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h i g h l i g h t s

� Present an integrative modeling
method regarding structure,
parameters and states.

� Parameterization by using online/
offline EIS and iterative learning
optimization.

� Introduce 1/f noise to reveal
correlations among parameters and
eigen-voltages.

� Provide the correlative information
criterion to evaluate various battery
models.

� Present the strong negative
correlation of ohmic resistance and
state of health.
g r a p h i c a l a b s t r a c t

The fractional-order modeling with structure identification, parameter estimation and the ability of
revealing natures of battery are considered. The correlative information criterion is proposed based on
the 1/f noise assisted I/O data, which is adept in evaluating the reliability of model structure and adap-
tiveness of model parameters. Experimental results validate the above conclusions.
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a b s t r a c t

In this paper, the fractional-order modeling of multiple groups of lithium-ion batteries with different
states is discussed referring to electrochemical impedance spectroscopy (EIS) analysis and iterative learn-
ing identification method. The structure and parameters of the presented fractional-order equivalent cir-
cuit model (FO-ECM) are determined by EIS from electrochemical test. Based on the working condition
test, a P-type iterative learning algorithm is applied to optimize certain selected model parameters in
FO-ECM affected by polarization effect. What’s more, considering the reliability of structure and adap-
tiveness of parameters in FO-ECM, a pre-tested nondestructive 1=f noise is superimposed to the input
current, and the correlative information criterion (CIC) is proposed by means of multiple correlations
of each parameter and confidence eigen-voltages from weighted co-expression network analysis method.
The tested batteries with different state of health (SOH) can be successfully simulated by FO-ECM with
rarely need of calibration when excluding polarization effect. Particularly, the small value of CICa indi-
cates that the fractional-order a is constant over time for the purpose of SOH estimation. Meanwhile,
the time-varying ohmic resistance R0 in FO-ECM can be regarded as a wind vane of SOH due to the large
value of CICR0 . The above analytically found parameter-state relations are highly consistent with the
of China
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existing literature and empirical conclusions, which indicates the broad application prospects of this
paper.
� 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

With the huge consumption of fossil energy and increasing
environmental pollution problems, many policies and measures
have been put forward to promote the development of clean
energy industries [1], particularly that the widely promoted elec-
tric vehicles have attracted significant attentions [2,3]. The battery
as the main power source of electric vehicles plays a crucial role in
the safety, performance and economy of electric vehicles. Among
various power batteries, lithium-ion battery is still leading the
mainstream due to its high energy density, high power density,
low self-discharge rate, long cycle life, etc [4]. Moreover, the safe,
reliable and stable operation of battery depends on the battery
management system (BMS) that is embedded to monitor the oper-
ating environments and to diagnose the states of batteries, such as
State of Charge (SOC), State of Health (SOH), etc [5]. These states
cannot be directly measured, but closely depend on model-based
estimation algorithms [6–8].

The commonly used battery models mainly fall into three cate-
gories: electrochemical models [9–11], data-driven models [12,13]
and equivalent circuit models (ECMs) [14–16]. Electrochemical
models always have high accuracy and can describe the complex
electrochemical reaction mechanism in battery using a number
of partial differential equations (PDEs). But they are unsuitable
for electrical design and simulation, because these dimensionless
PDEs as well as some specific first principles are inconvenient to
represent the electrical performance parameters, or requires large
loads of memory and computation [17]. Moreover, the data-driven
models describe the battery as a black box, and pay attentions to
the mapping relation of the external input and output characteris-
tics. However, the model error is susceptible by training data or
methods, and a large number of experimental data are required
for model training. Furthermore, according to the physical charac-
teristics of the battery, ECMs can simulate the I � V characteristics
of the battery by using a number of equivalent circuits composing
of resistance, capacitance, voltage source and so on [18,19]. These
models have been widely used in BMS and battery test system tak-
ing the advantages of fewer parameters, higher accuracy and easy
to calculate [20].

It is well known that the accuracy of ECMs can be improved by
adding certain number of resistance–capacitance (RC) pairs [20].
Nevertheless, the blindly adding of RC pairs not only improves
the risk of over fitting, but also blurs out the physical meanings
of parameters. Thus, it is utmost important to select the structure
of model with the balance of the accuracy and complexity [21,22].
The Akaike information criterion (AIC) and Bayes information crite-
rion (BIC) as well as their extensions [23,24] have been widely used
to identify the optimal model structure for linear and nonlinear
models [17,20]. In addition, with the introduce of fractional-
order element [25], the fractional-order models have received huge
amount of attentions thanks to their high fitting accuracy of com-
plex dynamic processes. [19] proposes a fractional-order model
(FOM) for lithium-ion battery with high accuracy and robustness.
[26] presents the principles of fractional-order modeling for
dynamic processes by using electrochemical impedance spec-
troscopy (EIS). EIS also has been applied for analyzing and model-
ing fractional-order systems, such as analyzing complex physical
and chemical processes occurring within electrochemical systems
[27] as well as characterization of materials [28,29]. An EIS
inspired empirical FOM for lithium-ion batteries is proposed in
[30]. Moreover, compared with various external characteristic fit-
ting methods [31,32], [33] proposes the parameter identification
method for the fractional-order first-order RC model referring to
the relations between complex electrochemical actions within bat-
tery and the electrical elements in FOM. And the dependency of
model parameters on battery states and external conditions is pre-
sented by EIS [34]. Therefore, FOM is an efficient and practical tool
for the battery modelings, whose cores are the structure identifica-
tion, parameter estimation and ability of revealing natures of
battery.

The overall structure of this paper is shown in Fig. 1. For the
sake of three core reasons at FOMs, the CIC algorithm is proposed
and used to indicate the reliability of model structure as well as
reveal the correlations among model parameters and battery
states. Meanwhile, the nondestructive 1=f noise assisted input cur-
rent and output voltage are obtained through testing batteries, and
the 1=f noise signal needs to be optimized by R2 check. The three
main contributions of this paper are summarized as.

(1) Fractional-order modeling:The EIS is analyzed for structure
identification and parameter estimation of FOM. ILI is
applied to optimize fractional-order a and polarization
response parameters.

(2) Nondestructive noise and CIC: The nondestructive 1=f
noise is optimized subject to the R2 index. The noise assis-
tant output voltages lead to eigen-voltages by using WCNA.
The multiple correlation coefficients between eigen-voltages
and model parameters are defined as CIC indices.

(3) CIC based model evaluation: The CIC indices of parameters
indicate the reliability of model structure and adaptiveness
of parameters. These indices can also reveal qualitative rela-
tions between model parameters and battery states.

The remainder of this paper is organized as follows. In Sec-
tion ‘‘Battery test platform”, the battery test and data acquisition
platforms are described. In Section ‘‘Fractional-order Modeling”,
the structure identification and parameter estimation of FOM are
discussed. The correlation analysis and correlative information cri-
terion are presented in Section ‘‘Model evaluat”, and the conclu-
sions are given in Section ‘‘Conclusions”.
Battery test platform

Battery test bench

As shown in Fig. 2, the battery test bench consists of an electro-
chemical workstation (Autolab), a battery test platform (AVL or
Arbin), a thermal chamber and a computer. The electrochemical
workstation is used to acquire EIS. The battery test platform imple-
ments battery characteristic test that provides data of input cur-
rent, output voltage and states of batteries. The thermal chamber
is applied to ambient temperature control. The computer is for
experimental control (programmable input signal, etc) and data
acquisition through CAN bus.

In this paper, all of the battery tests are carried out with con-
stant temperature 25 �C. In the electrochemical test for EIS, the
battery is in a static state, and the impedance characteristic of bat-
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Fig. 1. Roadmap of this paper.
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tery is acquired by applying sine wave with a magnitude of 10 mA
and frequency ranging from 0.05 Hz to 102 kHz. 120 impedance
points are recorded with uniform frequency interval. In the charac-
teristic test, the input current and output voltage are syn-
chronously recorded at a sampling frequency of 1 Hz, including
the static capacity test, the open circuit voltage test and the charge
and discharge tests. The infinite impulse response (IIR) filtering
technology can be applied if the dynamic or online acquisition of
EIS is required.

Dataset

EIS from electrochemical test
EIS describes the impedance characteristic along with the

change of the frequency of sine current. It is usually used to ana-
lyze the polarization, electric double layer, diffusion of battery
and other characteristics inside battery [26,35]. In this paper, the
tested EIS is applied to determine the model structure and initially
estimate model parameters. All EIS data from batteries with differ-
ent SOH are collected and presented as shown in Fig. 3. SOH is
defined as the ratio of maximum capacity to rated capacity. The
maximum capacity is acquired by static capacity testing, which
should be higher than 80% of the rated capacity[36]. 7 batteries
with SOH greater than 80% are selected and numbered as T-
1006, T-1025, T-1109, T-1110(1), T-1110(2), T-1111(1) and T-1111
(2). Their SOHs are shown in Table 1.

Input current from battery characteristic test
It is well known that most disturbances in the battery usage

environments follow the characteristics of 1=f noise[37,38]. In
order to stimulate more dynamic characteristics and protect the
battery, a nondestructive 1=f noise signal is superimposed to the
input current, where the 1=f noise is optimized by the R2 index
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Fig. 2. Battery test scheme.
[39]. It is more appropriate when R2 is closer to 1, and the detailed
description of R2 will be shown later. The maximum amplitude of
the nondestructive 1=f noise signal is one-tenth of the amplitude
of the maximum input current.

Output voltage from battery characteristic test
Based on the above additive 1=f noise assisted input, the dis-

charge tests of the lithium iron phosphate batteries (LiShen, rated
voltage 3:2 V and rated capacity 31 Ah) with different SOH are car-
ried out, and the corresponding voltage signals are acquired. The
voltage signals from the above superimposed input signal show
as fluctuating curves. They enrich the dynamic characteristics of
battery, and meet the requirements to find eigen-voltages.

Fractional-order modeling

Structure identification

Battery ECM can be acquired from the analysis of EIS that pro-
vides insights into the electrochemical systems and represents the
internal dynamic processes of the battery. The corresponding rela-
tions between battery ECM and EIS are shown in Fig. 4. The dotted
line that denotes EIS is divided into three regions according to dif-
ferent frequency domains and corresponding to different electro-
chemical reactions.

In the low-frequency region (right most red dotted oblique
curve), typically below 1 Hz, EIS describes the diffusion process
of electrochemical reactions, which is presented as the Warburg
impedance.

In the middle-frequency region (with green dots on it), usually
between 1 Hz and 1 kHz, EIS describes the electric double-layer
effect of battery as well as the charge transfer process of lithium-
ion and electron at the conductive junction, which is presented
as part of the circle above �Zim ¼ 0. A resistance and a double-
layer capacitance are generated in this process, which is presented
as a RC pair.

The high-frequency region (left most red dotted curve), gener-
ally above 1 kHz, describes the movement of charge carried
Fig. 3. EIS curves for batteries with different SOH.



Table 1
SOH of tested batteries.

Bettery No. T-1006 T-1025 T-1109 T-1110(1) T-1110(2) T-1111(1) T-1111(2)

SOH 81.6% 87.2% 92.5% 93.6% 93.7% 93.4% 93.4%
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through the electrolyte and current collectors to the external cir-
cuit. In this region, the battery behavior is modeled by the ohmic
resistance according to the intersection point R0 between EIS and
�Zim ¼ 0.

It follows that the fractional-order equivalent circuit model (FO-
ECM) is composed by all equivalent circuit elements in the above-
mentioned regions, i.e. the ohmic resistance, the RC pair and the
Warburg impedance in series. The impedance of polarization
capacitance is expressed as

Z1 jxð Þ ¼ 1
C1 jxð Þa : ð1Þ

where C1 is the fractional-order capacitance defined as a constant.
The unit of C1 is F � seca�1 to meet the dimensional requirements
[25,26]. The physical meanings of C1 in fractional-order elements
point to the process of electric double-layer effect and transfer reac-
tion at the electrode surfaces [19,28]. j is the imaginary number. x
is the radian frequency and a is the fractional-order of polarization
capacitance. If a ¼ 1, the polarization capacitance is an ideal capac-
itor. Otherwise, if 0 < a < 1, the capacitance is a constant phase ele-
ment (CPE). Moreover, the order of Warburg element is around 1=2
or 1=4 for lithium-ion batteries or fuel cells, respectively [40,41].
Actually, in battery characteristic test, the Warburg impedance is
too small to be considered. Therefore, in this paper, the FO-ECM is
composed of a resistance (R0) in series with a RC pair (R1==C1) in
Fig. 4.

Parameter estimation

Based on the above structure information, the impedance of FO-
ECM (see Fig. 4 without considering the Warburg impedance) is
expressed as

Z ¼ R0 þ R1

1þ R1C1 jxð Þa : ð2Þ

The real part ZRe and imaginary part ZIm of Z are acquired by Eule-
rian formulations, i.e.
Fig. 4. Equivalent circuit analogous in impedance spectroscopy.
ZRe ¼ R0 þ
R1 1þ R1C1xa cos ap

2

� �
1þ 2R1C1xa cos ap

2 þ R1C1xað Þ2
; ð3Þ

ZIm ¼ � R2
1C1xa sin ap

2

1þ 2R1C1xa cos ap2 þ R1C1xað Þ2
: ð4Þ

It follows from Eqs. (2)–(4) that Z can be expressed as

ZRe � R0 þ R1

2

� �� �2
þ ZIm þ R1

2
cot

ap
2

� �2

¼ 2
R1

sin
ap
2

� ��2

; ð5Þ

where (R0 þ R1=2;�R1 cot ap=2ð Þ=2) is the center of circle (5) as well
as the center of the fitted curve (green dotted curve) in Fig. 4. It fur-
ther follows from

R1 cot ap=2ð Þ=2 ¼ R1 cot h=2; ð6Þ
that the fractional-order a is

a ¼ 2h=p: ð7Þ
Besides, in Fig. 4, the highest point P on the circle denotes that

R0 þ
R1 1þ R1C1xa

p cos
ap
2

� 	

1þ 2R1C1xa
p cos

ap
2 þ R1C1xa

p

� 	2 ¼ R0 þ R1

2
; ð8Þ

where xa
p is the frequency value at P. The polarization capacitance

C1 of the CPE is acquired by solving (8), i.e.

C1 ¼ 1= R1xa
p

� 	
: ð9Þ

The calculations of parameters in FO-ECM are summarized in
Table 2. Furthermore, the polarization effect leads to significant
changes of EIS and fitting errors of FO-ECM in time domain. Existing
literatures [34] and the observations of many EIS plots indicate that
the accuracy of FO-ECM can be effectively improved by tuning
polarization resistance R1 and polarization capacitance C1, which
will also be verified in the correlation analysis later in this paper.
To this end, a proportional learning law for R1 and C1 is designed
to optimize FO-ECM, which is expressed as

#nþ1 ¼ #n þ sgn �ð ÞC enk k1; ð10Þ
where the estimated parameters in the nth iteration denote as

#n ¼ ðR1n;C1nÞT . en ¼ y� yn; y and yn are the tested and modeled
voltage signal, respectively. Besides, n starts at 1 and ends at the
cut-off condition, such as kenk1 6 �, where � > 0 is the permitted
error. The symbolic function sgn �ð Þ in (10) is defined as

sgn �ð Þ ¼ 1; max enð Þj j ¼ enk k1
�1; min enð Þj j ¼ enk k1



; ð11Þ

where enk k1 denotes the infinite norm of error. max enð Þj j and
min enð Þj j are the absolute values of the maximum and minimum
errors, respectively. When max enð Þj j ¼ enk k1, the fitted voltage sig-
nal is considered to move up compared to the test voltage signal,
and the symbolic function takes 1. When min enð Þj j ¼ enk k1, the fit-
ted voltage signal is considered to move down compared to the test
voltage signal, and the symbolic function takes �1. Besides, C is the
positive learning gain that guarantees the convergence of (10), and
can be tuned in one direction. The efficiency of the above ILI algo-
rithm is illustrated in [42–44]. It should be noted that the learning
law (10) also works for all parameters of FO-ECM, including a. A



Table 2
Parameter calculation formula for FO-ECM.

Parameter
name

Calculation formula

R0 The left intersection of ECM and �Zim ¼ 0
R1 The distance between two intersections of ECM and

�Zim ¼ 0
C1 1= R1xa

p

� 	
a 2h=p
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proper selection of the parameters can reduce computational bur-
den, and guarantee modeling precision.
Model evaluation

Accuracy evaluation

Taking the lithium iron phosphate battery No. T-1110(1) as an
example, its model structure and initial model parameters are
identified by the EIS analysis. Then, R1 and C1 are optimized by
the iterative learning algorithm with learning gain C ¼ 0:0012.
Thanks to the initial estimations in EIS, a small gain guarantees fast
convergence of R1 and C1. The cut-off condition reaches at the 11th

iteration. Meanwhile, as comparison, the widely used genetic algo-
rithm is applied to estimate the parameters in FO-ECM, which are
shown in Table 3.

Let the tested voltage as reference, and based on the two groups
of parameters in Table 3, the fitting results (errors) are shown in
Fig. 5. For battery No. T-1110(1), Fig. 5(a) and (b) are the output
voltage fittings by using iterative learning algorithm and genetic
algorithm, respectively. The corresponding input current is in the
superposition of 1/3C constant current and an 1=f noise whose
module of scalar is in one-tenth of the current amplitude. Fig. 5
(c) and (d) are the corresponding fitting errors. In order to distin-
guish their fitting effects, the root-mean square error (RMSE) and
the maximum absolute error (MAE) are applied. The fitting results
(Table 4) shows that the iterative learning algorithm performs bet-
ter than the genetic algorithm one, which are held for both RMSE
and MAE indices. As a result, the FO-ECM optimized by iterative
learning algorithm and analyzed by EIS is feasible and accurate,
which is the basis in the following correlative analysis.
Structure and parameter evaluations

An ideal model with precise structure and parameters should
partially relevant to various internal and external states. To reveal
this relevance, the correlation analysis among eigen-voltages and
model parameters is carried out.
Scale-free network and eigen-voltages

Temporarily put model evaluation aside, and look back to the R2

check for 1=f noise. Given a scale-free of network, whose distribu-
tions for frequency pðkÞ and connectivity of nodes k follow the
inverse power distribution pðkÞ � k�c, the R2 index is defined as
the square of correlation between logðpkÞ and logðkÞ. In particular,
the connectivity ki for the ith node is defined as ki ¼

Pn
j¼1xij, where
Table 3
Estimated parameters in FO-ECM for battery No.T-1110(1).

parameter name R0

Iterative learning algorithm 2.569e�03
Genetic algorithm 2.892e�03
xij is the topological overlap between the node i and node j, and n
is the number of nodes.

In order to build a scale-free network by using the 1=f a noise
assisted voltage, where 1=f a denotes the response of 1=f noise
for FO-ECM, the weighted co-expressed network analysis (WCNA)
[39] is applied to generate scale-free networks. Besides, the output
voltage can be further grouped and tagged in the module trait rela-
tion diagram by using average linkage hierarchical clustering
method. The traits described in the module trait relation diagram
are model parameters. For clarity, the voltage data at certain sam-
pling instants are defined as the nodes of scale-free network.
Besides the model parameters, any other battery micro- and
macro-states with different dimensions can be defined as traits,
which is beyond the scope of this paper.

Allow for different capacities and SOHs of the tested batteries,
the selection of nodes is specified as follows. Firstly, intercept the
output voltage data ranging from 20% SOC to 90% SOC of the bat-
tery with the shortest lifetime as benchmark sample. The nodes
in the benchmark sample are corresponding to the SOC values of
battery. Then, according to each SOC, the voltage signal ranging
from 20% SOC to 90% SOC of another eight batteries are inter-
cepted. Finally, according to each SOC, the samples of batteries
with different SOHs are collected in a standard sample set V. In this
paper, the data set V is a 7� 1900 dimension matrix corresponding
to 7 samples and 1900 nodes.

As for the traits, according to the iterative learning algorithm,
the FO-ECM parameters of 7 batteries are collected in Table 5.
Then, the trait set TFO�ECM is acquired to build the module trait rela-
tion diagram, which is a 7� 4 dimensional matrix corresponding
to 4 traits (a;R0;R1;C1) and 7 samples.

According to the standard sample set V and WCNA method, the
scale-free network is acquired by the correlation and topological
overlap calculation between any two nodes, and the module is gen-
erated by the average linkage hierarchical clustering method. Then,
coupled with the trait set TFO�ECM , the module trait relation dia-
gram is acquired by the correlation between the eigen-voltage
(hub node) in each module and each trait (Fig. 6(a)).
Correlative information criterion and comprehensive evaluations
Based on the analysis of the network modules and the idea of

multiple correlation coefficient, a correlative information criterion
(CIC) is proposed to evaluate the structure and parameters of var-
ious battery models, which consists of two parts, i.e. the establish-
ment of regression model, and the calculation of multiple
correlation coefficient.

The regression model between each model parameter and con-
fidence eigen-voltages is described as (12).

y ¼ Ax̂þ � and ŷ ¼ Ax̂; ð12Þ

where y is any model parameter vector in Table 5, � is the error

term, x̂ ¼ x̂1 x̂2 � � � x̂m½ �T is a coefficient vector in regression

model, ŷ ¼ ŷ1 ŷ2 � � � ŷn½ �T is an regressive parameter vector, m
is the number of confidence modules and n is the number of sam-
ples (n ¼ 7 in this paper). Besides,the column vector ai ¼
ai1 ai2 � � � ain½ �T in A ¼ a1 a2 � � � am½ � is the eigen-voltage
of the ith confidence module satisfying high Pearson correlation
and p-value	 0:1 (Fig. 6), where i 2 f1;2; � � � ;mg and m 6 n, so that
R1 C1 a

7.272e�03 1.138e+02 7.004e�01
7.476e�03 6.156e+02 6.0292e�01



Fig. 5. Output voltage fittings for FO-ECM based on different estimation algorithms: (a) voltage fitting based on iterative learning algorithm at 20–90% SOC; (b) voltage fitting
based on genetic algorithm at 20–90% SOC; (c) fitting error for iterative learning algorithm; (d) fitting error for genetic algorithm.

Table 4
Fitting accuracies for FO-ECM with different parametric estimation algorithms.

Iterative learning algorithm Genetic algorithm

RMSE 0.0059 0.0061
MAE 0.0183 0.0199
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An�m is column full rank. The selected eigen-voltages corresponding
each parameter and their Pearson correlations are listed in Fig. 6(b).

The multiple correlation coefficient between model parameter
vector y and eigen-voltage vectors ai in A is named as ‘‘Correlative
Information Criterion (CIC)” of y, and calculated by (13).

CICy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

k¼1 yk � �yð Þ2
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

k¼1 ŷk � �yð Þ2
q ; ð13Þ
Table 5
Parameters of FO-ECM.

Battery No. T-1006 T-1025 T-1109

a 6.504e�01 6.357e�01 7.123e�01
R0 4.397e�03 2.654e�03 2.728e�03
R1 7.944e�03 6.064e�03 7.603e�03
C1 1.274e+02 2.871e+02 1.819e+02

Fig. 6. (a) Module trait relations of FO-ECM. Here the voltage modules and model par
modules are obtained from the output voltage matrix. The Pearson correlation betwe
calculated. The meter of correlation is shown on the right; (b) Pearson correlation and s
where �y ¼ Pn
k¼1yk

�
n.

The CIC as well as some other indices for FO-ECM (Table 5) are
shown in Table 6. The residual standard error is used to measure
the fitting degree of (12) and the smaller the better. Significant F
is the Fa critical value at the significance level. If the F-statistic is
greater than the critical value, the null hypothesis is refused and
the regression model has a good regression effect. Coupled with
the module trait relations in Fig. 6, CIC and correlativity describe
the correlation coefficient and relation between any model param-
eter and its confidence eigen-voltages, respectively.

Then, after comprehensively analyzing the CIC indices (Table 6)
and the correlations between model parameters and SOH, let’s
focus on the parameters of FO-ECM one may interested. For the
ohmic resistance R0, it can be seen in Table 6 that CICR0 is 0:9348
and its correlation with SOH (Table 1) is rR0 ¼ �0:873, which indi-
cates that R0 is sensitive to the eigen-voltages (working conditions)
T-1110(1) T-1110(2) T-1111(1) T-1111(2)

7.004e�01 7.004e�01 6.745e�01 6.745e�01
2.569e�03 2.569e�03 2.689e�03 2.689e�03
7.300e�03 8.019e�03 7.302e�03 7.940e�03
1.138e+02 1.138e+02 1.503e+02 1.503e+02

ameters are positioned on vertical and horizontal axis, respectively. These voltage
en each eigen-voltage and model parameter as well as its significance level are
ignificance level (p-value) from (a), where p-value is in parentheses.



Table 6
Correlative information criterion of model parameters.

Residual standard error CIC Correlativity F-statistic Significant F

a 2.087e�02 0.6335 Negative 3.457 0.1343
R0 2.933e�04 0.9348 Negative 7.17 0.1261
R1 1.547e�04 0.9919 Negative 24.53 0.1521
C1 19.6 0.9653 Positive 13.9 0.06822
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and SOH. Similarly, analyzing CICR1 and CICC1 as well as those cor-
relations rR1 ¼ 0:098 and rC1 ¼ �0:256;R1 and C1 are sensitive to
the eigen-voltages (working conditions), but almost invariant with
the change of SOH. For the fractional-order a;CICa ¼ 0:6335 and
ra ¼ 0:73 are relatively low, which imply that a in FO-ECM can
be set as constant for different working conditions and SOHs. In
particulary, R0 is the parameter with the strongest correlation to
SOH, which can be regarded as the vane of SOH. As a by-product,
the existence of confidence CICs indicates that the structure of
the above FO-ECM is reliable and adaptive. Therefore, the structure
identification, the parameter estimation and the ability of reveal-
ing natures of battery have be achieved in this paper.
Conclusions

In this paper, a FO-ECM is established by determining the struc-
ture identification and initial estimation of parameters with EIS,
and by tuning the polarization affected parameters with iterative
learning algorithm. Meanwhile, a 1=f noise is introduced and opti-
mized subject to R2 index, which is an essential to reveal reliable
correlations between model parameters and eigen-voltages. As a
result, the multiple correlation between any parameter and confi-
dence eigen-voltages is defined as CIC index. The CIC indices are
available to evaluate the structure and parameters of various bat-
tery models, as well as expected to find reliable relations between
model parameters and micro- or macro-states.

Moreover, the main observation and the main conclusion of our
study, which can be of importance and usefulness for practical
applications of lithium-ion batteries, is that, in the modeling
approach used in this paper, the fractional-order a can be assumed
as a constant (namely, constant a 2 ½0:6357;0:7123� in our study).
We hope to find explanation to this fact using the porous functions
approach [45] for describing the structure of the battery material
and processes in it.
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