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Background: Changes in regional neural activity and functional connectivity in cervical

spondylotic myelopathy (CSM) patients have been reported. However, resting-state

cerebral blood flow (CBF) changes and coupling between CBF and functional

connectivity in CSM patients are largely unknown.

Methods: Twenty-seven CSM patients and 24 sex/age-matched healthy participants

underwent resting-state functional MRI and arterial spin labeling imaging to compare

functional connectivity strength (FCS) and CBF between the two groups. The CBF–FCS

coupling of the whole gray matter and specific regions of interest was also compared

between the groups.

Results: Compared with healthy individuals, CBF–FCS coupling was significantly

lower in CSM patients. The decrease in CBF–FCS coupling in CSM patients was

observed in the superior frontal gyrus, bilateral thalamus, and right calcarine cortex,

whereas the increase in CBF–FCS coupling was observed in the middle frontal gyrus.

Moreover, low CBF and high FCS were observed in sensorimotor cortices and visual

cortices, respectively.

Conclusion: In general, neurovascular decoupling at cortical level may be a potential

neuropathological mechanism of CSM.

Keywords: arterial spin labeling, cerebral blood flow, functional magnetic resonance imaging, functional

connectivity, cervical spondylotic myelopathy, resting-state fMRI

INTRODUCTION

Cervical spondylotic myelopathy (CSM) is a common degenerative spinal cord complication that
results in significant mortalities (1–3). Lifestyle and technological advancements changes have
paralleled the incidences of CSM (2, 4). Increasing evidence shows that CSM is linked to the
altered structure (5) and function (6–11) of the brain. Functional MRI (fMRI), a blood-oxygen-
level-dependent signal, measures the spontaneous neural activity of the brain. Assessment of
functional alterations in CSM patients relies on regional homogeneity (ReHo), amplitude of low
frequency fluctuation (ALFF), and functional connectivity (FC). These methods have revealed
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extensive functional reorganizations including regional
alterations of specific brain regions (e.g., S1, M1, V1) (7, 12–14),
circuits (e.g., the thalamus-cortical circuit) (15, 16), subnetworks
(e.g., the sensorimotor network and default mode network)
(8, 17–19), and the whole brain network (8) in CSM patients.
Among the aforementioned neuroimaging metrics based on
fMRI technique, FC is the most widely used for exploring
brain functional reorganization in CSM patients. The inherent
simplicity, sensitivity, and ease of interpretation favors the use of
seed-based resting-state FC (20). However, this metric is based
on the temporal correlation between time-courses extracted
from priori-defined seed-regions; thus, it may be unsuitable if
the disease pathology is unknown (21). Whole-brain functional
connectivity strength (FCS) analysis is another data-driven
method, which considers the temporal correlation between
each voxel’s time-course and all other voxels’ time-courses in
the brain (22). FCS is referred to as the voxel-level “degree
centrality” in graph theory, and brain regions with high FCS are
usually considered functional hubs, intricately and functionally
connected with the rest of the brain (21, 23). FCS is applied
in investigating connectivity changes in various psychological
diseases including schizophrenia, ADHD, and AD, among others.
(24–27). Therefore, FCS may also be suitable for investigating
cortical functional changes in CSM patients.

Cerebral blood flow (CBF) is the amount of blood delivered
to a specific brain tissue over a given time (28–30). Resting-
state CBF is strongly related to the brain metabolism (glucose
utilization, aerobic glycolysis, and oxygen consumption) (31,
32). Positron emission tomography (PET) and single photon
emission computerized tomography (SPECT) have been used in
assessing CBF changes in CSM (14). Corresponding assessments
show that the spinal cord CBF reflects inflammatory processes in
CSM pathology. CBF is also diagnostic and prognostic marker
of CSM (33–35). SPECT has revealed significantly low brain
rs-CBF in the posterior cortical areas of CSM patients (36).
Given that PET and SPECT are invasive procedures, they are
cumbersome and have low spatial resolution. Contrarily, the
arterial spin labeling (ASL) is a non-invasive MR perfusion
technique for measuring rs-CBF using an endogenous contrast
agent. Therefore, ASL-based CBF can reveal the metabolic state
and inflammatory process in the cortices of CSM patients.

Neurovascular coupling (NVC) is an intrinsic brain function
which reflects a strong connection between neuronal activity
and blood supply (37). In the brain, the bulk of energy is
used in driving spontaneous brain activity (38). Based on
neurovascular coupling (NVC) hypothesis, brain regions with
higher spontaneous regional neural activity tend to have a
greater metabolic demand, which increases blood perfusion
(39). Functional hubs in human brain display higher FCS and
requires higher metabolic demand (40–42). Numerous network
analyses show that CBF reflects both anatomical and functional
connections in the brain (FC, ICA, and FCS-based FC) are
associated with (43, 44). Across-voxel CBF–FCS correlation
(spatial correlation between FCS and CBF in the whole-brain
or gray matter voxels) have been used in characterizing the
coupling between the neural activity and hemodynamic response
in the brain. This approach identifies altered neurovascular

coupling in diseases such as schizophrenia, which cannot be
detected using FCS or CBF alone (42, 45–47). In recent
years, it has been found that altered neurovascular coupling is
associated with multiple neuropathology process in the cortex.
For instance, abnormal astrocytes or GABA interneurons may
disrupt neuronal activity and vascular response (42, 48). Other
parameters such as nitric oxide and neuroinflammation levels can
also affect neurovascular decoupling.

In the past decades, neuroinflammation, a critical factor
affecting neurovascular coupling (49, 50), has been consistently
reported in CSM patients (51–54). Herein, we hypothesized
that compared with healthy individuals, CSM patients would
exhibit a significantly lower CBF–FCS coupling compared with
healthy controls. As such, we separately explored FCS and
CBF changes in specific brain regions of CSM patients. The
resting-state fMRI signals and ASL-based cerebral blood flow
analyses in 27 CSM patients, and 24 sex/age-matched healthy
participants were collected and analyzed. The spatial correlation
between CBF and FCS across voxels were then compared between
CSM and healthy individuals. The associations between altered
neurovascular coupling and the severity of clinical symptoms in
patients with cervical compressive myelopathy based on Japanese
Orthopedic Association (JOA) scores was also analyzed. CBF and
FCS were also compared between groups.

METHODS

Participants
The protocol for this study was approved by the ethical review
board of Tianjin Hospital, China. All participants consented to
participate in this study. In general, 29 CSM patients and 24
healthy individuals were recruited in this study between 2019
and 2020. All CSM patients were right-handed. To be included,
CSM patients must have fulfilled the following: (a) with cord
compression on cervical spine based on MRI-analysis; (b) with
sensorimotor deficit of extremities or bladder/bowel dysfunction;
(c) with spinal cord compression; (d) with no history of cervical
spine surgery; (e) available for the entire study period; (f)
with no stenosis of extracranial vertebral artery and the carotid
artery after Doppler ultrasound examination; (g) with no clinical
or history of other neurologic, psychiatric, ocular, or systemic
diseases like hypertension and diabetes; and (h) with no history
of alcohol and substance abuse. The 24 healthy individuals
were matched to the CMS patients with regard to age, gender,
and education. Specific inclusion criteria included: (a) absence
of spine compression, (b) other spinal or brain neurological
disorders or systemic disease, and (c) availability for the entire
study period. The demographic data of the study participants at
baseline are shown in Table 1. Two CSM patients with excessive
head motion (more than five times the average scrubbing) were
excluded from the study. Therefore, the final analyses were based
on 27 CSM patients.

Clinical Assessments
Cognitive aspects of the CSM patients were evaluated using
the Montreal Cognitive Assessment (MOCA) and the Mini-
Mental State Examination (MMSE). CSM patients underwent
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TABLE 1 | The demographic data study participants at baseline.

CSM HC p-value

(n = 27) (n = 24)

Age (years) 53.7 ± 8.1 54.2 ± 7.3 0.44

Gender (F/M) 12/14 12/12 0.93

Education (years) 11.7 ± 2.2 11.3 ± 2.1 0.61

Pre-JOA 11.1 ± 1.8

Post-JOA 15.0 ± 1.2

JOA recovery 3.92 ± 1.9

MoCA 23.4 ± 2.6

MMSE 23.4 ± 1.9

Pre, preoperative; Post, postoperative; MoCA, Montreal Cognitive Assessment; MMSE,

Mini-Mental State Examination; JOA, Japanese Orthopedics Association scores; JOA-

recovery, Preoperative JOA scores minus Postoperative JOA scores.

a thorough assessment for the severity of cervical compressive
myelopathy based on Japanese Orthopedic Association (JOA)
scores. Details of clinical assessment for each patient are shown
in Supplementary Table 1.

Acquisition of Clinical Data
The 3T fMRI data were acquired using a MAGNETOM Prisma
3T MR scanner (Siemens, Erlangen, Germany) equipped with
a 64-channel phase-array head-neck coil. Participants kept their
heads still during the scanning process. The head was supported
with a sponge pad to minimize unconscious movement. The
participants closed their eyes but remained awake, and restrained
from specific and strong thoughts. BOLD signals were captured
simultaneously using a prototype multi-slice gradient echo-
planar imaging (EPI) sequence. The specific test parameters
included 30ms echo time (TE), 800ms repetition time (TR), 222
× 222mm field of view (FOV), 74 × 74 matrix, 3 ×3mm in-
plane resolution, flip angle (FA) of 54 degrees, slice thickness of
3mm, 0 section thickness, 18 slices, transversal slice orientation,
bandwidth of 1,690 Hz/pixel, slice acceleration factor of 4,
and phase encoding acceleration factor of 2 under parallel
acquisition technique (PAT) mode. Overall, 450 images were
captured in 6 min.

A high-resolution 3D T1 structural image (two inversion
contrast magnetization prepared rapid gradient echo sequences,
MP2RAGE) was also captured under the following parameters:
4,000 ms/3.41ms TR/TE, inversion time (TI1/TI2) of 700
ms/2,110ms, FA1/FA2 of 4/5◦, 256 × 240 matrix, FOV of 256
× 240mm, 192 slices, 1 × 1mm in-plane resolution, 1mm slice
thickness, and sagittal slice orientation. The process lasted 6min
and 42 s. Participants closed their eyes, sat in relaxed position
and moved minimally, thought about nothing in particular, and
stayed awake during the entire process.

Resting-state perfusion imaging was performed using a
pseudo-continuous ASL (pcASL) sequence equipped with a 3D
fast spin-echo acquisition and background suppression platform
(TR/TE of 3,600/21.8ms; post-label delay of 2,025ms; spiral in
readout of 8 arms with 512 sample points; FA of 180◦; FOV of 220
× 220mm; reconstruction matrix of 128 × 128; slice thickness

of 3mm, no gap; 44 axial slices; eight excitations; and 284 s
of acquisition time). The label and control whole-brain image
volumes were eight TRs. In total, eight pairs of label and control
volumes were captured.

fMRI Data Preprocessing
MR data were preprocessed using the toolbox Data Processing
Assistant for rs-fMRI (DPARSF) (http://www.restfmri.net/
forum/DPARSF) pipeline. Briefly, 450 volumes were acquired for
functional scanning. The first 10 volumes of each functional scans
were used for acclimatization of scanning and magnetization
stabilization and were excluded. Motion correction was
performed to remove the influences of head movement (due
to significantly shortened TR, slice-timing correction was not
applied). Liner-drift, Friston-24 parameters, mean global signal,
white matter signal, and CSF signal covariates were regressed out
to minimize non-neural signals. Subsequently, a scrubbing step
for high motion time-points was also performed. The standard
FD Jenkinson value was set at 0.5. Time-points exceeding
the threshold were scrubbed using the cubic spine method
(scrubbing time-points before bad time-points: 2; scrubbing
time-points after bad time-point). Effects of high-frequency
noise were removed using a band pass filter (0.01–0.08Hz).
Functional images were co-registered to structural images and
spatially normalized using the Montreal Neurological Institute
template. Each voxel was resampled to 3 × 3 × 3 mm3, and
then smoothed with a 6mm full-width-half-maximum isotropic
Gaussian kernel before data analysis.

CBF Analysis
To quantify CBF, the ASL images were analyzed using SPM12
(Statistical Parametric Mapping) (http://www.fil.ion.ucl.ac.uk/
spm/) and ASL Data Processing Toolbox (ASLtbx) (http://www.
cfn.upenn.edu). Pulsed ASL data were processed as follows: first,
the ASL images were realigned to correct for head motion.
Second, the perfusion difference of images was calculated
through sinc subtraction of label/control pairs. Third, relative
CBF images of each subject were normalized using the SPM12
software based on the standard Montreal Neurological Institute
(MNI) template. Finally, spatial smoothing was performed again
using an FWHMof 6mm. The intervening effect of head-motion,
education, age and gender was removed using multiple liner
regression analysis.

Functional Connectivity Strength (FCS)
Analysis
In this study, we performed voxel-wise FCS analysis. For a given
voxel, we (1) first computed Pearson correlation coefficients
between the BOLD time-course of this voxel and the rest of
voxels within the gray matter mask; (2) the FCS of this voxel
is calculated as the number of the coefficients that surpass the
threshold of 0.2. In this study, because of the removal of the global
signal, there is potential possibility for inducing controversial
negative correlations; thus, we restricted our analysis to positive
correlations only. Then, this procedure was repeated once for
each voxel within the gray matter mask. Therefore, for each
subject, we obtained an FCS map and it was spatially smoothed
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with a 6 × 6 × 6mm FWHM Gaussian kernel. To remove
potential influences of head-motion, education, age, and gender,
we set these variables as covariates and regress out these effects by
multiple liner regression.

Whole Gray Matter CBF–FCS Coupling
Analysis
For subject-level analysis, both CBF and FCS maps were
normalized into z-scores by dividing the SD of global values
within the gray matter mask with the difference between the
mean and individual global values within the gray matter mask.
The coupling between FCS and CBF was based on the spatial
correlation between CBF and FCS maps across all voxels within
the gray matter mask.

For group-level analysis, the average of both CBF and FCS
maps of each group were first obtained. The CBF and FCS
maps were then converted into z-scores by subtracting the mean
of individual global values and dividing the results by the SD
of global values within the gray matter mask. The correlation
between CBF and FCS maps of each group were then calculated.
To reveal group-level CBF–FCS coupling difference between
CSM and HC, the correlation coefficients of the two groups were
compared. This analysis was performed using an online platform
(http://comparingcorrelations.org) as previously described (55).

Subsequently, the spatial correlation between the CBF and
FCS map for each subject was calculated to obtain a subject-level
whole-brain CBF–FCS coupling. The difference in subject-level
CBF–FCS coupling between CSM and HC was analyzed using a
two-sample t-test.

Region-Wise CBF–FCS Coupling Analysis
For region-wise analysis, both CBF and FCSmaps were converted
into z-scores by subtracting the mean of a group from global
values within the gray matter mask and dividing the difference
by the corresponding SD of the group. For a given subject,
the coupling between FCS and CBF was the spatial correlation
between CBF and FCS maps across all voxels within each
subregion, based on the Anatomical Automatic Labeling (AAL)
template. This generated 116 coefficients representing the CBF–
FCS coupling for a given subregion. The difference in CBF
and FCS between CSM patients and healthy individuals for
a subregion were analyzed using two sample t-tests. The
resultant p-values were corrected by the False Discovery Rate
(FDR) method.

Region-Wise CBF and FCS Analysis
The CBF and FCS maps were first normalized into z-scores,
then the mean values for each sub-region defined by AAL
template were obtained and compared between the two groups.
The resultant p-values were corrected by FDR for multiple
comparison correction.

Voxel-Wise Comparisons in CBF and FCS
To better explore the differences between CSM patients and
healthy individuals, we compared the differences in CBF and
FCS between the two groups in a voxel-wise manner while
controlling for head motion, education, age, and sex. Multiple

voxel-wise comparisons were also performed by FDR at statistical
significance of corrected p < 0.05.

ROI-Wise Analysis
Although the multiple comparison correction method (FDR
correction) was used in our previous region-wise analyses,
this method may overlook important differences within brain
regions. Therefore, to better explore functional or structural
alterations in CSM patients, 12 regions of interest (ROIs) were
selected for further analysis. They included the left and right
precentral gyrus, the left and right postcentral gyrus, the left
and right supplementary motor area, the left and right calcarine
gyrus, the left and right precuneus, and the left and right
thalamus (7, 12, 19, 56, 57). The ROIs were described based on the
corresponding brain areas defined in the AAL. The association
between CBF and FCS between voxels in a given region was also
analyzed. The mean CBF and FCS between CSM patients and
healthy individuals along age, gender, education years, and head
motion were also compared.

The Relationship Between Altered Brain
Function and Specific Clinical Parameters
The possible relationship between the whole-brain level CBF
and FCS in the whole gray matter voxels was analyzed
using Cox regression analysis. The relationship between CBF
as well as FCS and several clinical parameters including
preoperative/postoperative JOA scores, JOA recovery, as well as
MoCA and MMSE scores was also analyzed. The relationship
between CBF as well as FCS and the aforementioned clinical
parameters in a given brain region was also evaluated. Finally,
the relationship between CBF as well as FCS in ROI and the
afore-mentioned clinical parameters was also performed.

RESULTS

Whole Gray Matter CBF–FCS Coupling
Changes in CSM
Compared with healthy controls, CSM patients exhibited
significant decreased CBF–FCS coupling for both subject- and
group-level analysis. In group-level analysis, the mean CBF and
FCS of each group (i.e., mean maps across subjects within
each group) were obtained. The correlation coefficient between
group-mean FCS map and group-mean CBF map in CSM
was 0.28; the correlation coefficient between group-mean FCS
map and group-mean CBF map in HC was 0.33. These two
correlation coefficients were compared, and the resultant z-value
was −46.0489, p < 0.0001 [Dunn and Clark’s method (58)], z-
value was −45.6988, p < 0.0001 [Steiger’s method (59)], and z-
value was −46.0489, p < 0.0001 [Raghunathan’s method (60)].
In subject-level analysis, the correlation coefficients between
the CBF map and FCS map across whole gray matter voxels
were compared between CSM patients and healthy controls.
We observed significantly decreased CBF–FCS coupling in CSM
patients (t-value= 2.109, df = 49, p= 0.0401) (Figure 1).
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FIGURE 1 | The CBF–FCS coupling changes in the whole gray matter of cervical spondylotic myelopathy (CSM) patients. Scatter plots show the spatial across voxels

correlations between CBF and FCS in CSM patients (red) and healthy controls (blue). Although there is significant correlation between CBF and FCS in both CSM

patients and healthy individuals, compared to healthy individuals CSM patients display significantly weak CBF–FCS coupling. Error bars represent the SD. CBF,

cerebral blood flow; FCS, functional connectivity strength.

Region-Wise CBF–FCS Coupling, CBF and
FCS Changes in CSM Patients
Compared with healthy controls, CSM patients exhibited
significantly low CBF–FCS coupling in the superior
frontal gyrus (t-value = −3.51, q-value = 0.04, FDR
corrected), but substantially high CBF–FCS coupling in the
middle frontal gyrus (t-value = 3.56, q-value = 0.03, FDR
corrected) (Figure 2).

Compared with healthy controls, the FCS of CSM patients was
significantly low in the left precentral gyrus (t-value = −3.54, q-
value = 0.03, FDR corrected) and left postcentral gyrus (t-value
= −3.50, q-value = 0.04, FDR corrected). Also, the FCS of CSM
patients was substantially high in the right hippocampus (t-value
= 3.62, q-value = 0.02, FDR corrected), right parahippocampus
(t-value = 3.51, q-value = 0.04, FDR corrected), right amygdala
(t-value = 3.49, q-value = 0.04, FDR corrected), right pallidum
(t-value = 3.61, q-value = 0.02, FDR corrected), right thalamus
(t-value= 3.55, q-value= 0.03, FDR corrected), and left thalamus
(t-value= 3.63, q-value= 0.02, FDR corrected) (Figure 3).

However, there were no significant differences in region-
wise CBF between CSM patients and healthy individuals,
possibility because of the small sample size used in this study
and the relatively high strict multiple comparison correction
method used.

Voxel-Wise CBF and FCS Changes in CSM
Patients
Compared with healthy individuals, the FCS of CSM patients
was significantly high in the left thalamus, right thalamus, right
anterior cingulate gyrus, and right hippocampus. Contrarily,
the FCS of CSM patients was significantly low in the left
postcentral gyrus. Details of these clusters are shown in
Table 2. The spatial distribution of the clusters is shown
in Figure 4.

ROI-Wise CBF–FCS Coupling, CBF and
FCS Changes in CSM Patients
Voxel-wise and region-wise analysis is highly robust and
stringent, given the multiple comparison corrections. Therefore,
based on functional alterations in CSM patients, several analyses
in ROIs were performed.

Compared with healthy individuals, the CBF of CSM patients
was significantly low in the left precentral gyrus (t-value=−2.65,
p = 0.01, uncorrected), right calcarine gyrus (t-value = −2.05, p
= 0.04, uncorrected), left postcentral gyrus (t-value = −2.27, p
= 0.02, uncorrected), left precuneus (t-value=−2.93, p= 0.005,
uncorrected), and right precuneus (t-value = −2.47, p = 0.01,
uncorrected) (Figure 5).
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The FCS of CSM patients was also significantly low in the left
precentral gyrus (t-value=−3.54, p < 0.001, uncorrected), right
precentral gyrus (t-value = −2.35, p = 0.02, uncorrected), and
left postcentral gyrus (t-value = −3.41, p < 0.001, uncorrected)

FIGURE 2 | Region-wise CBF–FCS coupling changes based on anatomical

automatic labeling (AAL) in cervical spondylotic myelopathy (CSM) patients.

Significant CBF-FCS correlation across voxels within the middle frontal gyrus

and superior frontal gyrus were observed between CSM patients and healthy

individuals. Error bars represent the SD. FDR-corrected p-values are shown

above the bars. CBF, cerebral blood flow; FCS, functional connectivity

strength.

but substantially high in the left (t-value = 3.63, p < 0.001,
uncorrected), and right thalamus (t-value = 3.55, p < 0.001,
uncorrected) (Figure 5).

CBF–FCS coupling was also low in the right calcarine gyrus
(t-value = −2.04, p = 0.04, uncorrected), left thalamus (t-value
= −2.20, p = 0.03, uncorrected), and right thalamus (t-value =
−2.23, p= 0.03, uncorrected) (Figure 5).

Correlation Between Brain Alterations and
Clinical Measures
Subject-level analysis revealed no correlation between CBF
and FCS levels in the whole gray matter of CSM patients
(Supplementary Table 2).

TABLE 2 | Difference in voxel-wise FCS between CSM patients and healthy

individuals.

Brain regions Peak MNI coordinate t-value Cluster-size

(x, y, z)

CSM > HC

Left thalamus 9 −3 3 6.31 167

Right thalamus

Right hippocampus 21 −6 −21 5.43 80

Right ACC 3 24 21 4.81 51

CSM < HC

Left precentral −51 −6 48 −4.85 50

CSM, Cervical Spondylotic Myelopathy; HC, Healthy Controls; ACC, Anterior

Cingulate Gyrus.

FIGURE 3 | Region-wise CBF–FCS coupling changes in cervical spondylotic myelopathy (CSM) patients based on AAL. FCS was significantly different between CSM

patients and healthy individuals. Error bars represent the SD, FDR-corrected p-values are shown above bars. CBF, cerebral blood flow; FCS, functional connectivity

strength; Precentral_L, Left precentral gyrus; Hippocampus_R, Right hippocampus; ParaHippocampal_R, Right parahippocampus; Amygdala_R, Right Amygdala;

Postcentral_L, Left postcentral gyrus; Pallidum_R, Right pallidum; Thalamus_L, Left Thalamus; Thalamus_R, Right thalamus.
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FIGURE 4 | Voxel-wise functional connectivity strength (FCS) changes in cervical spondylotic myelopathy (CSM) patients and healthy patients. Significant difference in

FCS was found between the two groups. Scatter plots for the relationship between altered FCS and clinical measures including Montreal cognitive assessments

(right), and preoperative Japanese Orthopedics Association scores (Left) across voxels. FCS, functional connectivity strength; ACC, anterior cingulate gyrus.

Region-wise analysis revealed a strong positive correlation
between CBF as well as FCS in the left middle frontal gyrus
and postoperative JOA scores (severity of clinical symptoms in
patients with cervical compressive myelopathy) in CSM patients
(r = 0.50, p < 0.05, uncorrected) (Supplementary Table 3).
The FCS in the left precentral gyrus also positively
correlated with preoperative JOA scores (r = 0.53, p <

0.05) (Supplementary Table 4).
Voxel-wise analysis revealed that the FCS in the left precentral

gyrus positively correlated with the preoperative JOA scores (r
= 0.63, p < 0.001), whereas the FCS in the right hippocampus

positively correlated with MoCA scores (r = 0.45, p < 0.05)
(Figure 4).

ROI-wise analysis on its part revealed a strong negative
correlation between postoperative JOA scores and CBF as well
as FCS and in the left calcarine gyrus (r = −0.37, p < 0.05).
A negative correlation was also observed between preoperative
JOA scores and CBF as well as FCS in the right calcarine
gyrus (r = −0.37, p < 0.05). A strong negative correlation
was observed between preoperative JOA scores and CBF as
well as FCS in the left thalamus (r = −0.48, p < 0.05). We
also found a negative correlation between postoperative JOA
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FIGURE 5 | CBF–FCS coupling changes in ROI in cervical spondylotic myelopathy (CSM) patients based on anatomical automatic labeling. We found significant

difference in CBF–FCS coupling, as well as CBF rate and FCS. Error bars represent the SD. P-values (uncorrected) are shown above bars. CBF, cerebral blood flow;

(Continued)
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FIGURE 5 | FCS, functional connectivity strength; ROI, region of interests; Precentral_L, Left precentral gyrus; Precentral_R, Right precentral gyrus;

Supp_Motor_Area_L, Left supplementary motor area; Supp_Motor_Area_R, Right supplementary motor area; Calcarine_L, Left calcarine cortex; Calcarine_R, Right

calcarine cortex; Postcentral_L, Left postcentral gyrus; Postcentral_R, Right postcentral gyrus; Precuneus_L, Left precuneus cortex; Precuneus_R, Right precuneus

cortex; Thalamus_L, Left Thalamus; Thalamus_R, Right thalamus.

scores and CBF as well as FCS in the right thalamus (r =

−0.38, p < 0.05) (Supplementary Table 5). Preoperative JOA
score positively correlated with FCS in the left precentral gyrus.
We observed a negative correlation between the FCS in the
left calcarine and preoperative JOA scores (r = −0.37, p <

0.05) as well as JOA recovery (r = 0.40, p < 0.05) following
decompression surgery. The FCS in the left precuneus negatively
correlated with preoperative JOA scores (r = −0.54, p < 0.05)
as well as JOA recovery (r = 0.50, p < 0.05), whereas the FCS
in the right precuneus negatively correlated with preoperative
JOA scores (r = −0.61, p < 0.05) as well as JOA recovery (r
= 0.53, p < 0.05) (Supplementary Table 6). In this section, no
multiple comparison correction method was performed because
the relative strict multiple comparison method may cover up the
mild association between brain variables and clinical measures
within the selected ROIs.

DISCUSSION

To the best of our knowledge, this is the first study
investigating CBF–FCS coupling changes in CSM patients using
a combination of BOLD and ASL techniques. We found that,
compared with healthy individuals, the CBF–FCS coupling in
the whole gray matter was significantly low. CSM patients

also exhibited altered CBF–FCS coupling in the superior/mid
frontal gyrus. Moreover, the FCS in the pre/postcentral gyrus

was substantially low in CSM patients, in contrast with rCBF

in the thalamus, hippocampus, and visual cortices, which were

all substantially high. These findings deepen our understanding
on the neural pathological characteristics of CSM. We used
blood oxygenation level-dependent (BOLD) signals in exploring
functional alterations in the brain under certain disease
complications such as Alzheimer’s disease (AD), Parkinson’s
disease (PD), epilepsy, attention deficit hyperactivity disorder
(ADHD), and mood disorders.

We observed a significant whole-brain wise across-
voxel correlation between rCBF and FCS in healthy adults,
consistent with previous findings (27, 45). Proper neurovascular
functioning is necessary for normal coupling between rCBF
and FCS (both neuronal and vascular components). Astrocytes
maintain normal coupling between neuronal and vascular
components by coordinating the activity and responses mediated
by these components (48). Although we observed a significant
across-voxel correlation between rCBF and FCS in CSM patients,
it was substantially lower than that of healthy patients, implying
decoupling between rCBF and FCS in CSM patients. This
neurovascular decoupling may have resulted from prolonged
neuroinflammation caused by myelopathy (61–63), in which
the abnormally functioning astrocytes in CSM patients may

have reduced the regional neural activity and blood supply
(62, 64, 65). Neuroinflammation would have also directly
affected the vascular component, leading to neurovascular
decoupling in CSM patients. However, we did not find a
significant difference in rCBF between CSM patients and healthy
individuals. Therefore, neurovascular decoupling in CSM is
caused by abnormal functioning of the astrocyte.

We observed low across-voxel correlation between rCBF and
FCS in the superior frontal gyrus of CSM patients. The superior
frontal gyrus regulates motor functions. Previous neuroimaging
studies have demonstrated that CSM patients display altered
neural activity in the superior frontal gyrus. Takenaka et al.
observed significantly high functional connectivity between
superior frontal and lingue gyrus in (healthy individuals),
and surgery substantially improved this phenomenon in CSM
patients (66). In their subsequent study using the same cohort,
Takenaka et al. found that decompression surgery increased
ALFF in the superior frontal gyrus of CSM patients (9). Herein,
we found a high across-voxel correlation between rCBF and FCS
in the middle frontal gyrus of (CSM patients), a brain region
that participates in processing chronic pain (67, 68). The high
neurovascular coupling may have resulted from the chronic pain
in CSM patients. Taken together, CSM patients display altered
superior frontal and middle frontal gyrus function. Meanwhile,
the neurovascular coupling (measured by cross-voxel correlation
between rCBF and FCS) provides complementary information
on the pathological changes in CSM.

FCS levels reflect the contribution of each voxel in information
transmission in the whole brain. Information transmission
efficiency is directly proportional to HFCS levels. Low FCS
implies local brain damage (reduction in gray matter and
alterations in whitematter) (69, 70). Herein, we found FCSwithin
sensorimotor cortices including pre and postcentral gyrus, and
the FCS within left precentral gyrus was significantly low in CSM
patients, and positively correlated with preoperative JOA scores.
This implies that regional impairments are directly proportional
to the severity of clinical symptoms. We speculate the functional
impairments result from the structural damage in sensorimotor
cortices in CSM patients. Converging evidence shows that CSM
patients have little gray matter (71–73) and low metabolism
in the sensorimotor cortices (14, 74). Therefore, the structural
changes may result from the FCS changes in the precentral
and postcentral gyrus. Moreover, we also observed a significant
increase in FCS within the thalamus and hippocampus of CSM
patients, and high FCS in the hippocampus positively correlated
with MoCA scores. High global efficiency of the default mode
network positively correlates withMoCA scores in CSM patients.
This implies that the high global efficiency in the default mode
network compensates for the local impairment (measured by
signal variability) in the default mode network (19). As the
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hippocampus has been shown to be an important brain region
participating in many cognitive functions, the high FCS in the
hippocampus was also associated with compensatory or adaptive
changes in CSM, necessary for maintaining normal cognitive
function in these individuals.

What causes functional changes in the brain of CSM patients
is largely unknown. However, it is thought that CSM patients
develop stenosis of transverse foramen that compresses vertebral
artery, altering cortical blood supply. However, in our current
study, altered CBF in CSM patients was only observed in a
few regions. We found no significant voxel-wise or region-wise
difference in CBF between CSM patients and healthy individuals.
However, we observed altered CBF and FCS coupling in CSM
patients, consistent with the idea that functional impairments in
CSM patients is caused by neuroinflammation.

Regarding limitations, first, the CSM patients included in
our study received a long conservative treatment before surgery
(NSAID), which could have influenced the observed outcomes.
Future studies using treatment-naïve CSM patients are necessary
to validate our findings. Second, both CBF and FCS are indirect
measures of vascular and neuronal function; thus, our findings
may not be conclusive. Third, postoperative fMRI assessment
was not performed due to the possible artifacts of the surgical
implants and possible heating of these materials. Means of
conducting safe postoperative fMRI are necessary to allow
this process in patients with surgical implants. Lastly, the
sample size of our current study is relatively small. Future
studies with a larger sample size are needed to further confirm
our conclusion.

In conclusion, we observed an altered neurovascular coupling
in CSM by combining BOLD and ASL techniques. Specifically,
we found a decreased across-voxel correlation between rCBF
and FCS in the superior frontal gyrus involved in motor control
and motor planning, and an increased across-voxel correlation
between rCBF and FCS in the middle frontal gyrus implicated in
cognitive function. These findings suggest that the neurovascular

decoupling in the brain may be a potential neural mechanism
involved in the pathophysiology of CSM.
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