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A major challenge in working with longitudinal data when studying some temporal
process is the fact that differences in pace and dynamics might overshadow similarities
between processes. In the case of longitudinal microbiome data, this may hinder efforts
to characterize common temporal trends across individuals or to harness temporal
information to better understand the link between the microbiome and the host. One
possible solution to this challenge lies in the field of “temporal alignment” – an approach
for optimally aligning longitudinal samples obtained from processes that may vary in
pace. In this work we investigate the use of alignment-based analysis in the microbiome
domain, focusing on microbiome data from infants in their first years of life. Our analyses
center around two main use-cases: First, using the overall alignment score as a measure
of the similarity between microbiome developmental trajectories, and showing that this
measure can capture biological differences between individuals. Second, using the
specific matching obtained between pairs of samples in the alignment to highlight
changes in pace and temporal dynamics, showing that it can be utilized to predict
the age of infants based on their microbiome and to uncover developmental delays.
Combined, our findings serve as a proof-of-concept for the use of temporal alignment
as an important and beneficial tool in future longitudinal microbiome studies.
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INTRODUCTION

The human gut microbiome has a complex relationship with its host, holds vast impact on various
physiologic processes such as immunity (Mazmanian et al., 2005), nutrition (Turnbaugh et al.,
2006), and development (Cash et al., 2006), and plays a key role in health and disease (Dethlefsen
et al., 2007). Notably, however, the composition of the microbiome is highly dynamic, both due
to intrinsic natural variation and as a result of external perturbations (David et al., 2014). These
dynamics are the subject of numerous recent studies, focusing on various temporal patterns
including the study of temporal stability (Oh et al., 2016; Mitchell et al., 2020), stationarity (David
et al., 2014; Gibbons et al., 2017), and seasonality (Runckel et al., 2011; Davenport et al., 2014).

Notably, these dynamical aspects of the microbiome are even more pronounced in infants,
wherein the gut microbiome goes through a maturation process during the first few years of
life before gaining an adult-like composition (Yassour et al., 2016). This maturation process
could markedly impact healthy immune development and growth (Renz et al., 2011), alongside
implications for health and disease later in life (Turnbaugh et al., 2006; Ivanov et al., 2009; Olszak
et al., 2012; Kostic et al., 2015). Recent studies have accordingly aimed to link the taxonomic
structure of the infant gut microbiome, as well as the pace of this maturation process, to various
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factors in the prenatal, perinatal, and postnatal life (Chong et al.,
2018), including the mode of delivery (Dominguez-Bello et al.,
2010; Romero et al., 2014; Chu et al., 2017; Mitchell et al., 2020),
antibiotic exposure, and diet (Koenig et al., 2011; Arrieta et al.,
2014; Wang et al., 2015; Bokulich et al., 2016; Yassour et al.,
2016). Specifically, malnutrition can have a severe impact on the
development of the microbiome, which, in turn, might play a role
in the durability and outcomes of therapeutic food interventions
(Subramanian et al., 2014). Interestingly, though, despite inter-
personal differences in structure, dynamics, and pace, there seems
to be a shared pattern of microbiome development before gaining
a relatively stable, adult like composition, toward 3 years of age
(Yassour et al., 2016).

This growing appreciation to the importance of understanding
microbiome dynamics and of identifying, characterizing, and
analyzing microbiome-based temporal processes (Björk et al.,
2019), has led to a recent increase in the collection and
investigation of microbiome longitudinal data, wherein multiple
samples are collected from each individual over time. Notably,
however, longitudinal microbiome data not only provide
potential relevance and benefits, but also pose various statistical,
analytical, and computational challenges. Indeed, numerous
techniques for analyzing such data have been introduced in
recent years. Such techniques include, for example, methods for
modeling the temporal dynamics of the microbiome ecosystem
(Mounier et al., 2008; Trosvik et al., 2014; Mcgeachie et al.,
2016; Ridenhour et al., 2017; Shenhav et al., 2017), for
uncovering novel links between the temporal behavior of the
microbiome and various medical and biological conditions
(Kostic et al., 2015; Chong et al., 2018; Leonard et al., 2021),
and for distinguishing between biological and technical variation
(Silverman et al., 2018).

Yet, one major challenge that arises when analyzing and
comparing longitudinal data is that although temporal patterns
of microbiome processes (such as development) may be shared
across different individuals, their pace and dynamics may
differ, causing similar time-series to be “out-of-phase,” and in
turn, produce low similarity values between the trajectories of
these processes if not accounted for. A possible approach to
address this issue is via temporal alignment. Temporal alignment
algorithms aim to find a match between time series samples
obtained from two individuals such that the overall dissimilarity
between these individuals (using some dissimilarity measure) is
minimized, while preserving temporal order (see Figures 1A–
C). For example, Dynamic Time Warping (DTW) is a family
of algorithms that carry out temporal alignment, using dynamic
programming to find the optimal match between two given time-
series, while considering possible compressions or stretches in
time scale (Keogh and Ratanamahatana, 2005). DTW is often
used in research fields involving the analysis of time series
data, such as gene expression analysis (Aach and Church, 2001),
speech recognition (Vintsyuk, 1968; Sakoe and Chiba, 1978),
or human movement analysis (Gavrila et al., 1995), where time
series often vary in pace.

Unfortunately, however, there is relatively little prior work
on using alignment-based methods for temporal analysis of
microbiome data. For example, aiming to cluster microbiome

time-series data from infants, De Muinck and Trosvik (2018)
considered the four main phyla in the relevant period of
development, calculated the pairwise Euclidean dissimilarity
between time-points, and then used DTW to calculate the
pairwise dissimilarities between the full trajectories. Hierarchical
clustering based on the mean calculated dissimilarities then
successfully clustered a pair of twins that were among the 12
subjects included in this research. The “TIME” web platform
(Baksi et al., 2018) also includes a built-in workflow using
DTW as a distance method before the application of hierarchical
clustering, but the user is given only very limited control over
various aspects of the process and does not have access to
the resulting alignment. Lugo-Martinez et al. (2019) used a
continuous variant of temporal alignment as a preprocessing
step, shifting participating trajectories according to the calculated
alignment and using this alignment-based transformation for
downstream analysis. These studies, while intriguing, leave major
unexplored gaps in understanding the application and utility of
alignment-based algorithms to microbiome data. For example,
while prior work used the resulting alignment distance for
downstream analysis (e.g., clustering), the alignment itself, i.e.,
the obtained matching between samples, likely includes rich
information regarding the temporal dynamics of the participating
trajectories and can be used in various settings. Furthermore,
the use of the DTW algorithm was limited or anecdotal and did
not explore the many settings and configurations this framework
supports. And finally, such alignment-based analyses have been
applied only to a couple of datasets, making it hard to draw more
general conclusions about the potential benefits of this approach
to microbiome research.

In this work, we therefore set out to address these gaps and to
put forward a comprehensive exploration of the properties and
performance of DTW-based temporal alignment algorithms in
the domain of microbiome research. Since, as described above,
the development of the microbiome in the first years of life is
a dynamic process that poses a variety of challenges relating
to longitudinal analysis, we focus on developmental data as
our use case, analyzing data from 4 independent longitudinal
datasets of infant microbiomes from different countries, and with
various medical conditions (see Table 1). Specifically, we set
out to demonstrate that alignment-based dissimilarity measures
outperform simpler, more naïve measures of dissimilarity, and
that the matching of samples provided by the alignment
algorithm successfully facilitates age prediction and highlight
developmental patterns.

METHODS

Data Acquisition and Pre-processing
Data was obtained from 4 longitudinal studies of infant
microbiomes. Since the data originated from different studies
and was available at different levels of processing, additional
processing steps were conducted to gain consistent and
comparable data. The four datasets include: (1) Bokulich
et al. (2016): This study examined the effect of delivery
mode and diet on the composition of the microbiome in
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FIGURE 1 | A schematic example of the temporal alignment framework. (A) A naïve matching of chronologically parallel samples. Top and bottom sequences of
circles represent trajectories of individuals I1 and I2, with circles of the same color representing samples with similar compositions and circles of different colors
represent dissimilar compositions. (B) A mapping that allows the matching of non-parallel samples, resulting in higher total similarity. (C) A heatmap based on the
similarities between the samples of the two trajectories. Cells corresponding to similar samples are colored in green, while those corresponding to dissimilar samples
are colored in red (for simplicity, we assume here that samples can be either similar or dissimilar whereas in reality, the measure of similarity is usually continuous).
The blue line traverses the matches that were presented in panel (B). (D,E) Example of global (D) and local (E) alignments of real microbiome data. The alignment is
denoted again by the blue line, plotted on a heatmap of the pairwise Bray-Curtis dissimilarity between samples obtained from two individuals. Darker areas in the
heatmap indicate more similar samples. As can be seen in this figure, the global alignment finds a path traversing the whole matrix while accumulating maximal
pairwise similarity, while the local alignment only focuses on the regions with the highest similarity.

a cohort of United States infants from birth to 2 years of
age, sampled monthly during the first year of life, and every
2 months in the second year of life. The Bokulich dataset
was acquired from QIITA (Gonzalez et al., 2018) under study
ID 10249. (2) De Muinck and Trosvik (2018): This study
sampled 12 infants from Oslo, Norway, on a near daily basis,
and described temporal patterns in the acquisition of the

microbiome during the first year of life. The raw sequencing
reads were downloaded from the NCBI Sequence Read Archive
(SRA) under accession codes: SRP141136 (ID1), SRP141176
(ID2), SRP141301 (ID3), SRP141326 (ID4), SRP141372
(ID5), SRP142048 (ID6), SRP142071 (ID7), SRP142093 (ID8),
SRP142140 (ID9), SRP142235 (ID10), SRP142291 (ID11), and
SRP142429 (ID12). The data was then preprocessed using
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TABLE 1 | Data sources included in the analysis.

Source # of subjects Age range
(days)

Mean # of
samples per

subject

Notable metadata

Bokulich et al.,
2016

28 0–729 22 Mode of delivery, diet,
antibiotics use.

De Muinck and
Trosvik, 2018

12 1–364 222 –

Kostic et al.,
2015

31 6–729 19 T1D and
Seroconversion status,
Mode of delivery, diet.

Subramanian
et al., 2014

50 (control) 0–726 20 Diet, antibiotic use.

23
(malnourished)

201–783 13 Malnourishment status
and treatment

QIIME2 (Bolyen et al., 2018), with DEBLUR (Amir et al.,
2017) used for sequence quality control and feature table
construction. (3) Kostic et al. (2015): This study explored the
connection between the microbiome in infancy and T1D
in a cohort of 33 infants from Finland and Estonia. The
raw sequencing data was acquired from the DIABIMMUNE
project website1, and preprocessed using QIIME2, with
DADA2 (Callahan et al., 2016) used for sequence quality
control and feature table construction. (4) Subramanian et al.
(2014): This study compared the microbiome composition
of healthy and malnourished Bangladeshi infants. A pre-
processed OTU-table was downloaded from the Gordon
lab’s website2. In this work, we used the samples originating
from children with severe acute malnutrition, along with
the healthy singleton and healthy twins and triplets’ cohorts.
In total, these four datasets include 5,144 samples from 146
children (see Table 1). In all datasets, rare features, defined as
features whose abundance wasn’t > 0.1% in at least 2 samples,
were filtered out.

Samples Interpolation
Uneven or sparse sampling can be a major challenge when
analyzing longitudinal microbiome data, thus, interpolation of
samples to gain denser and/or more even sampling might
be beneficial for downstream analyses. In this work, we
implemented a pipeline for sample interpolation using a Gaussian
kernel, similar to the interpolation approach used by Alpert et al.
(2018) on single-cell data, relying on the idea that an interpolated
sample will likely be more similar to samples collected in
time points close to it than to remote samples. Specifically,
given a chronological sequence of microbiome samples and
the requested sampling frequency (based either on the desired
interval between consecutive samples or the desired number of
samples per trajectory), the value of each feature (e.g., OTU) in
each interpolated sample was calculated as a weighted sum of the
values of this feature in the samples of the original trajectory,
with the weights having a Gaussian distribution, each inversely
related to the difference in time between the samples. Formally,

1https://diabimmune.broadinstitute.org/diabimmune
2https://gordonlab.wustl.edu/

the value for feature f in an interpolated sample at time-stamp
t is calculated based on values f1fn with corresponding weights
w1wn as:

f =
1∑n

i = 1 wi

n∑
i = 1

wi·f i

where:

wi = e
(t−ti)2
window2

and “window” is a user-defined window size parameter used to
control the level of influence of different samples in the original
trajectory on the interpolated sample. In this work, unless stated
otherwise, temporal interpolation was carried out with fixed 30-
day intervals between interpolated samples, and window size of
30. After interpolation, the resulting data is re-normalized to
represent relative abundances. The resulting trajectory has evenly
spaced samples at the desired density, with the values of the
features computed as a weighted sum of the original samples as
described above. To get similar time points between interpolated
trajectories, the first interpolated day for each trajectory was set
to be the first multiple of 30 larger than the earliest sample in the
original trajectory. When using the exact time points of the data
were critical, e.g., when carrying out age prediction tasks, we used
the original, non-interpolated data.

Temporal Alignment
Consider X = (x1...xn) and Y = (y1...ym), two time-series of
observations of size n and m, respectively, and some dissimilarity
function d

(
xi, yj

)
≥ 0 that is defined for every pair of elements

xi, yj, i ∈ [1, n] , j ∈ [1,m]. Importantly, since the alignment
algorithm gets as input solely the pairwise dissimilarity matrix, it
can be used with a large variety of dissimilarity measures suitable
for microbiome data such as Bray-Curtis (as we did in this work)
or UniFrac dissimilarities.

Given this input, the DTW algorithm aims to find a warping
function of length T, denoted: φ

(
φx,k, φy,k

)
, k ∈ [1,T], while

φx,k ∈ [1, n] and φy,k ∈ [1,m]. Simply put, the warping function
consists of T pairs of matched indices of elements from the two
input time-series. To avoid meaningless loops in the alignment,
the resulting series of indices, φy and φx , must be weakly
monotonously increasing, such that φx,i ≥ φx,i+1 for every i
(and similarly for φy ). Moreover, there is often a constraint
regarding the matching of the start and end point of the warping
functions (see also below), such that φx,1 = φy,1 = 1 and
φx,T = n, φy,T = m. For each k ∈ [1,T], the warping function
induces a match between samples of the original time series:
xφx,k is matched to yφy,k (see Figure 1).

Given this wrapping function, the accumulated dissimilarity
between the matched samples can now also be calculated as
Dφ (X,Y) =

∑T
k = 1 d

(
xφx,k , yφy,k

)
wk. Importantly, in the

formula above, wk is a weight assigned to each pair according
to a pre-defined logic referred to as the step pattern. The
step pattern defines the allowed transitions between consecutive
elements in the alignment and their corresponding weights.
Unless noted otherwise, we applied in this work the widely used
symmetric2 pattern that allows the following transitions: if the
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warping function matched indices i and j, the next match is
limited to the following options:

(
i+ 1, j

)
,
(
i, j+ 1

)
, (i+1,j+1),

with the corresponding weights: (1, 1, 2). Furthermore, for the
accumulated dissimilarities described above to be comparable
to each other, it is common to normalize the accumulated
dissimilarity using a normalization factor Nφ, unique to each step
pattern. In the case of symmetric2 step pattern, the normalization
factor is the sum of length of the participating time-series:
N = n+m. Different step patterns and their influence on
the performance of DTW in other domains was a subject of
discussion in related literature (Sakoe and Chiba, 1978; Myers
et al., 1980). The core idea of the DTW algorithm is that
the warping function induces an alignment that minimizes
the accumulated dissimilarity: argminφ Dφ(X,Y). Although the
search space is large, the optimal warping path for time-
series of length N and M in the general case can be found
in O(N +M) using dynamic programming, similarly to the
Needleman-Wunsch algorithm for global alignment of sequences
(Needleman and Wunsch, 1970). Moreover, since the alignment
algorithms aren’t necessarily symmetric, it is also useful to
define the first trajectory that participates in the alignment
as the Reference trajectory, and the second trajectory as the
Query trajectory.

While an alignment respecting the start and end point
constraints described above is referred to as a Global Alignment,
one or both constraints may be relaxed, and the result is generally
referred to as a Local Alignment. Global alignments can be used,
for example, to assess the overall similarity between two processes
or to characterize differences in the temporal dynamics across the
two trajectories, while local alignments can be useful for finding
regions of notable similarity. An example for the calculation of
the optimal global and local alignment on real microbiome data
can be seen in Figures 1D,E. There are various sub-types of local
alignments, depending on whether the start and/or end point
constraints are relaxed for either one or both trajectories. In this
work, we limited the scope of local alignment to open-begin-
end alignments with respect to the query trajectory only, i.e., the
reference trajectory can have un-aligned “head” and “tail”, while
the query trajectory must be matched in full. The calculation of
alignments in this work was carried out using the dtw-python
code library (Giorgino, 2009; Tormene et al., 2009).

RESULTS

As discussed above, the output of the alignment algorithm
consists of two main components. The first is the normalized
accumulated dissimilarity along the matched samples. This
alignment score can essentially be used as a measure for the
inherent dissimilarity between two trajectories (i.e., with low
scores denoting trajectories that are generally more similar).
As such, it can be used as an input to downstream analyses
such as clustering, classification, or other statistical comparisons
involving dissimilarity measures. Second, the warping curve itself
provides information about the mutual relationship between the
temporal dynamics of the aligned trajectories (see Figures 1C–
E). For instance, if samples that make up a large segment of

trajectory A are matched to a small segment in trajectory B,
it might suggest that trajectory A has slower dynamics or that
it’s somehow delayed in this segment compared to trajectory B.
Below, we demonstrate the use of these two components of the
alignment algorithm’s output, and how each can contribute to
microbiome analyses.

Using Alignment-Based Scores as a
Similarly Measure Between Trajectories
To demonstrate the ability of alignment-based methods to
match similar samples, and in turn support temporal analysis
of microbiome data, we carried out a series of computational
analyses involving the use of the alignment algorithm in a variety
of settings. First, we examined how global alignment impacts
the similarity measured between a pair of subject trajectories,
compared to a naïve similarity score calculated as the mean
similarity between the chronologically parallel samples in the
two trajectories (i.e., along the diagonal in Figure 1C). For
each pair of subjects we trimmed the interpolated trajectories
to include only the time points covered by both trajectories.
Since global-alignment, by definition, is expected to increase the
measured similarity (i.e., minimize dissimilarity), we specifically
compared the magnitude of this increase in similarity when
applied to real trajectories to the increase in similarity when
aligning randomly generated trajectories (using several different
settings). As expected, both for the original trajectories and
for randomly generated trajectories, global alignment increases
similarity compared to the naïve “diagonal” similarity measure,
yet, the magnitude of this effect is indeed higher for real
trajectories, suggesting that the alignment algorithm captures
some underlying temporal dynamics in these real trajectories
(Supplementary Figure 1). Next, we compared the global
alignment scores for each pair of subjects in each dataset to
global alignment scores calculated after shuffling the temporal
order of each trajectory. Since the alignment algorithm is only
able to match monotonously increasing indices, we hypothesized
that alignment scores obtained for the original data will be
better than those obtained for shuffled trajectories. Indeed,
in all four datasets, the alignment scores for the original
data were significantly better (lower dissimilarities) than those
calculated for the shuffled data, with Mann-Whitney test p-values
ranging from 0.01 for the De Muinck dataset to 10−21 for the
Subramanian dataset (Figure 2A). To further test whether the
alignment scores reflect basic biological similarity, we further
split each trajectory in all datasets into two halves: an “early-half ”
and a “late-half.” We then calculated the global alignment scores
of the early halves to each other, the early halves to the late halves,
and the late halves to each other, for every pair of subjects within
each dataset. We hypothesized that since infant microbiome
development potentially follows some basic dynamic pattern
(that is likely different in early vs. late stages), matching similar
halves (“early-early” and “late-late” alignments) will yield better
alignment scores than the “early-late” alignments. As expected,
indeed in most comparisons made (6 of 8), the early-early and
late-late alignments yielded significantly better alignment scores
than the early-late alignments (Figure 2B).
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FIGURE 2 | Alignment score as an informative similarity measure. (A) Box plot comparing the alignment scores of all pairs of subjects in each dataset to the
alignment scores of all pairs of subjects after shuffling the order of samples. (B) Box plot comparing the alignment scores of early halves of trajectories aligned to
each other (“early-early”), late halves aligned to each other (“late-late”), and early halves aligned to late halves (“early-late”) in each of the datasets. (C) Box plot
comparing the alignment scores of all pairs of subjects originating in the same trajectory to the alignment scores of trajectories of pairs of twins and the alignment
scores of non-related individuals, in the Subramanian dataset. ns: p > 0.05; ∗p ≤ 0.05; ∗∗p ≤ 0.01; ∗∗∗p ≤ 0.001; ∗∗∗∗p < 0.0001.

Having confirmed that microbiome temporal alignment can
distinguish similar trajectories from shuffled or mismatched
trajectories, we turned to examine whether the alignment
score can also reveal more complex and biologically relevant
similarities. Specifically, we hypothesized that alignment may
allow us to pinpoint trajectories originating from the same
subject vs. those originating from two different subject, and
that it can further identify family kinship, yielding, for example,
better alignment for siblings than for unrelated subjects. To
test this hypothesis, we investigated the Subramanian dataset
that includes several pairs of twins. First, we confirmed that
microbiome alignment can identify trajectories from the same
subject. To this end, we artificially created two different
trajectories originating from each subject by splitting each
original trajectory (i.e., before interpolation) in the dataset
alternately into two trajectories: one including only the even-
indexed samples, and the other only the odd-indexed samples.
We then interpolated each of these “sub” trajectories (as
described above), using window-size of 30 to create a smoother
and more even sampling. Since the twin cohort data only
contains samples from the first year of life, we cropped
all the trajectories to contain only samples from day 0 to
365. We then compared the global alignment scores within

three groups: trajectories originating from the same subject,
trajectories from pairs of twins, and trajectories from non-related
subjects. To benchmark the performance of the alignment
method, we also implemented two, more naïve methods for
comparing microbiome trajectories: the first, calculating the
minimum dissimilarity between the two trajectories (i.e., the
minimal dissimilarity score calculated between a sample in
the first trajectory to a sample in the second trajectory), and
the second, calculating the mean dissimilarity between the
chronologically parallel samples in the two trajectories (as
also described above). We found that while the alignment-
based method yielded significantly better dissimilarity scores for
same-subject trajectories than for twins (p-value = 0.023), and
better dissimilarity for twins than for non-related individuals
(p-value = 0.006), each of the more naïve methods failed
in one of the comparisons (Figure 2C), suggesting that the
alignment scores reflect the temporal aspects of the biological
similarities and differences resulting from family kinship better
than the naïve methods.

Finally, we set out to test whether alignment-based
dissimilarities can be linked to more complex biological
phenotypes. Specifically, we used the Bokulich data, for which
information about diet (breastfed vs. formula; n = 31 and 12,
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respectively) and mode of delivery (vaginally vs. cesarean section;
n = 24 and 19, respectively) was available. We examined how well
alignment scores can partition infant microbiome trajectories
based on these phenotypes [using a PERMANOVA (Silverman
et al., 2018) test], again, in comparison to more naïve alternative
dissimilarity measures. Given the complexity of this task, in
this analysis we examined the performance of the alignment
algorithm using both the basic symmetric step pattern used
above (“symmetric2”; see section “Methods”), as well as several
other step-patterns previously shown to be useful for tasks in
other domains. We specifically considered the three symmetric
step patterns described in Sakoe and Chiba (1978) (denoted
symmetricP05, symmetricP01, and symmetricP2), and the step
pattern from Myers et al. (1980) (denoted TypeIIIc). Notably,
the selection of a step-pattern to a specific domain or task is
challenging to determine a-priori, and is usually done empirically
through experiments. With that in mind, in the following analysis
we did not aim to test whether alignment-based dissimilarities
are better than naïve methods for partitioning different biological
phenotypes, but rather to explore the performance of DTW
with different step-patterns and how this may relate to different
biological phenotypes. Indeed, our analysis suggested that
alignment-based dissimilarity metrics could exhibit beneficial
performances for both phenotypes, albeit different step-patterns
performed better in each scenario, confirming that the specific
step function used can impact the obtained alignment and that
different biological phenotypes may be more or less suitable for
a given step function. Specifically, for the diet phenotype, the
typeIIIc alignment score yielded a marginally significant p-value
of 0.052, while the minimal p-value in any of the alternative
methods (obtained by the min method) was 0.071 (symmetric2,
symmetricP2, symmetricP01, and symmetricP05 resulted in
p-values of 0.183, 0.083, 0.075, and 0.09, respectively, and the
mean and diagonal methods resulted in p-values of 0.102 and
0.106). For the mode of delivery phenotype, all methods yielded
significant p-values, with the lowest p-value of 0.002 obtained
by the symmetricP05 method, while the lowest p-value obtained
by a non-alignment method was 0.006 (obtained again by the
min method; symmetric2, symmetricP2, symmetricP01, and
typeIIIc resulted in p-values of 0.005, 0.006, 0.007, and 0.009,
respectively, and the mean and diagonal methods resulted in
p-values of 0.011 and 0.012). Given these findings, the use
of temporal alignment in future microbiome studies should
likely be accompanied by empirical test of different similarity
measures and specifically should take different DTW-based
approaches into account.

Using Alignment-Based Matching for
Inferring Microbiome Dynamics
Below, we set out to show that not only the alignment score, but
also the optimal pairwise matching of samples obtained by the
alignment algorithm carry meaningful and useful information
concerning the dynamics of the microbiome. To confirm this, we
implemented a pipeline that uses local alignment for predicting
the chronological age of the individual from whom samples
were obtained based on its microbiome composition. Using the

microbiome to predict a subject’s age was first demonstrated
by Subramanian et al. (2014), using a random forest regression
for this task and utilizing the predictions to assess the relative
maturity of the microbiome of children. Since the focus of our
work is to examine the abilities and properties of alignment-
based methods in different settings (rather than to improve age
prediction accuracy), we did not benchmark the performance
of the alignment-based age prediction pipeline against such
machine learning based methods, but rather verified that the
alignment-based approach successfully predicts ages based on
the microbiome and identifies similar patterns to those observed
using machine learning methods.

A schematic illustration of the age prediction framework is
presented in Figure 3A. The input to the prediction pipeline is
a continuous segment (which we term here “slice”) of a given
trajectory and a collection of reference trajectories. We also
assume that the chronological ages of the samples in the slice are
unknown, but that the age of each sample in each of the reference
trajectories are provided. Given this input, our pipeline aims to
predict the age of the first sample (for simplicity) of the input
slice by local aligning the slice to each of the reference trajectories
in the collection and calculating the mean age of all the samples
in the reference trajectories to which the first sample in the
slice was matched. Since these analyses focus on predicting the
chronological age of microbiome samples, we carried out all the
experiments described below using the original non-interpolated
version of the datasets.

To evaluate the performance of this age prediction approach
we randomly chose an individual from a given dataset, randomly
cropped a continuous 5-sample slice from that individual’s
trajectory, aligned the resulting slice against all other trajectories
in the dataset (except the trajectory from which the slice was
taken), and calculated the predicted age of the first sample in
the slice as described above. We repeated this procedure 300
times, in each of the four datasets. Moreover, to assess the
information capture by the alignment method and the impact
of the slice length, we repeated this prediction not only for
the full 5-sample slice but also for prefixes of each slice at
varying length (from 1 to 5). The prediction accuracy was then
quantified using the Pearson’s r and mean square error (MSE)
between the predicted age and the real age for each dataset
and for each slice length (Figure 3B). Indeed, this analysis has
demonstrated that in all datasets and across all slice lengths
(from 1 to 5), the correlation between the real and predicted
age was statistically significant, suggesting that the alignment
method is effective in matching similar temporal patterns.
Furthermore, using longer slices resulted in a more accurate age
prediction (both in terms of the correlations between predicted
and real age and in terms of the mean square error of the
prediction), indicating that the alignment algorithm successfully
utilizes continual temporal trends beyond the naïve match with
the closest sample.

While the results reported above clearly demonstrate the
ability of the temporal alignment-based approach to support
age prediction by utilizing temporal patterns in longitudinal
microbiome data of healthy subjects, we next set out to examine
whether it can similarly serve to quantify potential delay
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FIGURE 3 | Using microbiome temporal alignment for age prediction. (A) A schematic illustration of the age prediction framework for a 4-samples-long slice. The
query in the age prediction framework is a slice from a trajectory, marked by the dashed box. The ages of samples in the query are assumed to be unknown, and for
simplicity purposes the age prediction framework aims to predict the age of the first sample of the slice, marked by an asterisk. The local alignment between the
query slice and each trajectory from a reference dataset is calculated, and the predicted age is then calculated as the mean age of the samples to which the query
sample was aligned. (B) Results of the simulations evaluating the performance of alignment-based age prediction. Shown are the Pearson’s r values for the
correlation between the predicted and real ages, alongside mean square error (MSE) values, for each slice length in the four datasets analyzed in our study.

in microbiome development [as previously done by machine
learning (Subramanian et al., 2014)] that may result from,
for example, malnutrition. To this end, we applied our age
prediction pipeline to the Subramanian dataset described above.
Notably, this dataset contains microbiome data sampled from
Bangladeshi children with severe acute malnutrition (SAM) who
were admitted to a hospital for treatment. The children were
sampled at admittance, before being treated (“Acute phase”
samples), during treatment (“Treatment” samples), and several
times during follow up.

As noted, the original paper describing this cohort
(Subramanian et al., 2014) utilized machine learning models
trained on a healthy control cohort to predict the ages of
the malnourished children during the different experimental
phases and calculated the difference between the predicted and
chronological ages, referred to as “relative microbiota maturity.”
Negative microbiota maturity values (i.e., the infant’s microbiome
resembles the microbiome of a younger child) suggest a lag in the
microbial community’s development. The researchers observed
that compared to healthy children, malnourished kids had a
significantly immature microbiome. While they didn’t witness
a significant effect in the treatment phase, they did observe a
significant improvement starting from the first follow-up sample,
which regressed back to an immaturity index similar to the
intake time after 4 months of follow up.

To examine whether an alignment-based method can be
used as an alternative approach for such an analysis, we used
the healthy singleton infants (i.e., without the healthy twins
and triplets’ data) as a healthy reference group (Figure 4A), as

done in the original study. We then used our age prediction
pipeline to predict the age of each sample in the SAM infants’
trajectories by local-aligning it to each of the healthy-reference
infants, and predicting the age as above by calculating the
mean age of all reference samples matched to each sample of
a SAM infant. Unlike in the previous age-prediction task, this
time we predicted the ages of all samples in each trajectory
rather than only the first sample. As control, we carried out
a similar analysis but using healthy individuals as the subjects
of age prediction. Specifically, in this analysis, the prediction
pipeline described above was applied to the healthy individuals
dataset with a leave-one-out approach (i.e., in each iteration,
one healthy individual was selected at random, training the age-
prediction model on all other healthy individuals and using
the obtained model to predict the age of samples from this
left-out individual).

The true and predicted ages of all SAM trajectories are shown
in Figure 4B. A qualitative examination of the results suggests
similar trends to those reported in the original study; first, the
majority of samples are found under the diagonal, meaning that
the predicted ages are generally smaller than the true ages and
exhibit microbiome immaturity. Furthermore, all subjects follow
a similar dynamic scheme – a phase of moving toward the
diagonal, in agreement with previous findings that the immature
microbiome is able to “catch up” with the healthy reference
following treatment, and later a phase of moving away from
the diagonal, suggesting a regression – a period of stagnated
development and a drop back to lower maturity. Importantly,
such a behavior was not observed in the healthy control group
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FIGURE 4 | Alignment-based age analysis and maturity indices in the Bangladesh cohort. (A) Ages of the malnourished and healthy children participating in the
analysis. Subject-IDs of healthy children start with the prefix Bgsng (Bangladeshi singleton, found in the top half of the figure), and Subject-IDs of malnourished
children start with the prefix Bgmal, found in the bottom half of the figure. (B) True and predicted age for all severe acute malnutrition (SAM) trajectories. The points
representing each subject are colored similarly and connected with a line. (C) True and predicted age for all healthy singleton trajectories. (D) Box plot of relative
maturity indices, calculated as the difference between true age and predicted age, across the different phase groups. Since each subject has multiple samples from
each phase, we only used the latest sample in each phase per subject. A – Acute phase; T – Treatment; FU < 1 – Follow-up, under 1 month; FU1-2 – Follow-up, 1
to 2 months; FU2-3 – Follow-up, 2 to 3 months; FU3-4 – Follow-up, 3 to 4 months; FU > 4 – Follow-up, over 4 months. ns: p > 0.05; ∗p ≤ 0.05; ∗∗p ≤ 0.01;
∗∗∗p ≤ 0.001; ∗∗∗∗p < 0.0001.

(Figure 4C). Instead, in these healthy individuals, predicted
ages tended to be markedly more aligned along the diagonal
(i.e., predicted age was generally similar to chronological age)
and did not exhibit the distinct curvature observed in the
malnourished individuals but rather a more monotonic pattern
of maturation. We further examined the average maturity indices
of samples in the different phases of the experiment, again
finding that they mirror the observations above (Figure 4D).

A significant improvement in maturity relative to the acute
phase is already witnessed in the treatment phase and remains
significant until the follow-up period 3–4 month after treatment,
when it regresses back to a statistically similar score to the
acute phase. Combined, these observations suggest that the
alignment method is effective in uncovering temporal dynamics
in a complex setting of malnutrition as well as in the healthy
settings presented above.
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DISCUSSION

In this work, we introduced the concept of temporal alignment
of microbiome data and explored its importance for longitudinal
analysis of microbiome data. The underlying assumption of this
work is that differences in the pace and dynamics of microbiome-
based temporal processes can often overshadow similarities and
differences between such processes, and that alignment-based
methods can account for these shifts, facilitating the extraction
of information that may be otherwise masked. We focused
specifically on the process of microbiome development during
the first years of life as a model for highly dynamic and complex
microbiome process and explored the application of alignment-
based methods on several datasets of infant microbiomes
with various demographic and medical characteristics, and
preprocessed using various protocols.

To validate the outcomes of the alignment framework, and
specifically the usefulness of alignment-based similarity measure
(i.e., the obtained alignment score), we showed that the alignment
score can distinguish similar trajectories from artificially shuffled
or mismatched trajectories, and that it outperforms more
naïve methods as a measure of similarity between trajectories.
Importantly, however, while in the potentially simpler task of
inferring family kinship, the “out of the box” alignment algorithm
was sufficient to outperform other benchmark methods, more
complex phenotypes (such as diet or mode of delivery) required
more sophisticated configurations with different step patterns. In
addition to the use of the alignment score, we also showed that
the obtained alignment curve (including the resulting pairwise
mapping of samples), can reveal valuable insights regarding
temporal dynamics in the data. While we demonstrated this
concept using the age prediction framework and the alignments
of malnourished to healthy Bangladeshi kids, analyses in the same
vein can be carried out on diverse data sources.

The recognition that the temporal behavior of microbial
communities may have important impact on the host’s health
is continuously promoting microbiome studies focusing on
longitudinal data. Yet, in order to benefit from such data and
to clearly characterize their association with various biological
phenotypes, methodologies that take temporal aspects into
account are necessary. Specifically, since the comparison of
microbiomes across different individuals is a fundamental step
in revealing such associations, a framework for temporally
informed comparisons that considers not only the microbiome
composition at a given time point, but also temporal patterns,
is crucial. Importantly, however, while we believe that our work
clearly demonstrated the potential of using alignment scores as
a measure of similarity between trajectories, further research
regarding the performance of the alignment method, both in
various experimental settings and using different configurations,
is still required to unlock the full potential of this framework.
Among the aspects that can be examined is the use of various
other local and global constraints in the alignment process
and/or the step-patterns used in this work, many of which
are widely discussed in the literature by researchers in other
domains. It is also worth noting that while the process of
microbiome maturation (which is characterized by distinct

and substantial temporal dynamics) is a fertile setting for
exploring and benefiting from temporal alignment methods,
such methods might be less beneficial in the context of healthy
adult gut microbiomes, which were previously shown to have
a relatively stable and stationary nature (Mehta et al., 2018).
Moreover, in some cases, differences in pace and dynamic
are not an artifact interfering with similarity measures but
rather a clinically significant feature (e.g., as seen in the
malnourished children or potentially in fast vs. slow disease
onset). In such cases, using alignment to measure similarly
may mask such biologically relevant trends and should be
applied with caution.

It is also important to note that although the collection
of longitudinal microbiome data is becoming more common,
there is a built-in tradeoff when designing a longitudinal study
between the period covered by the experiment, the density of
sample collection, and the total number of participating subjects.
Focusing on any of these aspects at the expense of others
poses different challenges when analyzing the data. For example,
dense sampling might uncover temporal dynamics that may be
otherwise hidden (De Muinck and Trosvik, 2018), but might be
achieved at the expense of the number of subjects, resulting in
lower statistical power. With that in mind, cohorts that cover
a significant period of time, and include both a large number
of subjects and a dense temporal sampling, are still scarce.
The collection of such data is of great importance for further
understanding of the temporal dynamics of the microbiome,
as well as for developing temporal analysis methodologies.
Moreover, interestingly, the four datasets used in our study
were subject to somewhat different preprocessing protocols
(including, for example, both OTU-based and ASV-based data),
suggesting that reported findings are potentially robust to feature
table generation techniques. Yet, the collection of additional
longitudinal datasets and their processing with a variety of
methods could further characterize the impact of longitudinal
data processing on downstream analyses and specifically on
temporal alignment.

To conclude, we believe that the collection and analysis
of longitudinal data is one of the important next frontiers
in microbiome research. Based on the work presented here,
using the development of the microbiome as a case study for
highly dynamic longitudinal microbiome data, we showed that
temporal alignment-based methods might contribute greatly to
the understanding of the temporal dynamics in the developing
microbiome, and in turn, the interplay between the microbiome
and various medical and biological conditions.
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