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Numerical simulations of a kilometre-thick Arctic
ice shelf consistent with ice grounding observations

Edward G.W. Gasson® !, Robert M. DeConto?, David Pollard® & Chris D. Clark

Recently obtained geophysical data show sets of parallel erosional features on the Lomo-
nosov Ridge in the central Arctic Basin, indicative of ice grounding in water depths up to 1280
m. These features have been interpreted as being formed by an ice shelf—either restricted to
the Amerasian Basin (the “minimum model”) or extending across the entire Arctic Basin.
Here, we use a numerical ice sheet-shelf model to explore how such an ice shelf could form.

|n

We rule out the “minimum model” and suggest that grounding on the Lomonosov Ridge
requires complete Arctic ice shelf cover; this places a minimum estimate on its volume, which
would have exceeded that of the modern Greenland Ice Sheet. Buttressing provided by an
Arctic ice shelf would have increased volumes of the peripheral terrestrial ice sheets. An
Arctic ice shelf could have formed even in the absence of a hypothesised East Siberian Ice

Sheet.
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thick ice shelf covering the Arctic Basin during glacial

stages was proposed in the 1970s, in broad analogy to the

marine-based West Antarctic Ice Sheet'%; building on a
hypothesis originally suggested in 1888 by Sir William Thomson®.
Despite the implications of an ice shelf for Arctic glaciology,
ocean circulation, and ice volume estimates, the hypothesis
received little subsequent attention due to a lack of supporting
data®8. The hypothesis has attracted renewed interest arising
from a number of research cruises to the Arctic that have pro-
vided evidence for ice grounding in water depths exceeding 1 km,
including in the central Arctic Basin on the Lomonosov Ridge”!’.
It continues to be debated whether erosional features are indi-
cative of grounding by isolated iceberg keels or an extensive ice
shelf>!1-1 " Recently acquired high-resolution sonar imagery
have revealed sets of linear erosional features that are parallel and
spatially coherent across many tens of kilometres. These features
do not resemble the chaotic cross-cutting of iceberg scouring and
are the strongest evidence yet for ice shelf grounding'®. Dating of
the thin sediment drape covering the erosional features indicate
that grounding occurred during the penultimate glacial
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maximum (140 ka, Marine Isotope Stage 6; MIS6). Although
subject to age model uncertainties, the return of polynya-type
conditions as evident in sea-ice reconstructions suggests that such
an ice shelf would have begun to break up during the latest
MIS6".

It is possible that large Arctic ice shelves also formed during
other glacial stages, although interestingly no erosional features
deeper than ~600 m water depth have yet been dated to the Last
Glacial Maximum (LGM)!%1°, Reconstructions of Arctic Ocean
temperatures indicate that, following the mid-Brunhes event
(~400 ka), intermediate-depth temperatures were warmer than
modern during glacial stages'”!®. One hypothesis is that a
thickening halocline, driven by decreased freshwater inputs'?
and/or the formation of an Arctic ice shelf, caused the polar
surface layer and inflowing warm Atlantic waters to deepen.
Although there are considerable uncertainties, this could suggest
that a thick ice shelf (but one that may not have §rounded)
formed during each of the last four glacial maxima'®. The ice

grounding locations are collated in Fig. 1a along with the inferred
ice flow direction and the location of palaeo-ice streams.
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Fig. 1 Ice shelf grounding from observations and model output. a Summary of location and inferred flow directions of bathymetric ice grounding features
from previous publications'%255-57 (orange lines and arrows). White lines shown extent of Eurasian Ice Sheet during MIS63° (solid line) and the LGM3©
(dashed line), and for North America at the LGMZ® (solid line). Black lines show location and flow direction of marine-terminating palaeo ice streams, for
North America®® and mapped for Eurasia using the same methodology as ref. °8, also shown is the recently discovered De Long Trough in Eastern
Siberia2®. Dashed green line is the transect shown (c) and dark blue line shows the 1000 m bathymetric contour. b Ice sheet model output showing ice
thickness and streamlines, black lines show the grounding line and coastline, note areas of ice grounding on the Lomonosov Ridge, Arlis Plateau and Morris
Jessup Rise. Grey shading shows land above sea level. ¢ Ice sheet model output showing transect across Amerasian and Eurasian Basins and through the
Fram Strait. Locations referred to in the text: AM Alaskan Margin, CB Chucki Borderland, AP Arlis Plateau, AB Amerasian Basin, LR Lomonosov Ridge, EB
Eurasian Basin, MJR Morris Jessup Rise, YP Yermack Plateau, FS Fram Strait
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Previous studies have followed statistical'® or analytical'®
approaches to explore the plausibility of a thick Arctic ice shelf
and numerical simulations have addressed the potential for an
East Siberian ice shelf?’. Here we simulate an Arctic sheet-shelf
system using a hybrid shallow ice-shallow shelf model?"?, with
climate forcing provided from existing coupled climate model
simulations configured for MIS6?® but without dynamical ice-
ocean coupling. A number of experiments are performed with
different imposed ice sheet extents (a large versus small Lauren-
tide Ice Sheet and with or without a hypothesised Eastern
Siberian Ice Sheet?®?°) to determine what impact the different ice
source regions have on ice shelf thickness and flow direction.
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Fig. 2 Profile of an unconstrained ice shelf. Ice shelf elevation with distance
from grounding line, following analytical solution for an unconstrained ice
shelf>®. Ice flux at the grounding line is dependent on the prescribed grounding
line ice thickness, as shown in the Iegendéo. For a uniform ice temperature of
—12 °C, no ocean melting and a constant surface mass balance of 0.3 m year ™!

Although our focus is on explaining the bathymetric features on
the central Lomonosov Ridge we also consider whether an ice
shelf can explain other ice grounding features. A simulation is
performed with the ice shelf constrained to the Amerasian Basin,
in order to test the “minimum model” that the ice shelf was
prevented from expanding into the Eurasian Basin due to the
inflow of warm North Atlantic waters'?, We also explore what
impact the Lomonosov Ridge (i.e., through back-stress) has on
the ice-shelf dynamics, by performing simulations with lowered
seafloor elevation.

The ice sheet-shelf model has been used extensively for palaeco
and future simulations of the Greenland and Antarctic Ice Sheets,
and can successfully capture the collapse and regrowth of the
marine-based West Antarctic Ice Sheet. The model is as described
in ref. 21?2, unless otherwise stated. We first constrain the ice
shelf calving parameterisation for simulations of the Barents-Kara
Ice Sheet to its known LGM extent (see Methods and Supple-
mentary Fig. 1).

Results

Ice shelf inception. The large area and lack of pinning points in
the Arctic Basin poses a problem for the inception of an Arctic ice
shelf. Although it has been suggested that bathymetric highs on
the Lomonosov Ridge could act as stabilizing points'?, the ice
shelf would first have to intercept the ridge, which is several
hundred kilometres from the grounding lines of the North
American and Eurasian Ice Sheets. Longitudinal stretching of an
ice shelf leads to dynamical thinning. Analytical solutions for an
unconstrained ice shelf show that an unrealistically high ice flux

Ice thickness (m)

Fig. 3 Ice shelf experiments showing simulated ice thickness. a Climate forcing with reduced Laurentide Ice Sheet extent2%. b Climate forcing with LGM
equivalent Laurentide Ice Sheet. ¢ With terrestrial ice sheet able to form in Eastern Siberia. d Ice shelf prevented from expanding into the Eurasian Basin.
Black line shows the grounding line. Model domain extends to 40°N but is cropped in these figures. a-d Mean shelf thicknesses within the Arctic Basin are
833, 1070, 1173, and 254 m and floating ice volumes are 3.54, 4.42, 4.76, and 0.79 x 10® km?
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Fig. 4 Ice shelf mass balance through time. a Mass balance for floating ice within the Arctic Basin, defined by location of grounding line, with a cutoff in the
Fram Strait at 80°N, for simulation shown in Fig. 3b. Calving is zero when the calving front has moved outside of the Arctic Basin. b Mean shelf thickness

and fraction of Arctic Basin with ice cover

across the grounding line would be required to overcome dyna-
mical thinning and maintain an ice shelf sufficiently thick to
ground on the Lomonosov Ridge (Fig. 2; see also ref. '°). How-
ever, this analytical solution does not consider lateral drag, which
could thicken an ice shelf embayed in the Amerasian Basin
enough to ground on the Lomonosov Ridge. We test this
“minimum model” by performing an experiment with a high
oceanic sub-ice melt rate in the Eurasian Basin, preventing the
expansion of the ice shelf across the entire Arctic Basin. With a
Eurasian Ice Sheet extending into Eastern Siberia this is the most
favourable configuration of peripheral ice sheets for the growth of
the ice shelf. Even with grounded ice flowing into the Arctic Basin
from the Laurentide Ice Sheet and an Eastern Siberian Ice Sheet,
the mean ice shelf thickness is only ~250 m (Fig. 3d). Because of
dynamic thinning, this ice shelf cannot ground on the central
Lomonosov Ridge and we therefore reject the minimum model.

In our simulations, a kilometre-thick ice shelf can only form
with complete ice shelf cover in the Arctic Basin (Fig. 3a-c). This
ice shelf forms in two stages: first there is an initial nucleation
phase whereby individual ice shelves from the surrounding North
American and Eurasian Ice Sheets coalesce in the central Arctic
(see Supplementary Movie 1). This initial ice cover has a mean
thickness of ~160 m. Once there is a complete ice-shelf cover, its
thickness is balanced by flow into the basin and surface snow
accumulation offsetting mass loss from basal melting and ice
export through the Fram Strait. Additionally, complete ice-shelf
cover reduces calving losses and the shelf is able to slowly thicken
(Fig. 4a). As the ice shelf thickens, the basal melt rate increases,
resulting in the ice shelf reaching an equilibrium thickness. The
shelf thickens at a rate of 0.05-0.15 m year !, requiring 5-15 kyr
to reach a sufficient thickness to ground on the Lomonosov Ridge
(Fig. 4b).

The initial complete ice cover forms from the convergence of
individual ice shelves from the surrounding ice sheets. In the
model, this is dependent on a reduction in the calving thickness
threshold, which we reduce in the model simulation in order to
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correctly simulate the formation of the Barents-Kara Ice Sheet. It
is uncertain whether unconstrained ice shelves from the
Laurentide and Eurasian Ice Sheets could extend hundreds of
kilometres into the Arctic Basin without calving. An alternative
explanation is that the initial ice cover formed by another process.
The basin could have become clogged with ice mélange or
developed a thick sea ice cover that provided structural
support'®2627 reducing calving and allowing an initial, thin ice
shelf to form.

Locations of ice grounding. With the exception of the partial ice
shelf (Fig. 3d), all of the ice sheet configurations tested can pro-
duce an ice shelf of sufficient thickness to ground on the central
Lomonosov Ridge (Table 1). Despite the proximity of a grounded
East Siberian Ice Sheet, the partial ice shelf does not ground on
bathymetric highs of ~900 m depth on the Arlis Plateau, where
there is evidence for past ice grounding!®?*, This existence of an
East Siberian Ice Sheet has been hypothesised in part because of
the erosional features on the Arlis Plateau?®?*, Previous numer-
ical simulations have shown the potential for an East Siberian ice
shelf flowing from grounded ice in East Siberia®’. In our simu-
lations, sufficient shelf thicknesses to generate grounding on the
Arlis Plateau (Fig. 3a—c) can only be reached when ice is able to
expand into the Eurasian Basin, forming a complete Arctic ice
shelf. In these simulations, grounding occurs regardless of the
presence of an East Siberian Ice Sheet (Fig. 3a, b). However, in the
absence of this ice sheet the flow direction is north to south, away
from the basin and opposite to that inferred from lineations and
moraines on the Arlis Plateau?’. South to north ice flow only
occurs with an East Siberian Ice Sheet, which is also more con-
sistent with a recently identified glacial trough on the East
Siberian continental margin?®,

Two different extents of the North American Ice Sheets are
considered in the climate model forcing (the ice sheet model
margin is not constrained), one is equivalent to the LGM extent
(Fig. 3b), and one with a reduced extent equivalent to the ICE5G
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Table 1 Water depth and simulated ice shelf thickness at ice grounding locations

ID 1 2 3 4 5 6 7 8 9

Location North Arlis Plateau  Arlis Plateau  Arlis Plateau Chucki Southern Central Southern Yermack Plateau
Alaska Borderland  Lomonosov Ridge Lomonosov Ridge Lomonosov Ridge

Reference Engels et al. Niessen et al. Niessen et al. Niessen et al. ~ Dove et al.  Jakobsson et al. ~ Jakobsson et al. ~ Jakobsson et al. ~ Jakobsson et al.
(Area H)*/  (Fig. 4)% (Fig. 2a®)%*  (Figure 2a®)?*  (Fig. 20> (Fig. 2a, b)'0 (Fig. 2c)1° (Area B)"? (Area E)'12

Latitude 70.8°N 75.5°N 76.5°N 76.3°N 76.9°N 81.5°N 85.0°N 86.7°N 80.2°N

Longitude 144.2°W 178.7°W 178.5°W 180.0°W 164.8°W 142.0°E 152.0°E 54.0°W 6.8°E

Modern 458 902 o17 107 575 879 807 810 621

bathymetry (m)

Bathymetry - ice

shelf depth (m):

Fig. 3a 0 22 0 147 0 0 0 0 136

Figs. 3b, 1b 0 0 0 36 0 0 0 0 105

Fig. 3¢ 0 0 0 0 0 0 0 0 89

Fig. 3d 299 6n 552 757 106 517 428 n/a n/a

Exact locations are shown in Supplementary Fig. 4. Modern bathymetry is from ETOPO1 dataset, calculated at the resolution of the ice sheet model (20 x 20 km); therefore some features may have been

smoothed. Modern-day water depth is shown, note that for all simulations sea level is lowered by 120 m. Distance between the ice shelf base and ocean floor for simulations shown in Fig. 3; when equal

to zero the ice shelf has grounded

aShallower glacial lineations on Arlis Plateau

bDeeper glacial lineations on Arlis Plateau

reconstruction at 13 ka (Fig. 3a; following ref. 2%). For the LGM,
the extent of the major ice sheets is well known, constrained by a
large volume of dated geomorphological and geological evi-
dence?>*°. For prior glaciations such as MIS6, the evidence-base
in North America is sparse and its geographic spread is
insufficient to develop a continent-wide reconstruction of ice
extent at this time. But it is known for example that during MIS6,
that the southern Laurentide Ice Sheet extended some 200 km
further south in the US state of Illinois than during the LGM>!, In
Ohio the MIS6 extent is a short distance (10-20km) further
south®?, In Minnesota, pre-LGM §lacial deposits also extend
beyond the known LGM ice limits>®. However, this picture of
greater MIS6 extent is not repeated around the rest of the
perimeter of the ice sheet, likely because the ice sheet was smaller
than during the LGM and the evidence has been erased or
obscured. The lack of icebergs being discharged through the
Hudson Strait during MIS6 would indicate that the North
Atlantic sector of the Laurentide Ice Sheet had a reduced extent
(or different dynamics) relative to the LGM. Finally, the LGM sea
level lowstand was likely lower than during MIS6, with one
estimate proposing a difference between the two glacial stages of
21+ 14 m**. Because the MIS6 Eurasian Ice Sheet had a greater
extent than during the LGM?, it is likely that the North
American Ice Sheets had a smaller volume during MIS62%°.,
The simulation with reduced North American Ice Sheets has
two major influences on the formation of the Arctic ice shelf.
Firstly, there is reduced ice flow into the basin (460 Gt year™!
total input into the Arctic Basin, compared with 950 Gt year™!
for the larger North American Ice Sheets) because the western
most ice streams, the MacKenzie Trough and Amundsen Gulf Ice
Streams, are less active. However, this reduced flow into the basin
is partially offset by higher surface accumulation on the Arctic ice
shelf (370 Gt year—! compared to 240 Gt year !). The lower
elevation and extent of the North American Ice Sheets generates a
shift in atmospheric planetary waves, increasing temperatures and
precipitation over the Eurasian Ice Sheet and leading to cooler
temperatures over Eastern Siberia. The smaller North American
Ice Sheets also generate increased 2precipitation in the Arctic, in
particular in the Amerasian Basin®®. Although these two effects
partially cancel out, the reduction in ice flow from North
American ice streams results in a mean shelf thickness of 830 m,
compared with 1070 m for the thicker LGM-equivalent North
American Ice Sheets. Despite the reduced shelf thickness, this ice

| (2018)9:1510

shelf still grounds at most of the locations where there is evidence
for grounding (Fig. 3a; Table 1).

No evidence for deep ice grounding has yet been found for the
LGM, although it is possible that a thinner, ungrounded ice shelf
also existed during the LGM'®!8 or that ice grounding features
have yet to be discovered. The shorter duration of the LGM
compared with MIS6 is one explanation as to why evidence for ice
grounding at the LGM is lacking!?. Another possible factor is the
different configurations of the peripheral grounded ice sheets,
with a less easterly expansion of the Eurasian Ice Sheet, which
may have delivered less ice to the Arctic Basin and prevented a
thick ice shelf from forming!2. To test this we have performed
experiments with an LGM climate forcing®” and with the
Eurasian Ice Sheet restricted to its reconstructed LGM extent’”
(Supplementary Fig. 3).

In these LGM simulations, a thick ice shelf is still able to form
in the Arctic Basin, which is not supported by the current
geological evidence. Although the reduced volume of the Eurasian
Ice Sheet results in greatly reduced ice flow into the Arctic
Basin from that sector, this is compensated for by increased flow
from the Laurentide Ice Sheet; likely caused by lower longitudinal
stress from the reduced Eurasian Ice Sheet flow. The surface
mass balance in the Arctic Basin is lower during the LGM (110 Gt
year_l), relative to the MIS6 simulations (240-370 Gt year_l).
Overall, this results in a lower equilibrium thickness (940 m) of
the ice shelf, relative to a simulation with an MIS6 equivalent
Eurasian Ice Sheet (1070 m). However, our simulated LGM ice
shelf would have left ice grounding traces. These simulations have
identical ocean forcing and the same duration as the
MIS6 simulations. Given the strong sensitivity of the ice shelf
thickness to changes in the ocean melt rate (Table 2), we suggest
that differences in ocean circulation may explain why a thick ice
shelf formed during MIS6 and not the LGM. The different
configurations of the terrestrial ice sheets may have played a
secondary role.

Ice shelf dynamics. Once the ice shelf pins on the Lomonosov
Ridge, the resulting buttressing influences the ice shelf dynamics.
An ice rise forms in the central Arctic where the shelf intercepts
the Lomonosov Ridge (Fig. 5a). We find two principle flow
regimes, a slightly thicker, slower flowing ice shelf in the Amer-
asian Basin and a thinner, faster flowing shelf in the Eurasian
Basin, with increasing velocities towards the Fram Strait calving
region; this is similar to that inferred from analytical
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Table 2 Summary of experiments and Arctic ice shelf mass balance

Figure Climate Eurasian Ice Ocean  h,, Mean shelf Shelf volume Flux in Flux out SMB Ocean melt
Sheet factor (m)  thickness (m)  (10% km3) (Gtyear V) (Gtyear ") (Gtyear ") (Gtyear ™

3a MIS6 (T2) Svendsen04 1.0 100 833 3.54 460 —470 370 —380

3b, 1b, 5a  MIS6 (T1)  SvendsenO4 1.0 100 1070 4.42 950 —660 240 —570

3c MIS6 (T1)  Unconstrained 1.0 100 n73 476 1m0 -710 230 —660

3d MIS6 (T1)  Unconstrained 1.0 100 254 0.79 - - - -

- MIS6 (T2) Unconstrained 1.0 100 917 3.88 660 —-600 370 —450

5b MIS6 (T1)  SvendsenO4 1.0 100 1029 4.32 1020 —720 240 —540

S2a MIS6 (T2) Svendsen04 0.5 100 1052 4.30 490 —640 370 —270

S2b MIS6 (T2) Svendsen04 2.0 100 617 2.68 410 —320 360 —470

S2c MIS6 (T2) Svendsen04 4.0 100 433 1.89 440 —190 350 —540

S2d MIS6 (T2) Svendsen04 8.0 100 253 1.09 400 —-80 260 —500

Sla LGM Hughes16 1.0 150 - - - - - -

Sb LGM Hughes16 1.0 125 - - - - - -

Slc, S1d LGM Hughes16 1.0 100 - - - - - -

S3 LGM Hughes16 1.0 100 940 3.93 940 —640 10 —460

All ice sheet parameters are as ref. 22, unless otherwise shown. Small differences in surface mass balance (SMB) between some simulations that have the same input climate are caused by different areal

extents of the ice shelf. Note that variability in the flux of ice into and out of the Arctic Basin due to ice stream activity (see Fig. 4) means that mass balance values may not sum to zero, although the ice

shelf thickness has reached equilibrium. For ease of interpretation, mass balance values are rounded to the nearest 10 Gt year~'. Svendsen04 is the >140 ka Eurasian Ice Sheet extent of ref. ¢! and

Hughes16 is the ‘best-estimate’ maximum extent of the Eurasian Ice Sheet during the last glacial cycle, from ref. 30

T1is a climate simulation with LGM equivalent North American Ice Sheets, T2 is a climate simulation with approximate MIS6 North American Ice Sheets, following Ref. 23

300 -
E
200 §
(6]
£
100 2
(0]
=
0 s
o
1))
-100 4
C
S
-200 £
[0]
©o
-300
1000
'
I
g
100 A
©
[0}
(0]
%3
10 o
o
0

Fig. 5 Impact of Lomonosov Ridge buttressing on ice shelf dynamics. a, ¢ are the same as simulations shown in Fig. 3b, b, d is an identical simulation with
the Lomonosov Ridge removed, location of Lomonosov Ridge is shown in Fig. 1a. The mean shelf thicknesses are comparable between the simulations

(1070 and 1029 m for a and b, respectively)

approaches'®. We perform an additional simulation with the
Lomonosov Ridge removed (Fig. 5b, d). We find that these flow
regimes develop even in the absence of the Lomonosov Ridge and
are caused by the Arctic geometry and the location of the Fram
Strait. With the shelf pinned on the Lomonosov Ridge, these flow
regimes become more pronounced with an increased thickness
gradient between the two basins. As highlighted by the simula-
tions without a Lomonosov Ridge, in which a thick ice shelf is still

6 NATURE CO\\/”H\/WUN\CAT\ONS| (2018)9:1510

able to form, the bathymetric highs in the central Arctic may be
less critical to the formation of an Arctic ice shelf than previously
suggested .

The presence of an Arctic ice shelf influences the ice streams
feeding into the basin and the peripheral terrestrial ice sheets.
Buttressing provided by the ice shelf results in the advance of the
grounding line and thickening of the surrounding ice sheets
(Fig. 6). Comparing simulations with and without an Arctic ice
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Fig. 6 Impact of an Arctic ice shelf on grounding line position and grounded
ice thickness. As simulation shown in Fig. 3b, showing thickness difference
relative to a simulation without an Arctic ice shelf. Light orange line shows
grounding line position in absence of an Arctic ice shelf, dark orange line is
grounding line with an Arctic ice shelf. Note thickening of the terrestrial ice
sheets, in particular in ice stream locations

shelf, this causes an increase in volume of the grounded ice sheets
of 1.4x10°km?, a sea level equivalent change of 3.5m. The
grounding line extends towards the Arctic Basin, with this
extension especially pronounced for the Laurentide Ice Sheet.

Discussion

The volume of the simulated Arctic ice shelf varies between 3.5
and 4.8 x 10°km?>, equivalent to 120-170 % of the modern
Greenland Ice Sheet. Through buttressing it also leads to an
increase in the volume of the peripheral grounded ice sheets
(Fig. 6). With the exception of its impact through buttressing, the
ice shelf would have minimal direct impact on sea level. However,
many sea level reconstructions for MIS6 are proxy-based esti-
mates calculated from the oxygen isotope composition of sea-
water (8180,,,), which will increase with the presence of such a
large floating meteoric ice mass®. There is a 1.66%o offset in §'80
of benthic foraminifera between the Holocene and MIS62, which
includes contributions from decreasing deep sea temperature and
changes in 8'80y,,. Assuming a simplified constant ice shelf 880
composition of —40%o, the Arctic ice shelf would increase 8180,
by 0.11-0.14%o, reducing the magnitude of MIS6 sea level low-
stand estimates by up to 14 m.

The presence of an Arctic ice shelf may help to explain existing
discrepancies between sea level reconstructions for MIS6>43°. As
mentioned previously, there is a 21+ 14m offset in sea level
between MIS6 and the greater sea level fall of the LGM. However,
this sea level offset is smaller in deep-sea 8180y, records®®,
compared with sea level reconstructions based on water residence
times in the semi-enclosed Mediterranean Sea and Red Sea®*3¢37,
The formation of an Arctic ice shelf would influence the Medi-
terranean and Red Sea reconstructions, which are also affected by
changes in §'%0,. However, due to the larger amplitude of the
glacial to interglacial 8'80 shift for the semi-enclosed basin
records, this bias would be larger in the deep-sea 8180, recon-
structions. The sea level offset, and the discrepancies between the
sea level records, can be explained by the formation of a large ice
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shelf during MIS6, but would require negligible floating ice mass
during the LGM>%,

The significance of an Arctic ice shelf to ocean circulation and
northern hemisphere glacial climates has been noted previously,
both through the direct impact of a permanent thick ice cover on
the atmosphere and ocean below, and additional impacts on
ocean circulation during ice shelf break up®*%. The routing of
meltwater from terrestrial ice sheets into the Arctic and the
subsequent release of large amounts of freshwater through the
Fram Strait has the potential to disrupt the thermohaline circu-
lation in the North Atlantic?®; an Arctic ice shelf is an additional
source of freshwater. More work is needed to determine whether
the magnitude and rate of ice shelf break-up would be sufficient
to influence ocean circulation. It is noteworthy that because of the
thickness and spreading rate of the ice shelf, once the calving
front has retreated back into the Arctic Basin, calving laws suggest
that break-up of the shelf would have been rapid*.

Methods

Ice sheet/shelf model. The ice sheet model used is a hybrid model that combines
the scaled shallow ice and shallow shelf equations?!, we briefly describe the model,
which is setup as documented in ref. 22 unless otherwise mentioned below. Vertical
shearing and basal stress balances the gravitational driving stress for slow flowing,
grounded ice regimes, whereas horizontal stretching dominates in fast flowing
grounded ice regimes and floating ice shelves. The combined shallow ice-shallow
shelf (SIA-SSA) equations account for both flow regimes, with computational
demand reduced in slow-flowing areas with limited basal sliding that can be
satisfactorily modeled with solely SIA dynamics. The grounding line can freely
migrate using a sub-grid parameterisation that relates ice velocity to ice thickness at
the grounding line*»*3. This parameterisation eliminates the resolution-
dependence of ice flow at the grounding line (allowing relatively coarse grids to be
used for long-duration simulations) and overrides the ice velocities computed by
the SIA-SSA at the grounding line. The parameterisation also accounts for but-
tressing by downstream islands, pinning points or side shear that can generate back
stress, reducing grounding line velocities. Basal sliding coefficients (C) vary based
on the distribution of deformable sediments, with a sediment map** used to
specify regions of hard bedrock (C= 1071%m a~! Pa~2) and deformable sediment
(C=10"°m a~! Pa~2).

Ice-shelf calving is a combined parameterisation dependent on flow divergence,
velocity, and hydrofracture in climates producing surface meltwater or liquid
precipitation®®. An added calving constraint is imposed which restricts the
minimum thickness of ice shelves (A ). In Antarctic model runs this parameter is
needed to prevent the seaward extension of the Filchner-Ronne and Ross ice
shelves beyond their modern-day calving fronts, however the parameter prohibits
the regrowth of the West-Antarctic Ice Sheet from a deglaciated state. Experiments
conducted here show that the default calving thickness threshold (150 m) also
prevents the growth of the Barents-Kara Ice Sheet (BKIS) and formation of an ice
sheet in Hudson Bay during the LGM (see Supplementary Fig. 1); this result is not
dependent on the ocean melt rate. Regrowth of the West-Antarctic Ice Sheet either
requires removal of the calving thickness constraint*® or the reduction of calving in
confined embayments calculated from the arc angle to open ocean®>*3. This is
attributed to clogging with ice mélange and/or sea ice??. For the Arctic simulations
the arc angle reduction in calving is not used, as it would treat the entire Arctic
Basin as a confined embayment. We therefore lower h,, until we are able to form
a BKIS. A reduction in Ay, to 100 m allows formation of the BKIS at the LGM and
this value is used for all subsequent experiments. Additional simulations have
shown that with A, equal to 150 m, an Arctic ice shelf is unable to form.
Simulation of ice mélange and its impact on calving is the subject of future
research. A new mechanism for the structural failure of large ice cliffs is included in
the ice sheet model*’, although this has minimal impact on the results for these
glacial maximum simulations.

The ice margin of the Eurasian Ice Sheet is constrained in a number of the
experiments presented; due to the lack of a reliable reconstruction of the MIS6
North American Ice Sheets, they are always unconstrained in the ice-sheet model.
The Eurasian margin is restricted to either the 140 ka ice margin® or the LGM3°
for sensitivity experiments. For grid cells within +40 km of the margin a soft
constraint is imposed and accumulation is set to zero, further outside of the margin
a hard constraint is imposed and a strong ablation is also added*® The impact of
this constraint is clearly visible in simulations without ice margin limits. Without
this constraint the Eurasian Ice Sheet will extend into Eastern Siberia with LGM
climate forcing. However, this result may be climate model dependent, with
expansion not found in similar simulations performed using the IPSL CM5a
climate model*”.

The model domain extends to 40°N, although the model output is cropped in
some of the figures presented here. For efficiency, we first spin-up the model from
ice-free conditions for 45 kyr at a resolution of 40 x 40 km, before increasing the

| DOI: 10.1038/s41467-018-03707-w | www.nature.com/naturecommunications 7


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

resolution to 20 x 20 km for another 5 kyr. During this spin-up phase, ice shelves
are prevented from forming, with only the terrestrial ice sheets developing. All
subsequent simulations are restarted from this full-glacial state and run for 30 kyr
at a resolution of 20 x 20 km.

Climate forcing. Surface temperatures and precipitation from the Community
Climate System Model, version 4 (CCSM4) are used to calculate the surface mass
balance. These simulations do not include an Arctic ice shelf and there is therefore
no feedback from the formation of an ice shelf on the ocean and climate system. A
thick ice shelf cover would reduce heat exchange between the ocean and atmo-
sphere, relative to a thin sea ice cover, and also lower surface air temperatures due
to the elevation lapse rate effect*S. These existing simulations are with either
LGM?7 or MIS62>*° boundary conditions (astronomical configurations, ice sheet
elevation, and greenhouse gas concentrations). Two separate MIS6 simulations are
used with different configurations for the North American Ice Sheets, either with
the same extent as LGM, or with a reduced extent and elevation required to
maintain sea level budgets given the larger extent of the Eurasian Ice Sheet during
MIS623%. The reduced North American Ice Sheets are based on the ICESG model
for 13 ka0, although the actual extent of the North American Ice Sheets during
MIS6 is uncertain. The differences in the extent and elevation of the North
American Ice Sheets has a significant impact on the climate of the Arctic and
Eurasia?®. Surface temperatures are lapse rate corrected to account for differences
in GCM elevation and the ice-model surface elevation. The surface temperatures
from CCSM4 are also anomaly (bias) corrected based on errors between a modern-
day control simulation and an observational temperature dataset. Precipitation is
not anomaly corrected. Bias correcting leads to a greater agreement between the
simulated LGM ice thicknesses and the ICE6G model. Surface ablation is calculated
using the positive-degree day method. Because we are using a constant climate
forcing, there may be more rapid transitions that are not currently accounted for.

The MIS6 climate forcing produces a strong negative surface mass balance
along the North Alaskan margin. This can result in the export of shelf ice via re-
grounding, followed by subsequent surface melting and instances with spurious ice
flow. As there is no evidence for export of ice/meltwater via the North Alaskan
margin, we limit the surface ablation for grid cells with grounded ice to no greater
than 0.5 m year~! in that sector (125-180°W, 68-90°N). A similar adjustment is
required to allow glacial inception on Svalbard for ice sheet model runs starting
from ice-free conditions, with an initial ablation limit of <0.2 m year™! required in
that sector (8-32°E, 76-82°N), this does not affect floating ice cells.

Ocean forcing. Sub ice-shelf basal melt rates are clearly of great importance to the
existence and equilibrium thickness of Arctic ice shelves, however they are poorly
constrained today and worse in the past. Proxy reconstructions show that the
Arctic Ocean structure differed during glacial intervals, with a deepening of warm
Atlantic waters!'”. The presence of an ice shelf in the Arctic could affect the ocean
structure and circulation'?, however no simulations have yet examined these effects
on basal melt rates. We therefore adopt a conservative approach to sub-ice melting,
calculating basal melt rates based on a last glacial simulation®! that has been
calibrated for Antarctica® and exploring model sensitivity through large adjust-
ments (50-800%) of a melt enhancement factor (Og,). Changes in the basal melt
rate can lead to variation in the ice shelf equilibrium thickness of 100 s of metres
(see Table 2 and Supplementary Fig. 2). For the default melt enhancement factor,
used in all experiments in the main manuscript, basal melt rates at 1000 m depth
are ~0.16 m year ! in the central Arctic. This is comparable to the basal melt rates
of <0.2 myear ! estimated by ref. 1* using a conceptual oceanographic model.
Ocean melt rates are parameterized using a quadratic dependence on the difference
between simulated ocean temperatures and the freezing point of seawater?1>3%4,
Because the freezing point of seawater increases with ocean depth, this leads to an
increase in the melt rate with depth, and hence an increase in the melt rate as the
ice shelf thickens. In experiments where the ice shelf is prevented from expanding
into the Eurasian Basin we impose a large increase in the melt enhancement factor
for the Eurasian Basin.

Data availability. The data and model output that support the findings of this
study are available from E.G. upon reasonable request.
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