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Abstract: Extracellular vesicles (EVs) are considered as promising nanoparticle theranostic tools
in many pathological contexts. The increasing clinical employment of therapeutic nanoparticles is
contributing to the development of a new research area related to the design of artificial EVs. To this aim,
different approaches have been described to develop mimetic biologically functional nanovescicles.
In this paper, we suggest a simplified procedure to generate plasma membrane-derived nanovesicles
with the possibility to efficiently encapsulate different drugs during their spontaneously assembly.
After physical and molecular characterization by Tunable Resistive Pulse Sensing (TRPS) technology,
transmission electron microscopy, and flow cytometry, as a proof of principle, we have loaded
into mimetic EVs the isoquinoline alkaloid Berberine chloride and the chemotherapy compounds
Temozolomide or Givinostat. We demonstrated the fully functionality of these nanoparticles in drug
encapsulation and cell delivery, showing, in particular, a similar cytotoxic effect of direct cell culture
administration of the anticancer drugs. In conclusion, we have documented the possibility to easily
generate scalable nanovesicles with specific therapeutic cargo modifications useful in different drug
delivery contexts.

Keywords: extracellular vesicles; nanomedicine; drugs-delivery

1. Introduction

Exosomes, microvesicles and apoptotic bodies are generally referred to as extracellular nanovesicles
(EVs) with a 40–5000 nm diameter size range that are released by cells in constitutive or inducible
conditions [1–3]. EVs have been detected in the main body fluids as peripheral blood, milk, urine,
saliva, plasma, and cerebrospinal fluid and therefore can be used as liquid biopsies. EVs are
composed of a membrane and cytoplasmic proteins, lipid moieties, and nucleic acids molecules.
The physiological/pathological state of the cells of origin directly influence the molecular architecture
and composition of EVs [4,5]. EVs can transfer proteins, lipids, and nucleic acids (DNA, mRNAs and
miRNAs) in short to long intercellular ranges, facilitating intercellular communication [6], and thus
producing a homotypic or heterotypic transfer of biological material [7,8]. EVs, previously considered
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as cellular by-products [9], are presently viewed as important inducers and regulators of physiological
and pathological pathways [10]. Indeed, EVs have relevant counterparts in coagulation [11],
pregnancy [12], and immune response [13] processes. Furthermore, EVs are released in large quantities
in pathological contexts such as infection, inflammation [14], or cancer [15,16], regulating the disease
associated processes.

The prevalent therapeutic clinical approaches for human high grade glial tumors (i.e. gliomas
or astrocytomas) indicate a combination of surgery, radiation, and chemotherapy treatments.
The chemotherapy approach is mainly focused on the administration of Temozolomide (TMZ), a DNA
alkylating agent that induces epigenetic modifications (i.e., methylation of the O6-methylguanine–DNA
methyltransferase promoter), resulting in an increase of the prognostic rates [17,18]. In addition to
TMZ, Bevacizumab, a humanized monoclonal antibody approved by Food and Drug Administration
(FDA) in glioma therapy, acts as an anti-angiogenic moiety that efficiently interferes with ectopic
tumor vasculature by down-regulating the expression of the vascular endothelial growth factor
(VEGF-A) [19]. However, these treatments, along with many others based on drugs, are not completely
meaningful due to limited pharmacokinetics uptake and specificity and to possible off-target effects.
Therefore, novel treatment strategies characterized by enhanced efficiency and specificity and producing
less disadvantageous effects, are rapidly required [20]. To this regard, nanomedicine is becoming
a promising additional discipline, contributing to increased diagnostic and therapeutic abilities.
Importantly, specific EVs loaded with different therapeutic compounds could improve therapeutic
efficacy and specificity, favoring the prolongation of the half-life of their circulation into body
fluids, exhibiting a more precise cell-target uptake, and showing a better monitored pharmacological
delivery [21]. For high grade glial tumors, particularly for glioblastoma multiforme, different EVs
have been evaluated in their efficacy in early phase clinical trials, including liposomes polymers and
inorganic nanoparticles [22]. It has been reported that EVs share numerous beneficial properties in the
specific shuttle of therapeutic drugs, especially, in their capacity to diffuse into different tissues and
cellular junctions [23]. Notably, since therapeutic EVs can originate from autologous cells, their possible
adverse effects should be significantly reduced [24]. Furthermore, EVs may exhibit specific targeting
features with molecular cellular or tissue affinities [25]. This feature is relevant to preferentially supply
therapeutic compounds to their designed cells/tissues destinations, thus reducing off-target effects [26].
Recently, different approaches have been investigated to exploit the features of mimetic nanovesicles
(M-NVs) that, unlike natural EVs derived from cellular physiological processes, are generated in vitro
via assembling different sub-cellular components [27–29]. These de novo vesicles resemble biophysical
and biochemical features of nanovesicles and can be produced in larger quantities, thus facilitating
their use in therapeutic protocols. To this end, recently, a systematic classification for M-NVs has been
suggested [30]. Based on this nomenclature, artificial or mimetic EVs can be grouped into semi-synthetic
and synthetic categories. Semi-synthetic M-NVs include engineered EVs obtained by means of genetic
or metabolic handling of parental growing cells or following EVs post isolation processes. On the other
hand, synthetic EVs are further partitioned into two subgroups, respectively termed “bottom top”,
or “top down”: in the former, EVs are produced from distinct molecular components (i.e., proteins,
nucleic acids and lipids), while for the latter, nanovesicles are generated from different portions of
parental cells, mostly represented by plasma membranes constituents [30].

In the present contribution, we describe a simplified “top down” approach to generate M-NVs
with the possibility to efficiently modify their intravesicular cargo with therapeutic drugs or molecules.

2. Materials and Methods

2.1. Isolation and Characterization of Extracellular Vesicles (EVs)

T98G (#CRL-1690) and U138-MG (#HTB-16) established human malignant glioma (ATCC,
Guernsey, Ireland) and Res259 low grade astrocytoma (described in [31]) cell lines were cultivated in
D-MEM medium supplemented with 10% FBS, 100 units/mL penicillin, 0.1 mg/mL streptomycin and



Cells 2020, 9, 1626 3 of 19

1% L-glutamine (Euroclone, Milan, Italy), at 37 ◦C and 5% CO2 atmosphere. For isolation of EVs, cells
were grown in 75 cm2 flasks at 75% confluence using Exosome-depleted FBS (Thermofisher, Waltham,
MA, USA), provided 24 h before EVs isolation.

The extraction and purification of EVs from cell culture media were conducted as described [32],
by differential centrifugation and filtration. In particular, centrifugation at 400× g for 10 min was
performed to sediment a main portion of the cells, at 2000× g to remove cell debris, and at 10,000× g to
remove the aggregates of biopolymers, apoptotic bodies, and the other structures with the buoyant
density higher than that of EVs. EVs contained in the resulting supernatant were sedimented by
ultracentrifugation at 150,000× g for 2 h. The non-EV proteins in the pellet were removed by suspension
followed by repeated ultracentrifugation. The obtained EVs were further purified according to their
size by microfiltration filters of 0.45µm pore diameter, as recommended [32,33].

Exosomes were isolated using the “total exosome isolation (from cell culture media) reagent”
(Invitrogen, Carlsbad, CA, USA) as described [34]. In detail, culture media were collected,
and 0.5 volumes of total exosome isolation reagent was added to the media and incubated at
4 ◦C for 20 h. Then, exosomes were pelleted at 12,000× g for 60 min at 4 ◦C and finally resuspended
into 500 µL of sterile ice-cold D-PBS (Thermofisher) and next filtered (0.20 µm).

The qNano Gold instrument (Izon Science, Christchurch, New Zeeland) was employed to measure
the size distribution, concentration and z-charge of the isolated nanoparticles (EVs, exosomes and
M-NVs) using the Tunable Resistive Pulse Sensing (TRPS) principle [35]. Briefly, 35 µL of purified
particles were analyzed with qNano Gold instrument using a NP200 Nanopore (Izon Science) and
applying 46 mm stretch, 0.34 V, and 8 mBar parametric conditions as described [36]. The calibration
particles (CPC100, Izon Science) were assayed before the experimental samples under identical
conditions. Size, concentrations (2000 events each) and z-charge (500 events) values of particles were
finally determined using the qNano software provided by Izon Science (Izon Control Suite version 3.1).

Nanoparticles were then visualized by transmission electron microscopy (TEM). In detail, 20 µL
drops of the isolated particles in D-PBS were placed on a Parafilm (Sigma, St. Louis, MI, USA) sheet,
and a 300-mesh nickel grid (covered with a Formvar-carbon film) was floated onto the drops and
allowed to stay for 5 min. The grids were rapidly blotted with filter paper and negatively stained with
a 2% phosphotungstic acid solution, pH 7.0, for 60 s, blotted on paper and observed directly on a Zeiss
EM900 electron microscope (Zeiss, Oberkochen, Germany) operating at 80 kV.

2.2. Generation of M-NVs

Mimetic nanovesicles (M-NVs) were obtained after trypsinization and lysis of about 5 × 106

T98G cells as follows. Cell pellets were incubated for 60 min on ice in 500 µL of RIPA buffer
(radioimmunoprecipitation assay buffer) (150 mM sodium chloride, 1.0% NP-40, 0.5% sodium
deoxycholate, 0.1% SDS, 50 mM Tris, pH 8.0), widely adopted for whole cell lysis. Lysates were
then centrifuged at 4 ◦C for 20 min at 12,000 rpm. Supernatants were then removed, while pellets
from membranes debris were washed twice with ice cold D-PBS and finally resuspended into 500 µL
D-PBS. M-NVs were then further purified by microfiltration filters with 0.45µm pores diameter.
To spontaneously generate vesicles, fragmented filtered membranes were then incubated at 37 ◦C for
1 h, quantified using qNano Gold instrument, and visualized by TEM as reported above.

2.3. CD63 and PHK Membranes Staining of M-NVs or Exosomes

An anti-CD63 mouse monoclonal antibody, Alexa Fluor 633 conjugated (#H5C6, Biolegend, San
Diego, CA, USA) and the lipophilic dyes PHK26 or PHK67 (Merck, Darmstadt, Germany) were used to
stain the membranes of M-NVs or exosomes. A goat anti-rabbit Alexa Fluor 633 conjugated secondary
antibody (0.1 µg) (#A-21070, Thermofisher) was used to assay its intravesicular incorporation into
nascent M-NVs (~2 × 107 particles). CD63 antibody (0.1 µg) was centrifuged for 10 min at 17,000×
g before use to eliminate aggregates and then incubated for 1 h at room temperature with M-NVs
or exosomes (both ~2 × 107 particles) with 1% BSA (v/v). Then, stained particles were purified from
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unstained dyes using exosome spin columns (MW 3000, Thermofisher) as recommended. M-NVs
or exosomes (both ~2 × 107 particles) were stained for 5 min at room temperature in agitation with
PHK26 or PHK67 dyes (0.5 µL each in a final volume of 100 µL using diluent buffer C) and columns
purified as described above.

2.4. pEGFP Electroporation of M-NVs

pEGFP expression vector (0.5 µg), described in [37], was electroporated into 100 µL of
purified M-NVs particles (~2 × 107) resuspended into D-PBS, using the NEON Transfection System
(Thermofisher), at ∆V = 600 V, pulse width = 10 ms, pulse number = 20. Electroporated M-MVs
were directly administered to ~2 × 103 T98G cells, grown on a coverglass and fixed after 72 h p.t
as described [38]. Then, cells were treated with anti-fade with DAPI reagent (Thermofisher) and
visualized by fluorescence microscopy using a Nikon Eclipse TS100 (100×).

2.5. Berberine, Temozolomide or Givinostat In Vitro Treatments

Berberine chloride and Temozolomide (TMZ), both from Merck, and Givinostat, GVS, (described
in [39]) were resuspended into DMSO (Merck) at a final concentration of 5 mM. To load these compounds
separately into M-NVs, freshly isolated membranes after RIPA buffer lysis, centrifugation and filtration,
isolated from a nearly confluent 75 cm2 flask of T98G cells (~5 × 106) were quantified by qNano Gold
instrument (~2 × 1010) and incubated at 37 ◦C for 1 h in the presence of Berberine, TMZ, or GVS to a
final concentration of 50 µM each. M-NVs were then columns purified as above described. In parallel,
Berberine, TMZ or GVS (all at 50 µM) were directly administered to growing T98G cells.

2.6. Viability and Apoptosis Cytofluorimetric Analysis

The viability and apoptotic rates of glioma cells were quantified using the Muse Count & Viability
or Annexin V and Dead Cell assays (Luminex, Austin, TX, USA), as described [40]. After trypsinization
and collection, cells were washed 3 times with D-PBS, resuspended in D-PBS + 1% FBS (v/v) and
1 volume each of Count & Viability or Annexin V reagents, and incubated for 5 or 20 min at room
temperature in the dark, respectively. The analysis were then performed using the Muse cell flow
cytometer analyzer (Luminex).

2.7. Imagestream Analysis

EVs or cells samples were analysed using the ImageStreamX MarkII instrument (ISX;
Amnis/Luminex) equipped with 3 lasers (100 mW 488 nm, 150 mW 642 nm, 70 mW 785 nm (SSC).
The ISX objectives, 40× (NA = 0.75; DOF = 4 µm) and 60× (NA = 0.9; DOF = 2.5 µm) were adopted.
All lasers were set to maximum powers; cells data were acquired using a 40× magnification (core
size = 10 µm), while EVs with 60× magnification (core size = 7 µm). PHK67 and Berberine signals
were collected in channel 2 (480–560 nm filter) while anti-CD63 Alexa Fluor 633 conjugated primary
antibody, anti-goat Alexa Fluor 633 secondary antibody and PHK26 dye using channel 5 (595–650 nm
filter). Channel 6 (745–800 nm filter) was used for scatterplot (SSC) detection. Standard sheath fluid
(D-PBS, Themofisher) without further filtration was used in all measurements. Negative controls for
M-NVs and exosomes included detergent lysis controls, buffer controls without particles and unstained
antibody samples. Data analysis was performed using Amnis IDEAS software (version 6.1). The gating
strategies used are described in the Results section and Figure legends.

2.8. Statistical Analysis

The data were analyzed using the statistics functions of the MedCalc statistical software version
18.11.6. (http://www.medcalc.org). The ANOVA test differences were considered statistically significant
when p ≤ 0.05.

http://www.medcalc.org
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3. Results

Nearly confluent (~75%) T98G glioblastoma cells, originally splitted into two 75-cm2 flasks, were
separately subjected to EVs isolation by ultracentifugation, and to plasma membranes isolation RIPA
(described in Sections 2.1 and 2.2, respectively). Ultracentrifugation isolated EVs were resuspended
into 500 µL of D-PBS and kept on ice. Plasma membranes mimetic nanovescicles (M-NVs) obtained
after RIPA buffer incubation and subsequent centrifugation were purified using a 0.45 µm filter
and incubated for 1 h at 37 ◦C. The two preparations (i.e., EVs by ultracentrifugation and M-NVs
through plasma membranes reassembling) were then compared in nanoparticles diameter size and
concentration by means of TRPS analysis using the qNano Gold instrument. As reported in Figure 1,
the two approaches produced nanoparticles with similar diameters (as defined by minimum, maximum,
mean and mode values) and concentration (1.99 × 1010 and 2.37 × 1010 particles/mL, respectively for
ultracentrifugation isolated EVs and M-NVs).
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Figure 1. Analysis of T98G-derived EVs size and concentration. (A) EVs isolated by ultracentrifugation
and (B) by plasma membranes reassembling protocol (M-NVs) were analysed through TRPS (qNano
Gold, Izon). (C) Histogram of size distribution values of minimum, maximum, mean and mode values
of the analysed nanoparticles (n = 2000).

To further characterize the morphological and biochemical features of M-NVs, they were compared
to exosomes isolated from the same growing T98G cells. Differences in particles concentrations
(M-NVs = 2.7 × 1010 particles/mL; exosomes = 6.8 × 1011 particles/mL) as well as in size distribution are
reported, while z-charge values were roughly similar (M-NVs: z = −21.4 mV; exosomes: z = −20.7 mV)
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(Figure 2). Notably, TEM analysis highlighted for M-NVs a reduction of detectable intravesicular
content, in contrast to exosomes particles.

Cells 2020, 9, x FOR PEER REVIEW 6 of 18 

 

To further characterize the morphological and biochemical features of M-NVs, they were 
compared to exosomes isolated from the same growing T98G cells. Differences in particles 
concentrations (M-NVs = 2.7 × 1010 particles/mL; exosomes = 6.8 × 1011 particles/mL) as well as in size 
distribution are reported, while z-charge values were roughly similar (M-NVs: z = −21.4 mV; 
exosomes: z = −20.7 mV) (Figure 2). Notably, TEM analysis highlighted for M-NVs a reduction of 
detectable intravesicular content, in contrast to exosomes particles. 

 
Figure 2. TEM ultrastructural analysis (A,B), size and concentration (C,D) and z-charge (E,F) 
comparison between membranes reassembling mimetic nanovesicles (M-NVs) and exosomes both 
isolated form T98G cells, determined through TRPS analysis (qNano Gold, Izon). 

  

Figure 2. TEM ultrastructural analysis (A,B), size and concentration (C,D) and z-charge (E,F) comparison
between membranes reassembling mimetic nanovesicles (M-NVs) and exosomes both isolated form
T98G cells, determined through TRPS analysis (qNano Gold, Izon).

To confirm ultrastructure intravesicular differences, total RNA was extracted and quantified
from M-NVs and exosomes, both consisting of 2 × 1010 particles, derived from T98G cells.
Fluorimetric analysis by Qubit RNA high sensitive kit (Thermofisher) revealed a low out of range
signal for M-NVs, while 2 ng of total RNA was obtained from the exosomes sample.
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To characterize some molecular features of the investigated particles, exosomes and
membrane-generated particles isolated from T98G cells, after quantification by qNano Gold instrument
(~2 × 107 total particles) and purification, were separately incubated with an anti-CD63 Alexa Fluor
633 conjugated antibody. Particles were then further columns purified (as described in 2.3 of the
Methods) and analysed by ImageStreamX MarkII flow cytometry. As reported in Figure 3, CD63 +

most enriched fractions were R1 (23.5%) and R2 (45.1%) gates, respectively, for exosomes and M-NVs.
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Figure 3. CD63 expression in R1 and R2 sub-populations from T98G exosomes (A) and M-NVs (B) by
Amnis ImageStreamX MarkII flow cytometer. Examples of CD63 + and CD63- (Ch.5) EVs (60×) are
reported (C). BF = Brightfield; SSC = scatterplot. A total of 25,000 particles were acquired.

To demonstrate the biological functionality of the membranes-generated particles, i.e.,
the possibility to be efficiently internalized into growing cells, plasma membranes isolated from
T98G cells, purified as described in the Methods, were stained with the PHK26 dye. After incubation,
red fluorescent generated M-NVs were columns purified and analysed by ImageStreamX MarkII flow
cytometry. As documented in Figure 4A, the scatterplot intensity graph highlighted again two main
particles size-related sub-populations (i.e., R3 and R4), likely associated with exosomes and higher
nanoscales M-NVs, respectively. Microscope associated analysis (60×magnification) did not reveal
bright-field signals, as expected; differently, R3 and R4 representative particles showed associated
red fluorescent signals (Figure 4A, right panels). Next, PHK26-stained and unstained M-NVs were
separately administered to T98G growing cells; after overnight incubation, cells were fixed, DAPI
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stained and visualized using fluorescence microscopy (100×magnification). As reported, cytoplasmic
fluorescent dots were largely evidenced compared to cells treated with PHK26 unstained M-NVs
(Figure 4B).
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Figure 4. Amnis ImageStreamX MarkII flow cytometry and fluorescence microscope analysis of M-NVs
stained with the red fluorescent PHK26 dye (A). PHK26 decorated M-NVs and unstained M-NVs
were then separately administered to growing T98G cells. Cells were fixed after 24 h, DAPI stained
and visualized under Nikon Eclipse TS100 fluorescence microscope (B) (100×, scale bars = 10 µm).
For cytometry, a total of 25,000 particles were acquired.

To exclude the detected spots derived from unspecific fluorescence, M-NVs (2 × 107 particles)
were isolated as described from T98G RIPA-lysed cells and incubated for 1 h at 37 ◦C with PHK26 dye
(0.5 µL) and finally purified using Exosome Spin columns. In parallel, to test the efficiency of the
chromatographic columns to remove unincorporated dyes, the same amount of PHK26 dye was
firstly introduces into a column. Then, the eluted solution was incubated with M-NVs (2 × 107

particles). Finally, the samples were analysed in flow cytometry (Amnis ImageStreamX MarkII).
As reported in Supplementary Figure S1, unspecific fluorescent signals were largely reduced by
column purification compared to those derived from M-NVs staining and purification (0.3 vs. 45.6%,
respectively). In addition, no intracellular fluorescent evidences were detected after the administration
of PHK26 column-purified sample compared to M-NVs stained one.

To further characterize the kinetics of M-NVs internalization, similarly as above, membranes
isolated from T98G cells, stained with the PHK67 green fluorescent plasma membranes linker, after
removal of excessive misincorporated dyes by size exclusion columns, were administered as ~2 × 107

qNano Gold quantified particles to growing T98G cells and visualized at different time intervals (i.e.,
0.5–1–2–24 h) using inverted fluorescence microscope (40×magnification). Fluorescent M-NVs were
timely and progressively internalized, showing a massive signal evidence after overnight incubation
(Figure 5).
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time intervals (i.e., 0.5–1–2–24 h) visualized by inverted fluorescence microscope (40×magnification).
Scale bar = 10 µm.

To further elucidate into one of the main biophysical feature of extracellular vesicles, i.e.,
the possibility to encapsulate molecules and transfer their modified cargo into recipient cells,
membranes-generated M-NVs from T98G cells, were electroporated with an eukaryotic vector
expressing the exogenous green fluorescent protein (i.e., pEGFP). Then, electroporated M-NVs
were column purified and administered to growing T98G cells and, after 72 h incubation, fixed,
DAPI-stained, and visualized by fluorescence microscopy at 100× magnification. As illustrated,
discrete green cytoplasmic fluorescent signals were detected (Figure 6A). Flow cytometric analysis of
T98G cells after overnight administration of M-NVs electroporated with pEGFP estimated that 94.5%
of the analysed cells displayed fluorescent spots (Figure 6B).
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Figure 6. Fluorescence microscope and flow cytometric examinations of T98G cells after administration
of electroporated membranes-generated vesicles (M-NVs, ~2× 107 particles) with pEGFP vector (0.5 µg).
Cells (~2 × 103) were fixed after 72 h p.t, DAPI stained and visualized by fluorescence microscope (100×
magnification, scale bars = 10 µm) (A). Amnis ImageStreamX MarkII flow cytometry analysis was used
to quantify the uptake efficiency (as percentage of fluorescent cells) of pEGFP electroporated M-NVs
(~2 × 107 particles) into T98G cells (~5 × 106). As a result, R1 single cells subpopulation (n = 5000)
showed a 94.5% of green fluorescent signals (R2). R2 and R3 representative cells were visualized using
40×magnification (B).

To further consider the possibility to spontaneously encapsulate molecules into
membranes-generated nanovesicles, ~2 × 107 T98G-isolated M-NVs were stained, as before, with
PHK67 green dye (0.5 µL) and incubated with of anti-goat Alexa Fluor 633 conjugated secondary
antibody (0.1 µg). M-NVs were then columns purified from excessive fluorescent dyes and visualized
in flow cytometry (Amnis ImageStreamX MarkII). As reported, particles of R3 and R4 scatterplot
populations exhibited 51.7% of fluorescent co-localized yellow signals (Ch.2/Ch.5) (Figure 7).

Next, to evaluate the cargo capabilities of the generated M-NVs in hosting potentially therapeutics
drugs, T98G mimetic M-NVs were incubated with the autoflorescent plant alkaloid Berberine. To this
purpose, M-NVs (~2 × 1010) isolated from T98G cells (~5 × 106) were incubated with 50 µM Berberine
at 37 ◦C for 1 h, columns purified as described and administered at a final concentration of 10 µM to
T98G cells, growing at a 75% confluence in a 75 cm2 flask. After 24 h incubation, cells were trypsinized
and analysed by flow cytometry. As illustrated in Figure 8, the large majority of cells exhibited diffuse
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fluorescent signals compared to untreated cells, as revealed by cytometry (i.e., 87.4%) and fluorescence
microscope analysis.
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Figure 7. Amnis ImageStreamX MarkII flow cytometry analysis of membranes generated vesicles
(M-NVs) stained with green fluorescent PHK67 dye and encapsulated with an Alexa Fluor 633 conjugated
secondary antibody, visualized in Brightfield (BF), Ch.2 and Ch.5 fluorescent channels, respectively at
60×magnification. For cytometry, a total of 15,000 particles were acquired.

Taking advance of the autofluorescence feature of Berberine, a fluorimetric assay was performed to
measure the incorporation of the compound into T98G plasma membranes-generated M-NVs (Figure
S2). Firstly, kinetics curve of the fluorescent emission of Berberine alone (i.e., 0–1–10–100–1000 µM) or
in presence of M-NVs (M-NVs = 2 × 107/mL, in a volume of 30 µL, thus having 6 × 108 total particles,
as quantified using qNano Gold instrument) was calculated. Fluorescence logarithm interpolation of
M-NVs incubated with 1000 µM Berberine (i.e., logF M-NVs = 3.28) determined a fluorescent signal
roughly corresponding of that produced by 10 µM Berberine measurement. Finally, stoichiometric
calculations and the final ratio estimated 2 × 106 encapsulated Berberine molecules per single
M-NV particle.

Then, to compare the effect of direct drugs administration in culture with those mediated by
drugs-loaded M-NVs, again, T98G derived plasma membranes were isolated, quantified by qNano
Gold instrument (~2 × 1010 particles) and incubated with Temozolomide (TMZ) or Givinostat (GVS)
(both at 50 µM). Subsequently, M-NVs were purified as described and administered to three different
astrocytoma established cells, i.e., T98G, U138-MG, and Res259 (each at ~5 × 106 cells into 75 cm2

flasks) The same cells were treated in parallel with a corresponding amount of the investigated drugs.
After 24 h of incubation, cells were trypsinized and their viability was measured by cytofluorimetric
assays (Muse, Cell Count and Viability, Merck). As highlighted in Figure 9, M-NVs loaded with
TMZ/GVS induced similar decreased trends in viability compared to the direct drugs administration
schemes; altogether, the three different astrocytoma-derived cells displayed similar phenotypic behavior.
Similar viability trends were observed in the same experiment after 48 h of incubation (data not shown).
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Figure 8. Amnis ImageStreamX MarkII flow cytometry analysis of T98× cells (R2 gates = 5000 single
cells each) after administration of plasma membranes generated nanovesicles (M-NVs) (A) or with
Berberine (BBR) encapsulated M-NVs, visualized in Brightfield (BF) and Ch.2 fluorescent channels
(40×) (B). The percentage of BBR-positive M-NVs were evaluated by flow cytometry (i.e., 87.4% of
R2 gated cells, C left panel); these M-NVs were then administered overnight to growing T98G cells
and observed using Nikon Eclipse TS100 inverted fluorescent microscope (C, right panel) (40×, scale
bar = 10 µm).
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Figure 9. Cytofluorimetric viability assays in three different human astrocytoma cell lines (i.e., T98G,
U138-MG and Res259) at 24 h after direct administration of mock plasma membranes generated vesicles
(MVs), Temozolomide (TMZ) or Givinostat (GVS) and M-NVs loaded with TMZ or GVS separately
(each 50 µM). Experiments were in triplicates analyzing 5000 cells for each treatment and asterisks
indicate p < 0.05, Anova One-way compared to mock samples.

To deeply investigate the observed TMZ cytotoxic effect, through direct culture administration or
mediated by plasma membranes-generated M-NVs loaded with the drug, T98G cells were analysed
in apoptotic cell death induction. TMZ (50 µM) or M-NVs (~2 × 1010 particles, loaded or not- with
TMZ 50 µM) were added to growing T98G cells (~5 × 106). After 24 h, cells were trypsinized and
analysed for Annexin V expression by flow cytometry (Annexin V, Muse, Luminex). As a result, TMZ
and M-NVs-loaded with TMZ induced a marked increase in early apoptosis events, compared to mock
treated cells (i.e., 42.8% and 40.4%, respectively) (Figure 10), thus producing a significant increase in
apoptotic induction. Similar apoptotic profiles were observed in the same experiment after 48 h of
incubation (data not shown).
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Figure 10. Flow cytometry analysis of apoptotic induction. (A) Annexin V expression in T98G cells
after 24-h administration of mock membranes-derived vesicles (M-NVs), Temozolomide (TMZ 50 µM)
and M-NVs encapsulated with equal TMZ concentration (L = live; D = dead; EA = early apoptotic;
LA = late apoptotic cells percentages). Microscope contrast phase images (magnifications, 10× and 40×,
scale bars = 10 µm). (B) Summary histogram of apoptosis vs. live percentages according to Annexin V
assay. Experiments were in triplicates analyzing 5000 cells for each treatment and asterisks indicate
p < 0.05 Anova One-way compared to mock M-NVs samples.

4. Discussion

One of the main technological challenge for the clinical employment of anticancer drugs is to
establish a suitable methodology for the specific targeting of the therapeutic molecules to their final
cellular destination. Improvement in pharmacokinetics of these drugs are therefore long overdue,
and for this reason, biophysical and biochemical properties of EVs have been deeply studied to establish
novel treatment horizons [26].

Alternative strategies for EVs isolation have been reported, and focused on different features
such as density, size, morphology, and on the differential expression of surface markers and receptors.
To this purpose, ultracentrifugation protocols, the addition of coating precipitating polymers, size
exclusion chromatography, and the employment of specific magnetic beads expressing anchor peptides
have been extensively documented [41–43]. Since EVs are cellular released products, their number
depends on the ability to maintain a large cell population in culture. A consequent drawback to
increase EVs production is the needed presence of animal serum for ideal cell culturing conditions.
Indeed, it was reported that fetal bovine serum has a relatively high content of parental animal-derived
EVs [44], thus potentially introducing exogenous EVs impurities. On the other hand, it was reported
that EVs isolated from cell culture media in the absence of serum are enriched in reactive oxygen
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species and stress-related proteins, reflecting stress-induced phenotypic changes as starvation in
cell culture [44]. As already stated, therapeutic systems based on EVs loaded with drugs displayed
crucial benefit compared to other modalities, particularly in avoiding degradation processes of the
therapeutic compounds and in enhancing the ability of drugs-loaded EVs to cross many biological
barriers. Of particular interest is the difficulty in delivering therapeutic compounds into the brain
tissues for the treatment of central nervous system diseases such as glial tumors. In fact, it was reported
that EVs have been shown to cross the blood–brain barrier through the olfactory region as a prerequisite
step that culminates in their internalization into neuronal, microglial, and oligodendrocyte cells [45].

Recently, the use of EVs as therapeutic tools has been associated with the design and development
of mimetic nanovesicles (M-NVs). Indeed, M-NVs require relatively simple isolation procedures with
the potentiality of high yield particles formation and exhibiting similar biophysical and biochemical
features of natural EVs [27]. Importantly, M-NVs can be directly loaded with different molecules
(nucleic acids, peptides, drugs) during their formation processes. After the mechanical or biochemical
fragmentation of the plasma membranes of the parental cells, the therapeutic compounds in the buffer
can be embedded into nanovesicles by the spontaneous reassembly of the plasma lipid membranes.
Notably, this M-NVs packaging process does not affect the parental cell biology [27].

In the present contribution, we described a bench-scaling up affordable method to generate
mimetic drugs-loaded EVs form cell culture platforms. This proof-of-principle development is based
on the cell lysis induced by ionic detergents SDS and sodium deoxycholate as active constituents (i.e.,
RIPA buffer), previously reported as reliable tool for the isolation of EV peptides and proteins [46].
The rationale of our proposed protocol is based on the hypothesis that not all components of native EVs
are crucial for cargo delivery, in particular the intravesicular molecular content [47]. Therefore, from a
structural and biochemical point of view, EVs can be considered as lipid micelles with attached proteins
as suitable templates to develop mimetic EVs [47]. According to our reported results, the fragmentation
of the cell plasma membranes by the incorporation of detergents into the lipids bilayers produced
functional templates able to spontaneously reassembly into novel nanovesicles. This strategy relies
on the principle of self-assembly of lipids and protein membranes into spherical structures with the
contemporary encapsulation of the surrounding molecules into the aqueous cavity of the resulted
nanovesicles [30]. Importantly, RIPA buffer was reported not sufficient to solubilize membrane
proteins and membrane-associated proteins concentrated in lipid rafts. These are highly specialized
microdomains on the lipid bilayers which contain specialized lipids, cholesterol and functional proteins.
These lipid rafts, also referred as “detergent resistant membrane” (DRM), are usually insoluble by mild
detergent buffers such as 1% Triton X-100 and RIPA buffer [48].

As a result, the spontaneously generated nanovesicles showed the expected size morphology
and z-charge values and also displayed by TEM analysis a relatively empty intravesicular content,
a volume suitable for hosting a multitude of exogenous molecules. Furthermore, the efficiency of
cellular uptake demonstrated that the fluorescent dyes decorated mimetic vesicles were functional in
their biochemical stability.

EVs have been widely reported in literature as efficient transporters of different therapeutic
compounds [49]. For example, exosomes loaded with Curcumin, a component of the golden spice
turmeric (Curcuma longa) able to modulate different cell signaling pathways, were obtained by direct
mixing [50], Paclitaxel, a chemotherapic compound largely employed for the treatment of different
cancers, was introduced into EVs through incubation and ultrasonic treatments [51,52]. In contrast,
M-NVs produced by membrane extrusions processes efficiently incorporated the chemotherapic drug
Doxorubicin [53]. In particular, Kalimuthu and collaborators [49] showed that by increasing Paclitaxel
concentration, the size of produced EVs by membrane extrusion increased, thus inducing an increase
in the bioavailability of the EV-incorporated drug inside the target cell. Following this indication,
an excess of autofluorescent Berberine chloride, a bioactive compound extracted from different plants
and reported to inhibit proliferation and promote cytotoxicity towards cancer cells [54], was incubated
with plasma membrane reassembled M-NVs isolated from T98G cells and subjected to RIPA lysis.
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Our flow cytometry and microscope data showed that the produced M-NVs efficiently incorporated
the compound, next internalized into tumor cells. Following the described protocol, the chemotherapic
drug Temozolomide [17] or the pan-histone deacetylase inhibitor Givinostat [39] were separately
added to the forming nanoparticles. The reliability of our approach is further supported by our finding
that astrocytoma cultured cells, upon treatment with our drug-loaded M-NVs, displayed a significant
decrease of cell viability and a concomitant significant increase in apoptotic rate.

In conclusion, we have described a simplified method to generate biological functional mimetic
nanovesicles that might be easily applied to different plasma membrane templates with the possibility to
scale up their synthetic capability. In addition, this procedure does not require any specific pressurization
or sophisticated microfluidic plasma membrane extruding devices to generate mimetic nanoparticles.
Furthermore, the spontaneous encapsulation process might be optimized for specific pathological
treatments, even considering different drug combinations to increase the therapeutic efficacy.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/9/7/1626/s1,
Figure S1: Specificity of M-NVs PHK26 staining. Figure S2: Fluorimetric assay to evaluate the uptake of Berberine
(BBR) into T98G membranes-generated M-NVs.
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