

according to the identified limitations, including employing semisupervised frameworks to 

alleviate the need for annotated data and exploring task-agnostic models to provide better 

generalizability.

Conclusions.—We hope that our article will provide the readers with aggregated documentation 

of the state-of-the-art knowledge graph applications for medical imaging to encourage future 

research.
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1. Introduction

In recent years, incorporating structured domain knowledge into downstream tasks has 

drawn great research attention from industry and academia [1]. This is because domain 

knowledge provides a proper understanding of a field which can be represented as a 

knowledge graph that can facilitate efficient inference to empower downstream tasks.

A knowledge graph represents the actual facts in the form of structured graphs, including 

entities (e.g., realistic objects and general concepts) and the relationships between entities 

[1]. It provides semantically structured information that computers can interpret and 

promises to build more intelligent systems to solve numerous real-world problems.

Knowledge graphs (viewed as the graph structure) differ from knowledge bases in terms 

of the involvement of formal semantics for interpretation and inference over facts (Figure 

1). Knowledge graphs (KGs) like DBPedia [2], NELL [3], and Wikidata knowledge base 

[4] have become instrumental in various machine learning applications, such as information 

retrieval [5], information extraction [6-8], question answering [9, 10], and recommendation 

[11-13].

Within a biomedical setting, researchers can utilize knowledge graphs to tackle various 

realistic problems, for example, aiding efforts to diagnose patients [14], exploring possible 

disease treatments [15, 16], and identifying associations between biomolecules and diseases 

[17]. Oftentimes, solutions require a process called representation learning, which is to learn 

the mappings between the knowledge graphs and low-dimensional graph representations 

in feature space [1]. The representation learning process aims to encode the local as well 

as the global structure of a knowledge graph and map it to an embedding that can be 

utilized by algorithms for downstream tasks. Among various knowledge graph applications 

in biomedicine, medical imaging (e.g., radiography, ultrasound, and magnetic resonance 

imaging) serves as one of the most significant diagnostic aids that are readily available to 

physicians [18].

Deep learning methods try to train algorithms to identify abnormal regions and tissue 

variations in a manner similar to human beings [19]. Medical record histories, previous 

diagnoses made by pathologists or radiologists, are used to train the algorithms. The 

algorithm learns this with large amounts of data, and after analyzing thousands of iterations 

of different images and diagnoses, it eventually will learn to make some diagnoses. In 

the medical imaging analysis domain, knowledge graphs have drawn a lot of research 

attention. Though there are comprehensive survey papers for knowledge graph applications 

in biomedical informatics [20], we have not seen any literature survey for knowledge graph 

applications in medical imaging analysis. To bridge this gap, we conducted a systematic 

review on knowledge graph applications in medical imaging analysis. According to our 

review, most studies applied knowledge graphs to specific topics such as disease detection, 

localization, and report generation. In this work, we describe various knowledge graphs 

applications in medical imaging analysis and then point out future directions that have yet to 

be explored.
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2. Methods

First, we will introduce the background of knowledge graphs. Second, we will describe the 

data sources and search strategies, including the inclusion and exclusion criteria, and how 

we selected the articles. At last, we will talk about how we conducted data synthesis and 

analysis.

2.1. Knowledge Graphs in General.

Recently, knowledge graphs have become a predominant part of many information 

systems where structured prior knowledge is needed. The concept of graphical knowledge 

representation can be traced back to 1956 when Richens proposed the idea of Semantic 

Net [21]; however, the community realized the importance of his work only belatedly. 

MYCIN [22] features a knowledge base containing about 600 rules and is one of the most 

well-known rule-based expert systems for medical diagnosis. Many researchers promoted 

the idea of graph-based knowledge representation aiming to assemble human knowledge. 

Furthermore, Resource Description Framework (E. [23]) and Web Ontology Language [24] 

were released and became the mainstay of Semantic Web.

In 2009, the concept of Linked Data was proposed to build the links between different 

datasets in the Semantic Web with each other and treat it as one global knowledge graph 

[25]. Subsequently, various ontologies or knowledge bases were published, such as WordNet 

([26]), YAGO [27], DBpedia [2], and Freebase [28], to realize the idea of structured 

knowledge representation in the form of a graph. In 2012, Google proposed Knowledge 

Graph (Knowledge Vault) to utilize semantic knowledge in the application of web search, 

and the concept gained great popularity [29]. Google uses the knowledge graph to help 

identify and disambiguate entities in texts, utilize semantically structured summaries to 

enrich the search results, and further provide links to related entities in exploratory search 

[29]. Recently, many companies such as Microsoft, Amazon, and Pinterest have started 

investing massive resources to build knowledge graphs for their commercial applications 

[30-32].

2.2. Knowledge Graphs for Medical Imaging Analysis.

Machine learning techniques have recently been applied to all stages of radiotherapy, from 

diagnostic imaging, using image registration for risk delineation, to the automated planning 

and outcome assessment [33, 34]. To provide quality healthcare, such as custom medicine 

or treatment planning refinement, machine learning techniques are able to offer assistive 

insights. Bringing together artificial-intelligence-driven (AI-driven) radiotherapy and deep-

learning-based medical imaging analysis is a promising direction. To provide precision 

radiotherapy, analyzing medical images and other modalities to derive representative 

features in a quantitative manner is vital. There tends to be significantly more information 

underlying in images and other data modalities that cannot be visually perceived in a 

straightforward way. However, sophisticated algorithms enable us to mine and use these 

underlying information to improve diagnosis and treatments. There are two main reasons 

why AI-based radiotherapy is expected to outperform conventional radiotherapy. First, many 

latent features that cannot be perceived by human readers can be utilized by analyzing 
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radiomics in an automated manner. Moreover, we can mine and infuse priori in a data-

driven and end-to-end manner, making AI-based radiotherapy more powerful [34]. The 

radiotherapeutic process can generate a large amount of data on anatomical, metabolic, 

etc. [35]. One major challenge is that it can be complicated to extract and present those 

data in a meaningful yet interpretable manner. Moreover, medical reports are oftentimes 

written in natural languages, where the report sensitivity and specificity, associated decisions 

need to be handled appropriately to provide better patient treatments than the current 

standards. One ideal solution is to synergize knowledge graphs to represent a generalization 

of prior knowledge from different modalities for treatment planning optimization or patient 

prognosis improvements [34].

Building a knowledge graph utilizing a patient’s electronic medical records and reports can 

provide valuable information for disease reasoning and further treatment planning. NLP 

techniques can be very helpful for identifying and extracting knowledge from text inputs. 

When given the medical reports, we can use online services such as the Watson Natural 

Language Understanding platform or the Amazon Comprehend Medical to construct the 

graph rather than from scratch. Based on these cloud services and other systems, we can 

distill and query high-quality domain-specific rules, knowledge graphs from unstructured 

or semi-structured contents extracted from images and data such as medical conditions, 

medication details (dosage, strength, and frequency), and other data like doctors’ notes, 

clinical reports, and patient health records [34].

With the efforts mentioned above, we will have treatment-related feature graphs and 

knowledge graphs from medical images and medical text data. These two types of graphs 

are in different domains: one from images and data biologically/clinically informative, and 

the other is in terms of professional languages directly interpreted. Therefore, we need to 

bridge these two domains via an across-domain graph transformation. To this end, we can 

use a graph-based encoder-decoder network, including graph convolution, graph pooling. 

The encoder will extract the information from a radiomic graph, while the decoder will 

reconstruct a corresponding graph. The bottleneck between the encoder and the decoder will 

bridge the image and text domains. In the cases of dynamic changes with different reports, 

one can use a graph-based RNN to learn a dynamic graph mapping.

2.3. Data Sources and Search Strategies.

Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

(PRISMA) guidelines, we conducted a comprehensive search of English-language articles 

published between 2006 and 2021 from five databases. The databases include IEEE Xplore 

(https://ieeexplore.ieee.org/Xplore/home.jsp), PubMed (https://pubmed.ncbi.nlm.nih.gov/), 

Arxiv (https://arxiv.org/), Google Scholar (https://scholar.google.com/), and the ACM 

Digital Library (https://dl.acm.org/). The search strategy is to iteratively search keywords 

for relevant articles and related citations. As shown in Table 1, the keywords used to 

retrieve literature included knowledge graph(s) and medical imaging, knowledge graph(s) 

and medical image(s), graph(s) and medical imaging, graph(s), and medical image(s).
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2.4. Article Selection.

After the acquisition of potential articles, we conducted abstract and full text screening. 

Article exclusion criteria included the following: duplicates; article types such as conference 

abstract, review, editorial, erratum, letter, note, and comment; unavailable full text; and 

articles irrelevant to knowledge graph applications in medical imaging analysis. The 

inclusion criteria for the target publications were as follows: (1) knowledge graphs were 

used and (2) the aim was to solve medical imaging analysis problems. Two reviewers used 

the eligibility criteria to screen the articles. During the screening process, all conflicting 

opinions among reviewers were discussed until we reached a consensus.

2.5. Data Synthesis and Analysis.

From the selected articles, our data synthesis was motivated by an approach to gain insight 

into how knowledge graphs were applied to different medical imaging analysis tasks and 

review how knowledge graphs contributed to the medical imaging analysis tasks. We began 

by examining the general characteristics of the included studies, such as the publication year 

trend, publication country, and the focus medical imaging analysis topic. Furthermore, we 

investigated the datasets utilized by the included studies, to provide readers with an insight 

into the available data sources that can be used for different medical imaging analysis topics.

3. Results

3.1. Identification of Included Studies.

We retrieved 780 articles from five databases, of which 728 articles were found to be unique. 

The titles and abstracts of articles were screened for article filtering and selection. Articles 

were sorted based on the relevance to applying knowledge graphs to medical imaging 

analysis, where 609 articles were excluded due to low relevance. We excluded several 

article types, including the conference abstract, review, editorial, erratum, letter, note, and 

comment, resulting in excluding 56 articles. We further excluded 38 articles without full 

text. 25 articles remained for subsequent full-text reviews. During the full-text screening, 

4 articles were excluded due to irrelevance to knowledge graph applications in medical 

imaging analysis. After this full-text screening process, 21 articles were selected to be 

included in this scoping review. The article selection flowchart is shown in Figure 2.

3.2. Statistical Characteristics of the Included Articles.

All the 21 articles included in this work are published from 2006 to 2021, with a noticeable 

increment in the number of papers published per year (Figure 3). The included publications 

are across nine countries, with most contributions coming from China (48%) (Figure 4). 

Among all the included articles, the most common application of knowledge graphs in 

medical imaging is disease classification (56.5%), followed by disease localization and 

segmentation (17.4%), report generation (17.4%), and image retrieval (8.7%) (Figure 5).

3.3. Disease Classification.

One of the most common computer vision tasks is to classify images into appropriate 

categories [36]. Disease classification is especially of vital importance in medical imaging 
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to assist diagnosis [18]. The types and sizes of image datasets are increasing dramatically. 

Hence often, we need to classify images from unseen classes into the correct categories 

based on the relationships between the seen and unseen classes. Our world contains millions 

of visual concepts. Due to its complex and dynamic characteristics, it is impossible to 

build a large dataset for every concept to ameliorate various computer vision tasks. Prior 

knowledge is the key to building semantic relationships between classes, which can be of 

great help, especially when we have limited training data. Knowledge graphs contain rich 

knowledge, modeling the relationships among classes or concepts. Incorporating disease 

classification in medical imaging with knowledge graphs has been explored by researchers 

and has shown promising results [18]. Table 2 lists the overview of datasets used by the 

included articles related to disease classification in this work. The most commonly used 

datasets are IU X-Ray [37], NIH Chest X-Ray/ChestX-Ray 14 [38], and CheXpert [39], and 

they all include medical images, associated medical reports, and disease labels.

There are five articles included in this review that explored binary disease classification 

incorporated with knowledge graphs. Xie et al. constructed a knowledge-based collaborative 

sub-model for the task of nodule classification. They proposed to fine-tune three pretrained 

ResNet-50 networks using three types of image patches. The three pretrained ResNet-50 

networks were, respectively, used to characterize the nodules’ overall appearance, voxel, 

and shape heterogeneity [40]. In this way, a knowledge-based collaborative model was 

introduced to incorporate the multiview information for separating the benign nodules from 

the malignant ones using very limited data. Yu et al. aimed to facilitate the process of 

pneumonia diagnosis [41]. A graph-based feature reconstruction module was employed that 

takes the produced image features from a trained convolutional neural network (CNN) as 

input. The resulting combined features will be fed to a one-layer graph neural network 

(GNN) to classify chest X-ray images into two classes: normal and pneumonia. According 

to Chen et al., most existing work manually built a population graph for structural 

information aggregation where the relationship between nodes was represented by the 

graph adjacency matrix [42]. Chen et al. automatically constructed the population graph 

and further utilized the fusion of multimodal information, which improved the diagnostic 

accuracy for Autism Spectrum Disorder and breast cancer. Specifically, they proposed an 

encoder that can select the appropriate phenotypic measures in an automatic manner in terms 

of their spatial distribution. They further computed the edge weights between nodes utilizing 

a mechanism which is aware of the text similarity. Liu et al. claimed to outperform previous 

work on the Mammogram mass classification task [43]. To model the intrinsic geometric 

and semantic relations of ipsilateral views, they proposed a Bipartite Graph Convolutional 

Network. The asymmetric visual information of bilateral views was widely adopted in 

clinical practice to assist the diagnosis process of lesions. To model the structural similarities 

of bilateral views, an Inception Graph Convolutional Network was further proposed. The 

representations learned from the constructed graphs were capable of multiview reasoning, 

since there was a systematical propagation of the multiview information through nodes [43]. 

Fu et al. pointed out that most existing methods only focus on the image modality while 

ignoring or not fully leveraging information from other modalities [44]. They proposed to 

exploit the inter-category relationships in the 7-point visual category checklist (7PC) for 

Melanoma diagnosis. Specifically, they proposed to use a graph-based relational module 
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to leverage inter-categorical and inter-modal relations. The dermoscopy visual structure 

details were further prioritized by representing the features in a graph network [44]. 

Another category embedding learning module was also employed to capture the specialized 

representations for each category and support the graph-based relational module.

Six articles explored multilabel classifications in medical imaging. Zhang et al. constructed a 

disease finding knowledge graph and utilized it to tackle the disease classification task [45]. 

Incorporating a knowledge graph with the disease classification task allowed for dedicated 

feature learning for each disease finding [45]. Similarly, Hou et al. modeled the correlations 

among disease labels by employing the graph convolutional network (GCN). They further 

pretrained the disease label embeddings on the radiology reports. A transformer-based 

encoder was employed to fuse the semantic features along with the encoded image features 

to initialize the graph features [46]. To have a better graph representation capability, they 

mined additional medical terms from radiology reports, and these newly mined terms were 

added to the graph serving as auxiliary nodes without changing the actual output space size.

However, Zhou et al. pointed out that the developing a robust automated diagnosis system 

could be hindered by the fact that the lesions can have inconsistent appearances and high 

complexities in chest X-rays [47]. They proposed one promising approach to address this 

issue, which is to attend to the abnormal regions and exploit relevant prior information 

[47]. To have a better thoracic disease identification performance, especially for those 

whose lesions rarely appear on both sides symmetrically, one contrastive network was 

proposed to learn the intra-attentive abnormal features between the left and right lung. 

They further utilized an inter-contrastive attention model to acquire the abnormal attention 

map. Specifically, they compared the query scan with multiple anchor scans where no 

lesions were present. After the features were weighted using the intra- and inter-contrastive 

attention scores, the radiology graph was further constructed for graph reasoning in a 

dual-weighted manner in addition to the basic visual-spatial convolution [47]. Following the 

same direction, Agu et al. noted that most existing methods solely used the chest X-ray 

images for classification, but they failed to utilize the underlying anatomical information 

that can be really helpful [48]. They utilized a GCN which enables their model to learn 

the anatomical region relationships and label dependencies in the chest X-ray images. They 

further created an anatomical region adjacency matrix based on the correlation of the labels 

across different regions. Combining this with a detection module, they proposed a multilabel 

chest X-ray classifier that can classify image findings and localize them to their anatomical 

regions [48].

According to Sekuboyina et al. [49] learning to map images to binary labels made it a 

challenging task to take advantage of auxiliary information (e.g., annotation uncertainty, 

and label dependencies). A multimodal knowledge graph was constructed using chest X-ray 

images and their labels. They approached the task of multilabel disease classification in 

a link prediction manner. They claimed that they added additional nodes and relations to 

incorporate auxiliary information into the graph [48]. Similarly, Chen et al. noted that given 

the fact that graph data featured high complexity, most previous works failed to fully use 

such valuable graph-structured information, but solely focused on learning to classify the 

input into binary labels [50]. As a result, they proposed to explicitly explore the graph 
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structure information, such as the pathology dependencies, for the classification task. They 

introduced the pathology word embeddings and multilayer graph information propagation to 

generalize the relationships between pathologies into a set of classifier scores. The flexible 

integration into the image feature embedding module and the adaptive recalibration of 

multilabel outputs with these scores were made possible during the training process [50].

Since 2020, knowledge graphs have also been explored in COVID-19–related research 

and shown noticeable performance improvements. Zheng et al. pointed out that current 

deep learning methods suffered from data adequacy issues and that multimodal information 

should be considered together to make accurate inferences [51]. To solve this, they proposed 

a multimodal graph attention embedding mechanism to assist diagnosing COVID-19. Their 

method learned the relational embeddings in a constituted knowledge graph and, at the same 

time, improved the classifier through the medical knowledge attention mechanism [51]. 

According to Mudiyanselage et al., the poor performance for unseen data in COVID-19 

classification can result from the limited correlation between the pretrained model and a 

specific imaging domain (e.g., X-ray) and the possibility of overfitting [52]. They proposed 

that the relational knowledge between data instances can be exploited through graph 

representations and further utilized through graph convolutions [52].

To summarize, the aforementioned work utilized different types of knowledge graphs, and 

they incorporated the knowledge graphs with the disease classification task using three 

approaches: (1) embed visual features to preconstructed prior knowledge abnormality graph 

[44-50], region graph [40, 43], pathology graph [50], and population graph [42] and 

(2) extract and use visual features as graph nodes [41, 52]; (3) use images and/or text 

descriptions of diagnose as graph nodes [49, 51]. Though these work applied knowledge 

graphs in various ways, the results showed that incorporating knowledge graphs with disease 

classification achieved noticeable classification performance boosts; for example, Zhang et 

al. achieved 1.4% improvement on average AUC, 4.7% AUC improvement on cardiomegaly, 

and 4.5% AUC improvement on atelectasis after adding knowledge graphs to the baseline 

DenseNet [39] model [45]. Zhou et al. achieved a 3.77% improvement on average AUC 

when incorporating disease identification with prior knowledge on the NIH Chest X-ray 

dataset and a 3% average AUC improvement on the CheXpert dataset [47].

3.4. Disease Localization and Segmentation.

In medical imaging, disease localization and segmentation are useful for clinical diagnosis, 

disease assessment, and treatment planning [64]. Previous supervised methods suffered 

from the lack of finely annotated data, and weakly supervised methods often generated 

inaccurate or incomplete regions [65]. When taking into account the anatomical region 

relationships and the correlations between images, complementary information can be 

obtained to improve the disease localization accuracy. This also aligns with the clinical 

practice in the medical domain: usually to train a radiologist to analyze X-ray images, they 

read many X-ray images and compare the differences between different images and even the 

differences between different regions of the same image [65]. Infusing knowledge graphs 

into the system offers the potential for more accurate localizations and segmentations. Table 

3 lists the overview of included articles and the datasets that are used. The most commonly 
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used datasets for this task are CheXpert [39] and NIH Chest X-Ray/ChestX-Ray 14 [38]. 

Both datasets include medical images and associated medical reports and disease labels.

Peng et al. identified the fissure region of interest using lung anatomy prior knowledge 

and then isolated the plate-like structures from clutters utilizing an oriented derivative of 

stick filter for lobar fissure verification. Finally, to segment lung lobes, they completed 

the incomplete fissure surface employing a surface fitting model [66]. Qi et al. noted 

that one reason for incomplete localization regions was neglecting the anatomical region 

relationships within each image and the inter-image relationships [65]. Hence, they proposed 

to model the inter-image relationships by comparing multiple images in an inter-image 

graph and to model the intra-image relationships by comparing different regions in an intra-

image graph. These cross-image and cross-region relationships were used as the contextual 

and compensating knowledge and were incorporated for disease localizations. Through 

ablation study, they showed that the model employing the intra-image and inter-image prior 

knowledge outperformed the localization accuracy of the baseline model by 0.08, 0.11, and 

0.1 when the intersection over union (IoU) threshold was 0.3, 0.5, and 0.7. Zhao et al. 

also noted that most weakly supervised disease localization methods failed to consider the 

chest X-ray image characteristics (e.g., the highly structural attributes) [67]. They used a 

very similar method to Qi et al. [65], which integrated the intra-image anatomical structural 

knowledge and inter-image knowledge into one unified framework.

In summary, the aforementioned articles incorporated knowledge graphs with disease 

localization and segmentation using two approaches: (1) embed visual features to 

preconstructed prior knowledge region graph [65-67]; (2) use images as graph nodes [65, 

67]. These articles identified the importance of prior knowledge, proposed to infuse prior 

knowledge into the disease localization and segmentation tasks in the form of knowledge 

graphs, and showed that the prior knowledge did bring drastic performance improvements.

3.5. Report Generation.

Natural language captioning aims to summarize visual information in one sentence or 

generate one topic-related paragraph [70]. Medical report generation translates the medical 

images to human-readable medical reports, which requires an increased capability to cover 

accurate abnormal terminologies, understand the medical domain knowledge, and describe 

the findings at a semantic-coherent and fine-grained level that should satisfy both medical 

commonsense and logic [71]. Outstanding challenges associated with automatic medical 

report generation lie in successfully detecting visual groundings and incorporating medical 

domain knowledge. To write a medical image report, radiologists will first check a patient’s 

images, carefully inspect the abnormal regions to identify the findings, and then describe 

the abnormal findings in detail based on prior medical experiences and medical knowledge. 

Only employing the global images as input and training the language model with the 

dataset’s corpora alone cannot provide the underlying prior knowledge vital for accurate 

reporting. Several works infused knowledge graphs into report generation and showed the 

performance gain on the quality of generated reports. The datasets used by the included 

articles related to report generation are listed in Table 4, and the most used dataset is IU 

X-Ray [37].
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Zhang et al. constructed a graph embedding module on multiple disease findings as the prior 

knowledge to assist report generation. The incorporation of a knowledge graph allowed for 

dedicated feature learning for each disease finding and the relationship modeling [45]. The 

knowledge graph module improved the baseline SentSAT model [72] on nearly all report 

generation evaluation metrics, especially 0.036 improvements on the CIDEr metric. Li et 

al. [73] noted the significant challenges towards bridging visual and linguistic modalities; 

hence, they proposed to encode visual features as an abnormality knowledge graph, which 

incorporated the visual features with prior medical knowledge, and was then used to guide 

the report template retrieval-paraphrase process or used for disease classification. Similarly, 

Liu et al. [43] noted that visual and textual data biases remained a challenge for data-driven 

report generation systems, so in addition to the disease-tag attended visual features and 

the disease-attended textual features, they proposed to explore the prior knowledge from 

a predefined medical knowledge graph guided by attended-image features, and further 

adaptively distill the knowledge for report generation. Through ablation study, they show 

that removing the prior knowledge graph module from the proposed model will cause a 

significant drop in all evaluation metrics, especially 0.66 drop on CIDEr, 0.34 drop on 

BLEU-1. Li et al. pointed out that previous methods suffered from the deviation that 

taught models to generate inessential sentences regularly. Therefore, inspired by Generative 

Pre-Training, they proposed to guide medical knowledge transfer and learning through a 

medical graph encoder, by integrating internal visual feature fusion and external medical 

linguistic information [71].

To summarize, the aforementioned articles incorporated knowledge graphs with report 

generation using one common approach: embed visual features to preconstructed prior 

knowledge abnormality graph [43, 45, 71, 73, 74]. Knowledge graphs utilized in the 

included articles modeled the relationships of disease findings and bridged multiple 

modalities by embedding visual representations. Through ablation studies, all included 

articles demonstrated the effectiveness of incorporating knowledge graphs with report 

generation.

3.6. Image Retrieval.

Automated image retrieval systems show enormous potential in medical applications [76]. 

It can be beneficial for the clinical decision-making process to extract similar images 

that share common aspects (i.e., modality, anatomic region, and disease). This allows for 

extracting similar images with similar diagnoses and also allows for finding similar images 

but with different diagnoses. In medical domain, doctors can adopt image retrieval systems 

to retrieve images with known pathologies that are similar to the anchor image and further to 

assist the diagnosis process. In addition to doctors, medical researchers, lecturers, and even 

students can extract relevant images using visual retrieval methods for their teaching and 

research. Primitive features (i.e., color and texture) are still the dominant features used by 

most image retrieval systems for image presentation purpose [77]. No medical knowledge 

was used in this process; hence, there exists the domain gap if we want to apply the 

systems to medical domain. This loss of information can be reduced by incorporating prior 

knowledge and other sources of knowledge [78]. Table 5 lists the overview of datasets used 

in the image retrieval articles included in this review.
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Lacoste et al. presented their medical image retrieval method incorporating medical prior 

through a fusion framework [79]. The text knowledge infused was from the Unified 

Medical Language System (UMLS) sources. They learned semantic features from examples 

and further to derive the visual knowledge. UMLS concepts enabled the communication 

between visual and textual information, allowing a higher level systematic medical data 

standardization. Racoceanu et al. employed similar methods by using global indexing to 

access image modality and local indexing to access local semantic features to fuse the 

textual and visual knowledge into image retrieval [80].

In summary, these two included articles incorporated knowledge graphs with image retrieval 

using one common approach: represent images and texts in UMLS graphs [79, 80]. The 

introduced knowledge graphs facilitated the communication between multiple modalities 

and benefitted the image retrieval task.

4. Discussion

After the article selection phase, there were 21 articles selected and included in this survey. 

This relatively small number of articles related to knowledge graph applications in medical 

imaging analysis may suggest the cross-disciplinary gaps and lack of collaborations. In this 

section, we identified the limitations of the included articles and suggested the potential 

future directions.

4.1. Disease Classification.

Most articles share some common limitations in this review. The datasets are still too small 

in size (on average, 129,788 images, ranging from 450 to 384,580) to provide results that are 

more convincing. The construction of graphs and the reconstruction of features are important 

aspects of most of the works. However, the graphs were constructed on a given dataset, 

making the extension to other domains inconvenient and challenging. For example, some 

graphs were designed as components of the proposed model for diagnosing chest diseases, 

which would not work for a brain tumor diagnosis task. If researchers want to transfer 

the method to handle a problem in another domain, building a new graph using a similar 

approach would be necessary. Also, an encoding component pretrained towards a specific 

task (multilabel classification) could result in representations that do not generalize well 

across tasks. Furthermore, global classifications can be unreliable even when the predicted 

label is correct. The classifier might predict the correct label but for a wrong reason at an 

irrelevant spot.

For the future direction, one can consider a semisupervised learning framework to reduce 

the demand for annotated data. Also, we can think of considering more sophisticated graph 

structures, which model more detailed disease relationships in the future. Other approaches 

can be explored to better incorporate visual and semantic features. It is worth exploring a 

task-agnostic representation learning framework for better generalizability. Another future 

research direction is to combine the encoding and embedding modules resulting in a fully 

end-to-end formulation.
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4.2. Disease Localization and Segmentation.

The included articles regarding disease localization and segmentation in this review did not 

consider the label uncertainty, which is worth exploring to improve the performance. The 

reported results showed that small targets (e.g., atelectasis, effusion, and nodule) were more 

challenging to localize due to their relatively smaller size. Algorithms applicable to the 

localization of small targets (e.g., atelectasis, effusion, nodule) are worth exploring.

Existing work like Peng et al. heavily depends on other tasks like airway segmentation. 

However, the segmentation is an arduous task as it is highly sensitive to the image 

quality [66]. They segmented pulmonary fissures using lung anatomy knowledge, which 

is time-consuming. There is a possibility that parts of fissures can be undetected due to the 

poorly segmented airways. To conclude, a more fine-grained fissure detection and lung lobe 

segmentation method will be ideal to pursue.

4.3. Report Generation.

Currently, most work applying knowledge graphs into report generation uses visual features 

for graph feature initializations. It is worth exploring different fusion methods to combine 

knowledge graphs with multimodal features. We can also encode and decode general 

knowledge for report generation tasks by exploring a general captioning framework guided 

by the auxiliary signals.

4.4. Image Retrieval.

In this review, two included articles regarding image retrieval used global and local indexing 

to infuse additional visual, textual, and knowledge graph features into image retrieval. One 

can further use appropriate clustering methods to take advantage of other fusion schemas. It 

is also worth exploring the visual filtering based on the local information from the semantic 

local indexing module to distill visual features for better performance.

5. Conclusions

This review discussed the current work on knowledge graph applications in medical 

imaging analysis and identified the limitations and future directions. We looked at the 

proven success of applying knowledge graphs into four medical imaging tasks: disease 

classification, disease localization and segmentation, report generation, and image retrieval. 

We identified the limitations due to limited annotated data for some supervised tasks and 

weak generalizability. We also identified potential future directions, for example, employing 

semisupervised framework, exploring different fusion methods, and exploring task-agnostic 

models that may improve the opportunities for better performance.
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Figure 1: 
Radiology knowledge graph example: NIH Chest X-ray labels based on RadLex and 

SNOMED_CT.
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Figure 2: 
The flowchart of the article selection process.
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Figure 3: 
Year trend of reviewed articles.
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Figure 4: 
Publication country distributions.
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Figure 5: 
Application topic distributions.
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