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All together now: Analogies 
between chimera state collapses 
and epileptic seizures
Ralph G. Andrzejak1, Christian Rummel2, Florian Mormann3 & Kaspar Schindler4

Conceptually and structurally simple mathematical models of coupled oscillator networks can show a 
rich variety of complex dynamics, providing fundamental insights into many real-world phenomena. 
A recent and not yet fully understood example is the collapse of coexisting synchronous and 
asynchronous oscillations into a globally synchronous motion found in networks of identical oscillators. 
Here we show that this sudden collapse is promoted by a further decrease of synchronization, rather 
than by critically high synchronization. This strikingly counterintuitive mechanism can be found also 
in nature, as we demonstrate on epileptic seizures in humans. Analyzing spatiotemporal correlation 
profiles derived from intracranial electroencephalographic recordings (EEG) of seizures in epilepsy 
patients, we found a pronounced decrease of correlation at the seizure onsets. Applying our findings 
in a closed-loop control scheme to models of coupled oscillators in chimera states, we succeed in both 
provoking and preventing outbreaks of global synchronization. Our findings not only advance the 
understanding of networks of coupled dynamics but can open new ways to control them, thus offering a 
vast range of potential new applications.

Synchrony and asynchrony coexist in a multitude of natural and man-made systems where they play key roles 
in their functions and dysfunctions1–8. The mechanism underlying this coexistence can be studied in models of 
coupled oscillator networks, simple in their structure yet complex in their dynamics. Even networks of identi-
cal coupled oscillators can segregate into two subpopulations, one with synchronous oscillations and the other 
with an irregular asynchronous motion9. Such so-called chimera states10,11 have been studied analytically9,10,12–21, 
numerically9,10,12–30 and experimentally13,24–28. While chimera states are stable in the thermodynamic limit of 
infinitely many oscillators11,18, a recent study has shown that for networks of finite size they can collapse into a 
fully synchronized state23. The exact mechanisms that trigger this seemingly sudden collapse, however, remain 
unknown.

To address this open problem, we studied the dynamics of a ring of identical phase oscillators with nonlocal 
coupling. Mutually close oscillators are connected by a high coupling, and with increasing distance between 
oscillators, the coupling strength decreases to zero. The dynamics of such networks depends in a nontrivial way 
on its parameters11, such as the number of oscillators and the range of the coupling. We fixed the parameters such 
that for most random initial conditions, the network entered into a chimera state and the mean lifetime prior to 
the chimera collapse was comparable to the maximal lifetimes reported in previous studies15,23–25. We here use a 
data-driven approach to study the dynamics of the network model. In particular, we use signal analysis to evaluate 
the instantaneous coherence and temporal evolution of the oscillator phases. Apart from the ring topology, no 
further knowledge about the network structure is used.

Results
The network model.  Our model consists of N =  51 identical nonlocally coupled oscillators assumed to be 
placed equidistantly on a ring with circumference 51. Accordingly, all indices, sums and differences of indices are 
understood as modulo N. For j =  1, … , 51, the phases of the oscillators are governed by:
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Here ω is the natural frequency which is set to zero, and α is the phase lag parameter which is set to 1.46 rad 
(see22,23). The coupling kernel function G is described in the Methods section.

Formation and collapse of chimera states.  Figure 1 and Supplementary Fig. 1 show different stages of 
the network dynamics obtained from numerical integration of the network model (see Methods). Shortly after the 
network is initialized with uniform random phases the chimera state is established. The network is divided into 
two distinct groups, i.e. the spatial symmetry of the network structure does not result in a spatial symmetry in 
its dynamics’ states. Instead this symmetry is broken in the way described in the following. In the high-coherence 
group (HCG), all nodes are locked to a narrow range of phases and jointly oscillate at an almost constant phase 
velocity. The nodes of the complementary group, in contrast, are dispersed and behave in an irregular way, includ-
ing intermittent changes of the sense of rotation23. This second group is commonly referred to as incoherent. 
However, we here refer to it as low-coherence group (LCG) since its local order parameter (see Methods) reveals 
a low but non-negligible coherence (see also26). Oscillators at the borders between the HCG and LCG frequently 
switch sides. They lock onto the HCG or get disconnected from it. Therefore, the HCG group slowly drifts across 
the network22. More than a million HCG oscillation periods past its formation, the chimera state shown in Fig. 1 
suddenly collapses, and the network switches to the fully synchronized state23. After the last irregularities have 
faded out, the phases of all nodes become completely locked and oscillate at constant phase velocity. The transla-
tional symmetry of the network structure is eventually also reflected by the dynamics’ states.

Figure 1.  Chimera state collapses are typically preceded by hypo-coherence events. Temporal evolution of 
phases ϕj(t) (a) and phase velocities ϕ


t( )j  (b) of the network oscillators indexed by j show the dynamics of a 

chimera state collapse. Time t is relative to the onset of full synchronization at tFS =  0. This chimera state 
collapse took place more than a million HCG oscillation periods after the formation of the chimera state. 
Accordingly, this figure displays only the very end of the chimera state. Due to the ring topology, oscillators at 
the upper and lower boundaries are neighbors. We use different time scales to optimally visualize the different 
quantities. Black and green abscissa segments indicate the correspondence of intervals between panels. LCG 
order parameter RLCG( j, t) (c) and its spatial average RLCG( t) on a short (d) and long timescale (e) show the 
hypo-coherence event at t =  − 113 time units marked by the star and dashed line. RLCG( t) is plotted in orange for 
times at which the LCG has less than 21 oscillators. Gray areas in (c) correspond to HCG oscillators.
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Hypo-coherence events.  Sieber et al.15 conjectured that the seemingly sudden collapse of the chimera 
state occurs when finite-size fluctuations allow the network dynamics to pass through the barrier of an unstable 
chimera state solution to the fully synchronized stable state (see also29). It has not been studied so far, however, 
whether a specific network state facilitates this process. A priori, one might expect that the finite-size fluctuations 
lead to a critical number of HCG nodes or some critically high LCG coherence. Such a critical mass might initiate 
positive feedback, triggering a transition to the fully synchronized state. This notion is further supported by the 
unstable chimera state solution residing at high values of the global order parameter15. However, our network 
shows no evidence for such critical-mass mechanisms. Instead we find that the chimera collapse is typically 
preceded by a hypo-coherence event in the LCG. This seemingly counterintuitive mechanism is reflected in a 
prominent drop in the spatiotemporal profile of the LCG order parameter (Fig. 1c–e). Only subsequent to this 
hypo-coherence event do positive feedback mechanisms take over. This positive feedback, in the sense that a high 
synchronization leads to a further increase of synchronization, then drives the network to the fully synchronized 
state. We quantify these hypo-coherence events by the last prominent minimum of the LCG order parameter 
prior to the collapse (Fig. 1d,e). Last prominent minima determined in the same way but not followed by any 
collapse serve as controls. Across independent realizations of the network, minima preceding collapses are signif-
icantly lower than the controls (Fig. 2).

Different pathways to full synchronization and their lifetimes.  How does a drop in the already 
low coherence of the LCG promote the onset of the fully synchronized state? When the network is initiated 
with random phases, it will always end up in the fully synchronized state. There are, however, two distinct path-
ways to this final stable state. So far we have treated the chimera pathway. In a second pathway the network 
synchronizes directly, without ever forming a chimera state (Supplementary Fig. S2). For our network this 
immediate-collapse pathway was observed in 4,848 of 100,000 independent realizations (~5%). For this pathway 
the distribution of lifetimes, i.e., the times from the initiation to the fully synchronized state, is right-skewed and 
has a mean of 162 ±  2.33 time units (mean ±  standard error of mean). The maximum observed lifetime in the 
immediate-collapse pathway was 693 time units (Fig. 3). Out of the remaining 95,152 realizations that formed a 
chimera state (~95%), we continued to integrate a randomly selected subsample of 2,000 realizations until they 
collapsed. The resulting lifetime distribution is exponential23,25,28 (Fig. 3), implying that the collapse is a Poisson 
process25. Accordingly, the instantaneous probability that a collapse occurs is time-independent, the chimera 
state is not ageing. Using the empirical distribution mean of (2.5 ±  0.05) ⋅  106 time units, we can thus determine 
the probability that a chimera collapses within 693 time units, i.e. within the longest lifetime observed in the 
immediate-collapse pathway. It is as small as 2.8 ⋅  10−4.

Hypo-coherence events trigger the collapse of chimera states.  Hence, for our network the transi-
tion rate from chimera states to the fully synchronized state is orders of magnitude lower than the one from the 
initial random, fully incoherent state. At first sight, this might again seem counterintuitive since for the chimera 
state the HCG nodes are already oscillating almost synchronously. Therefore, a first step towards full synchro-
nization is already taken, and only the LCG nodes remain to be recruited. We conjecture that the low coherence 
of the LCG is non-negligible in the sense that it is protective against this recruitment. As long as the LCG has 
its own mean field, it is less vulnerable to be absorbed by the HCG. Once this opposition is weakened during a 
hypo-coherence event, the HCG can impose its rhythm and rapidly recruit all oscillators in the network. This has 

Figure 2.  Hypo-coherence events prior to chimera collapses are significantly more prominent than 
controls. Probability density distribution of the depth of the last prominent minimum RLCG

min of RLCG(t). 
Distributions were estimated from 2,000 independent realizations of the network prior to the chimera collapse 
(red) and prior to times without collapse as control (blue). The distributions are significantly different 
(Wilcoxon rank sum test score: Z =  42.42; p ≪  10−15). Error bars show ±  one square root of the count 
underlying the histograms used to estimate the probability densities.
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to be understood in a probabilistic sense. Hypo-coherence events are not fully sensitive and specific for the chi-
mera collapse (distributions in Fig. 2 overlap), but they do render the network susceptible to suffer an immediate 
chimera collapse.

Closed-loop control schemes.  Results of two different closed-loop feedback schemes corroborate this 
interpretation. In these simulations, based on 500 independent realizations each, we transiently changed the 
phase lag coupling parameter α (see also15,21,29) whenever the LCG order parameter entered the range found 
for hypo-coherence events. Importantly, we changed α exclusively in couplings between LCG oscillators. In the 
first scheme we set α so as to cause a further decrease of the LCG coherence. This decreased the mean chi-
mera lifetime from (2.5 ±  0.05) ⋅  106 to (2.6 ±  0.1) ⋅  105 time units. In the second scheme, an α counteracting the 
hypo-coherence event increased the lifetime to (7.4 ±  0.3) ⋅  106 time units. As controls we used two corresponding 
open-loop feedback schemes. Here changes of α were not triggered by hypo-coherence events but were applied 
periodically, matching in both frequency and duration the respective closed-loop feedback scheme. The effects 
were much smaller with resulting mean lifetimes of (2.6 ±  0.1) ⋅  106 and (2.9 ±  0.1) ⋅  106 time units, respectively.

Decrease of correlation at the onsets of epileptic seizures in humans.  Do chimera states bear any 
relevance for real-world phenomena? We use an example from neurology to show that phenomena analogous 
to hypo-coherence events preceding chimera state collapses indeed exist. Analyzing spatiotemporal correlation 
profiles derived from intracranial EEG recordings of seizures, we found a pronounced decrease of correlation at 
the seizure onsets (Early localized blue areas in Fig. 4). This decrease is most prominent for signals recorded either 
from within, or close to, brain regions that show the first electrographical signs of seizure activity. The subsequent 
spread of the seizure activity to extended brain regions is accompanied by a global increase in correlation which 
outlasts the actual seizure (Extended red areas in Fig. 4). We found similar patterns across further seizures from 
the patients shown in Fig. 4 and analogous patterns in seizures from other patients. Nevertheless, our intention 
is not to suggest that transient correlation decreases at seizure onsets can be found for all types of seizures in all 
patients or that they can be used for a reliable early detection or even prediction of epileptic seizures. To stress 
this point31, we show a sample seizure onset not exhibiting any correlation decrease in Supplementary Fig. S5.

Discussion
The key analogy across our findings is that an outbreak of global synchronization is preceded by a transient 
decrease of synchronization in a subpopulation of the network. We anticipate that this represents only a first link 
between chimera collapses and epileptic seizures. Functions of the brain are complex and diverse and so are its 
dysfunctions, several of which can manifest themselves in epileptic seizures. Likewise the dynamics of coupled 
oscillator networks are very rich. Chimera states and chimera-like phenomena arise in a multitude of coupled sys-
tems11. However, they exist only for limited ranges of the network parameters11. Within these ranges their charac-
teristics, stability, and mean lifetimes23,24 are influenced by the network topography, type of oscillator, and features 

Figure 3.  The mean lifetime of chimera states is orders of magnitudes longer than the one of immediate 
decays. (a) Probability density distribution of lifetimes in the immediate decay pathway estimated from 4,848 
realizations. Here the lifetime is defined as the time between the initialization of the network with random 
phases at tST and the onset of the fully synchronized state at tFS. The black line connects data points to guide 
the eye. (b) Probability density distribution of chimera state lifetimes estimated from 2,000 independent 
realizations. Here the lifetime is defined as the time between the formation tIF of the chimera state and the 
collapse to the fully synchronized state at tFS. The longest lifetime we observed across all 2,000 independent 
realizations of the network was 1.7 ⋅  107 time units. The black line corresponds to an exponential distribution 
with a mean of 2.5 ⋅  106 time units. Given these long lifetimes the computational load to follow all 95,152 
realizations that entered into the chimera pathway was prohibitive, even using massive distributed long-term 
computing. In both panels error bars show ±  one square root of the count underlying the histograms from 
which we estimated the probability densities.
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of the coupling. In a pre-analysis, we found hypo-coherence events for extended network parameter ranges within 
the limits for which chimera states exist. As stated above, we fixed these parameters such that for most random 
initial conditions, the network entered into a chimera state and the mean chimera state lifetime was comparable 
to the maximal lifetimes reported in previous studies15,23–25. None of the network parameters were optimized with 
regard to the results shown herein. By narrowing the kernel and thus approaching a kernel broadness for which 
chimera states do not exist, we found chimera states of significantly shorter lifetimes that resemble so-called 
breathing chimeras12,14, characterized by a waxing and waning of the LCG (Supplementary Figs 3 and 4). Here the 
collapse occurs in a particularly deep breathing cycle. Accordingly, apart from hypo-coherence events, further 
intriguing mechanisms can underlie the collapse of chimera states. As a further example, consider a system of 
globally coupled oscillators with internal delayed feedback which was recently reported to show chimera-like 
states32. In contrast to our network, the fully synchronized state of this network incorporating delays is not stable. 
Is the healthy brain using similar mechanism not to have seizures? Along these lines, instead of contradicting our 
findings, the counterexamples provided in Supplementary Figs S4–S5 are promising candidates for which one can 
seek real-world and model counterparts, respectively.

It is important to emphasize at which conceptual level we establish a link between chimera collapses and 
epileptic seizures. Certainly a ring of nonlocally coupled identical phase oscillators is not a realistic model 
of the brain. Furthermore, our analysis cannot provide evidence that the chimera collapses and epileptic sei-
zures are caused by the same dynamical scenario such as specific types of bifurcations. What we do show is 
that from the perspective of a data-driven approach both systems exhibit an analogous phenomenon, namely a 

Figure 4.  Localized decrease of correlation at the onset of epileptic seizures. Color-coded normalized slope 
cross correlation C EL t( , )i  for epileptic seizures of patient A (a) and B (b). Gray is used for the last contacts on 
individual electrodes (having no next neighbor to calculate C EL t( , )i  with). Ordinate labels indicate electrode 
names and every second recording contact number. Black bars mark electrode contacts that were located in 
brain tissue subsequently resected in epilepsy surgery. Green lines mark the visually detected 
electroencephalographic seizure onset (at t =  0) and offset times. Black contour lines mark the electrode-
temporal range showing prominent seizure activity, assessed by thresholding the normalized absolute EEG 
signals slope: S(ELi, t) >  7.



www.nature.com/scientificreports/

6Scientific Reports | 6:23000 | DOI: 10.1038/srep23000

transient decrease of synchronization in a subpopulation of the network which precedes an outbreak of global 
synchronization.

While epileptic seizures are classically considered to reflect abnormal excessive or synchronous neuronal 
activity33, our findings support the emerging view that apart from synchronization also de-synchronization is 
important for seizures dynamics34–38. Furthermore, there is growing evidence that brain regions showing the 
first electrographical signs of seizure activity at seizure onset are characterized by an elevated level of neuronal 
synchronization during the seizure-free interval (see4,39 and references therein). Given this prominent role that 
alterations of neuronal synchronization play in epilepsy, changes in synchronization are regarded as a promising 
feature for seizure prediction. Mormann and coworkers40 used the mean phase coherence41 as an estimate for neu-
ronal synchronization to analyze intracranial EEG recordings from epilepsy patients. They found that the large 
majority of the investigated seizures were preceded by a decrease of synchronization lasting from several minutes 
up to a few hours. These decreases were not confined to the seizure onset zone but often involved more distant, 
even contralateral, areas of the brain but were not found in recordings from the seizure-free interval. Feldt and 
coworkers42 used a straightforward model of two interacting populations of integrate-and-fire neurons to explain 
these results of Mormann et al.40. Subsequent studies investigated whether spatiotemporal changes of neuronal 
synchronization, as estimated by the mean phase coherence or other quantitative EEG analysis measures, can be 
used to predict epileptic seizures (see43–47 for recent examples). It remains subject of an ongoing debate whether 
the sensitivity and specificity of current quantitative EEG analysis based seizure prediction approaches is suffi-
cient for implementation in therapeutic devices (see48). On the other hand, their sensitivity and specificity are 
often reported to be higher than the values expected under the null hypothesis that the predictions are raised at 
random by a Poisson process (see49). However, due to the temporal correlations of the quantitative EEG analysis 
measure profiles from which the predictions are extracted, the memoryless Poisson process might not provide 
a plausible null hypothesis31. We emphasize that our study of EEG recordings does not aim at the prediction of 
epileptic seizures. We only report transient correlation decreases at seizure onsets, not prior to seizure onsets. The 
analogy of these transient correlation decreases at seizure onsets with hypo-coherence events prior to chimera 
collapse can, however, contribute to the understanding of the mechanisms underlying seizure onsets.

Results of our closed-loop feedback scheme add to previous work on the control of chimera states15,20,21,29,30. 
Sieber and colleagues15 introduced a time-dependence into the phase lag parameter as a function of the global 
order parameter. This closed-loop control scheme allowed stabilizing chimera states and suppressing the chimera 
collapse. Wolfrum and colleagues29 further studied the dynamical phenomena in this feedback system with par-
ticular emphasis on networks of a small number of oscillators. Bick and Martens20 implemented a closed-loop 
between the gradient of a local order parameter and an asymmetry in the coupling kernel function to suppress the 
drifting motion of the chimeras (see22). This allowed the authors to fix the position of chimera states at any desired 
target position on the ring. Isele et al.30 achieved to stabilize chimera states and to control their position by includ-
ing excitable units in a network of otherwise oscillatory nodes. Omelchenko et al.21 stabilized chimera states 
and fixed their position in particularly small networks. For this purpose they introduced an oscillator-position 
dependence into the phase lag parameter as a function of the sum and difference of two local order parameters.

Our control scheme was restricted to the oscillators of the LCG. Whenever the LCG order parameter fell 
below a threshold, reflecting an imminent hypo-coherence event, we changed the phase lag parameter exclusively 
for couplings between LCG oscillators. Adjusting this intra LCG phase lag parameter to either counteract or 
enhance the hypo-coherence event allowed us to, respectively, suppress or promote the collapse of the chimera 
state. In other words, counteracting or enhancing a loss of coherence in the already weakly coherent subpopula-
tion of oscillators can, respectively, suppress or promote the outbreak of synchronization across all oscillators. On 
the one hand, this supports our conclusion that the chimera state collapse is indeed triggered by hypo-coherence 
events. On the other hand, this is in keeping with the hypothesis that methods directed at increasing synchro-
nization might help to control epileptic seizures34,35. To exploit the principles of our closed-loop schemes to 
control epileptic seizures will require identifying and precisely targeting the brain regions corresponding to the 
low-coherence group, for example by intracranial focal electrical neurostimulation50. Notwithstanding these 
challenges, the prospect of control can have far-reaching implications, beyond epileptic seizures. In the brain, a 
balanced coexistence of synchrony and asynchrony plays key roles in cognitive functions2. A disturbance of this 
balance can manifest itself not only in epilepsy4 but in further neurological disorders such as Parkinson’s disease5 
or schizophrenia3.

Methods
The coupling kernel.  We constructed the coupling kernel G( j −  k) by placing a Tukey window of width 
B =  44.8 and parameter r =  0.45 centered at | j −  k| =  0. The remaining part (23 ≤  | j −  k| ≤  25) was padded with 
zeros. Then, G( j −  k) was normalized to have integral of one along the ring of 51 oscillators. Accordingly, the 
kernel has a constant value of 0.0228 in the center, is zero at both tails, and decays like a cosine kernel in between 
(Supplementary Fig. S3). The parameters B and r allow adjusting the broadness and steepness of the kernel. The 
higher B, the narrower the tails of value zero. The higher r, the broader the cosine part and the narrower the center 
of constant value. The values of B =  44.8 and r =  0.45 were used throughout this study. Exclusively for the simula-
tion shown in Supplementary Fig. S4, we set B =  39.6 and r =  0.45.

Choice of evaluation parameters.  The procedures described below require determining several thresh-
olds, time constants, minimal number of oscillators, etc. All values were set in an empirical manner. We adapted 
them to our particular network taking into account its size, typical time scales and dynamics by exploring in detail 
the influence of the parameters based on a small number of exemplary realizations. Importantly, our results do 
not depend in a sensitive way on any of these evaluation parameters. In particular, none of the values were opti-
mized with regard to the results presented here.
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Numerical integration and initial conditions.  We integrated equation (1) using a Runge-Kutta scheme 
of order four with fixed step size of dt =  0.01 dimensionless time units. Using this integration step, one obtains 
on the order of 800 samples per oscillation period of the coherent oscillators during the existence of the chimera 
state. Hence, we have a sufficiently small integration step size with regard to the dominant time scale of the 
dynamics. As start time we defined tST =  0 time units. As initial conditions we used random phases ϕj(tST) that 
were uniformly distributed between [0, 2π] for j =  1, … , N.

Order parameters.  To monitor the state of the network we represent the phases in the complex domain and 
use the length of the complex Kuramoto order parameter:

= ϕR t e( ) (2)m
i t

m{ }
( )

{ }
m{ }

where i is the imaginary unit. The angular brackets <  >  indicate the mean value in the complex plane taken 
across the set of indices given in curly brackets { }. The bars | ⋅  | indicate the absolute value, which here corre-
sponds to the Euclidean norm of the complex number to which it is applied. This order parameter assesses the 
instantaneous coherence of the subpopulation {m} of phase oscillators at time t. The subpopulations were adapted 
to the problem at hand, resulting in three different variants of the order parameter. The first variant is the global 
order parameter across all phases, which we use to detect the initial formation of the chimera state and the onset 
of the fully synchronized state:
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(We here write out the mean only to further illustrate the definition of Equation (2).)
The time of the initial formation of the chimera state, denoted by tIF, was defined by the smallest time t for 

which R{1,…,N}(t) >  0.7. This threshold is close to the mean of R{1,…,N}(t) during the existence of the chimera 
state. The time of the onset of the fully synchronized state, tFS, was defined by the smallest time t for which  
R{1,…,N}(t) >  0.99999 was found. We convinced ourselves that after crossing this threshold, the value of R{1,…,N}(t) 
always converged to one, hence this threshold is beyond the point of no return to full synchronization.

Definition of high-coherence and low-coherence group.  We use pair-wise order parameters to define 
the two complementary groups of oscillators, namely the high-coherence group (HCG) and the low-coherence 
group (LCG). To be included in the HCG, oscillators must belong to at least one group of at least five neighboring 
oscillators for which all pair-wise order parameters exceed a pre-defined threshold: If R{j+2,j+1} >  0.995 and 
R { j+1, j} >   0 .995 and R { j , j−1} >   0 .995 and R { j−1, j−2} >   0 .995,  then the osci l lators with indices 
+ + − −j j j j j2, 1, , 1, 2 are included in the HCG. This criterion is tested for j =  1, … , N. Accordingly, the 

tested groups overlap, and oscillators can qualify up to five times to be included in the HCG. The number of times 
an oscillator qualifies is not taken into account. All oscillators that never qualify for any j are included in the LCG. 
We found that the threshold value 0.995 and the group size of five is necessary and sufficient to avoid that islands 
in the middle of the LCG are erroneously defined as members of the HCG. By construction, both groups cannot 
intersect and their union fills the entire ring of all N =  51 oscillators. Typically, during the existence of the chimera 
state, the ring of oscillators was split in one non-fragmented HCG and the complementary non-fragmented LCG. 
Only during the initial formation and collapse of the chimera state a fragmentation of these two groups was typ-
ically found (see Fig. 1 and Supplementary Fig. S4).

LCG order parameter.  To assess the spatial-temporal coherence profile of the LCG (see also10,32), we adapted 
the order parameter to be restricted to the 20 nearest neighbors of an individual oscillator j in the LCG: RLCG(j, 
t) =  R{m}(t) for ∩| − ≤ ≤ + ∈m j m j m{ 10 10 LCG}. To further condense this information, we took the aver-
age = ∈R t R j t( ) ( , )jLCG LCG LCG

. Here the angular brackets <  >  indicate the mean value in the real-valued domain 
of the order parameter.

Last pronounced minima, originals and controls.  To quantify the hypo-coherence events, we deter-
mined the last prominent minimum of the LCG order parameter RLCG(t) prior to the onset of full synchroniza-
tion. We denote this last prominent minimum by RLCG

min. To determine it, we at first estimated the median of 
RLCG(t) across the chimera lifetime. We then went to the last time instant tON prior to the onset time of the fully 
synchronized state tFS at which RLCG(t) crossed its median from above and the number of oscillators in the LCG 
was at least 21. This median value was used to initialize RLCG

min. The jump backwards from tFS to tON is necessary in 
order not to get trapped in the prominent fluctuations of RLCG(t) observed during the acute break-down of the 
LCG (see right end of Fig. 1d,e). From tON, we went gradually backward in time. Whenever the value of RLCG(t) 
was smaller than the current value of RLCG

min, this value was stored as new value of RLCG
min. This process was stopped 

as soon as no new minimum was found within 10 time units after the last update of .RLCG
min  This value of RLCG

min yields 
the last prominent minimum of the LCG order parameter RLCG(t).

To estimate the null distribution of RLCG
min, we repeated the exact same process using as initial times ⁎tFS random 

time instants during the lifetime of chimera states at which no chimera collapse and no onset of full synchroniza-
tion took place for the next 2,500 time units.

Detection of immediate decay.  After the initial formation of the chimera state, the HCG and the 
LCG coexist (see Supplementary Fig. S1). This formation process can be traced in the global order parameter 
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R{1,…,N}(t). It rises quickly, crosses the threshold used to define the initial formation time (R{1,…,N}(t) >  0.7, see 
above), and then fluctuates around a stable mean value of R{1,…,N}(t) ≈  0.7. In contrast, in the immediate decay 
pathway (see Supplementary Fig. S2), a chimera state is never formed. This immediate decay can be detected 
readily in R{1,…,N}(t). It rises quickly, crosses the threshold of R{1,…,N}(t) >  0.7, but never stabilizes around a mean 
value. Rather it directly approaches and crosses the threshold of full synchronization (R{1,…,N}(t) >  0.99999, see 
above). Accordingly, an immediate decay was detected whenever R{1,…,N}(t) went directly from R{1,…,N}(t) >  0.7 
to R{1,…,N}(t) >  0.99999. Conversely, we discarded an immediate decay if at any time after tIF we found R{1,…,N} 
(t +  40) <  0.9R{1,…,N}(t). This latter exclusion criterion is fulfilled shortly after R{1,…,N}(t) starts to fluctuate around 
its mean, i.e., once the chimera state is consolidated.

Definition of lifetimes.  The lifetime in the immediate decay pathway is defined as the length of the time 
interval between the initialization of the network with random phases and the onset of the fully synchronized 
state: tFS −  tST =  tFS. The lifetime of the chimera state is defined as the length of the time interval between the 
formation of the chimera state and the onset of the fully synchronized state: tFS −  tIF. For practical purposes, this 
coincides with the length of the time interval between the initialization of the network with random phases and 
the onset of the fully synchronized state, since the lifetime of the chimera state is orders of magnitude longer than 
the time needed for the initial formation of this state.

Closed- and open-loop control schemes.  We used two closed-loop control schemes to either provoke or 
counteract collapses of chimera states. In both schemes, the control was activated whenever the LCG order 
parameter fell below a predefined threshold: RLCG(t) <  0.45, i.e. when this order parameter entered the range 
typically covered by hypo-coherence events (see Fig. 2). In both schemes, the control consisted of a change of the 
phase lag parameter α from its otherwise fixed value of 1.46 rad (see Equation 1). A similar control strategy was 
applied in refs 15, 21 and 29. In contrast to this previous work, however, we exclusively changed the phase lag 
parameter for couplings between pairs of oscillators both belonging to the LCG. The α of couplings between pairs 
of HCG oscillators and between LCG and HCG oscillators was never changed. In the scheme that was used to 
provoke chimera collapses, we increased the intra-LCG phase lag parameter to α π= /2LCG  rad >  1.46 rad. The 
effect of this increase is a further reduction of the coherence of the LCG oscillators. In the scheme used to coun-
teract chimera collapses, we used α π= − .( /2 0 2)LCG  rad < 1.46 rad. The effect of this decrease in turn is a recov-
ery of the LCG oscillator coherence. In both schemes, the control was turned off five time units after its activation 
or once RLCG(t) >  0.45. No control was applied prior to the initial formation of the chimera state or when the 
number of LCG oscillators dropped below 21, a characteristics of an already ongoing chimera collapse (see Fig. 1).

To test whether this closed-loop control is indeed more effective when triggered by hypo-coherence events, 
we used two corresponding open-loop control schemes. These followed the same steps as their corresponding 
closed-loop counterparts. In the open-loop schemes, however, the control was activated and deactivated period-
ically regardless of the LCG order parameter. The inter-control-interval and duration of individual controls was 
adjusted to match the respective means of the corresponding closed-loop schemes.

Electroencephalographic recordings (EEG) - Recording techniques and clinical 
data.  Electroencephalography is a key diagnostic tool in epilepsy patients suffering from pharmacoresistent 
epilepsies and who are potential candidates for epilepsy surgery. When extracranial surface (“scalp”) EEG is insuf-
ficient to precisely localize the epileptogenic regions of the brain, EEG can also be recorded intracranially from 
preselected brain regions using implanted strip, grid and depth electrodes. We here analyze intracranial EEG 
recorded at the Inselspital Bern, Switzerland, from three patients before, during and after seizures.

For data acquisition AdTech electrodes (Wisconsin, USA) and a NicoletOneTM recording system (VIASYS 
Healthcare Inc., Wisconsin, USA) were used. Before analysis EEG signals were down-sampled to a sampling time 
of Δt =  1.953 ms, re-referenced against the median of all the channels free of permanent artifacts as judged by 
visual inspection by an experienced epileptologist (K.S.) and digitally band-pass filtered between 0.5 and 150 Hz 
using a fourth-order Butterworth filter. Forward and backward filtering was applied to minimize phase distor-
tions. All EEG recordings were carried out prior to and independently from our retrospective analysis of the 
data. Importantly, these recordings are not experimental but were recorded for clinical diagnostics and treat-
ment of each individual patient only. In accordance with approved guidelines, the EEG recordings and additional 
information (age, localization of seizure onset, etiology and postsurgical outcome) was anonymized prior to our 
analysis. In addition, all patients had given written informed consent that their data from long-term EEG might 
be used for research purposes.

Patient A is a 27 year old male patient who suffered from lateral temporal lobe epilepsy (LTLE) with seizures 
starting in the left hemisphere. After resection of parts of the left temporal lobe he became completely seizure free 
with follow up of one year. Patient B is a 49 year old female frontal lobe epilepsy patient with focal cortical dys-
plasia in the right middle frontal gyrus. Resection of the dysplasia led to significant reduction of the seizure rate 
(follow up four years). Patient C is a 20 year old male LTLE patient. Seizures started in the right anterior temporal 
lobe though with fast bilateral spreading. Seizure rate was significantly reduced after surgical removal of the right 
temporal pole (follow up three years).

Normalized slope cross correlation from EEG recordings.  We here follow Rummel and coworkers37 
and apply the zero-lag linear cross correlation of the EEG signal slopes. We measure time t in seconds relative to 
the visually determined electroencephalographic seizure onset. Let EL be the name of a recording electrode car-
rying a total of c individual recording contacts. Furthermore, let x(ELi, t) denote the slope of the EEG signal, 
defined by the difference between the EEG signal amplitude measured at time t and t −  Δt at the i-th contact. 
Then we denote by C(ELi, t) the zero-lag linear cross correlation between the slope x(ELi, t) and the slope of the 
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adjacent contact x(ELi+1, t), for = … −i c1, , 1. The correlation between non-neighboring channels on individ-
ual electrodes or across electrodes was not considered. C(ELi, t) was determined in a moving window analysis 
with a window length of 5 seconds and 90% overlap between subsequent windows. For each individual signal pair, 
C(ELi, t) was normalized using its mean 〈 ⋅ 〉  and standard deviation σ(⋅ ) both taken across a reference interval 
− < < −I s t s: 180 30 :

σ
=

−
C EL t

C EL t C EL t
C EL t

( , )
( , ) ( , )

( ( , )) (4)
i

i i I

i I

Accordingly, = −C EL t( , ) 4i  or = +C EL t( , ) 4i  indicates that the C(ELi, t) is 4 standard deviations lower or 
higher, respectively, than during the reference interval I. Temporal differentiation is equivalent to multiplying the 
amplitude of the Fourier transform at any frequency with the value of the frequency. For typical EEG power spec-
tra this is equivalent to whitening the signals. Thus, by using the slope of the EEG signals rather than directly the 
EEG signals, we focus on the correlation in the faster oscillations.

Normalized absolute slope of EEG signals.  We follow Schindler and coworkers35 and define seizure 
activity by using the normalized absolute slope of the EEG. This is defined for = …i c1, ,  as:

σ
=

−
S EL t

x EL t x EL t

x EL t
( , )

( , ) ( , )

( ( , ) ) (5)
i

i i I

i I

Here |⋅ | denotes the absolute value. All other quantities, including the parameters of the moving window analysis, 
are defined as in the previous section. The normalized absolute slope of the EEG is large for both high-amplitude 
slow activity and low-amplitude fast activity, which are both typically observed at the onset and during intracra-
nially recorded epileptic seizures.
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