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QSAR study of phenolic 
compounds and their anti‑DPPH 
radical activity by discriminant 
analysis
Ang Lu1,6, Shi‑meng Yuan2,6, Huai Xiao2,4, Da‑song Yang2, Zhi‑qiong Ai1, Qi‑Yan Li3,4, 
Yu Zhao2,4, Zhuang‑zhi Chen5* & Xiu‑mei Wu1,2*

Phenolic compounds (PCs) could be applied to reduce reactive oxygen species (ROS) levels, and are 
used to prevent and treat diseases related to oxidative stress. QSAR study was applied to elucidate 
the relationship between the molecular descriptors and physicochemical properties of polyphenol 
analogues and their DPPH radical scavenging capability, to guide the design and discovery of highly‑
potent antioxidant substances more efficiently. PubMed database was used to collect 99 PCs with 
antioxidant activity, whereas, 105 negative PCs were found in ChEMBL database; their molecular 
descriptors were generated with Python’s Rdkit package. While the molecular descriptors significantly 
related to the antioxidant activity of PCs were filtered by t‑test. The prediction QSAR model was then 
established by discriminant analysis, and the obtained model was verified by the back‑substitution 
and Leave‑One‑Out cross‑validation methods along with heat map. It was revealed that the anti‑
DPPH radical activity of PCs was correlated with the drug‑likeness and molecular fingerprints, 
physicochemical, topological, constitutional and electronic property. The established QSAR model 
could explicitly predict the antioxidant activity of polyphenols, thus were applicable to evaluate the 
potential of candidates as antioxidants.

Oxidative stress (OS) is the imbalance of redox reactions, which leads to the production of reactive oxygen spe-
cies (ROS)1. The accumulation of ROS in the body or cells causes cytotoxic reaction, thus inducing a variety of 
pathological injuries, such as cardiovascular diseases, diabetes, tumors and other chronic  diseases2–6. Therefore, 
it is feasible to initiate disease treatment with antioxidants to reverse this imbalance by reducing ROS  level7. In 
this context, various measures to increase the use of antioxidants have been employed, and source from nature 
has become an important source of research and development of green and safe  antioxidants5.

In recent years, a number of nature antioxidant substances, including crude extracts, bioactive partitions, 
chemical entities, have been discovered from  insects8–12. As a continuous study of medicinal insects, five new 
phenolic compounds (PCs) with DPPH radical scavenging activity were isolated from the medicinal insect Blaps 
rynchopetera (Fairmaire), a local Chinese medicine, and their antioxidant activities were equivalent to vitamin 
 C13. However, difficulties in separation and enrichment of above-mentioned PCs impeded further development of 
these lead  compounds14. The design and synthesis of analogues of PCs from B. rynchopetera, would be a feasible 
alternative to more efficiently and economically prepare antioxidants.

Quantitative structure–activity relationship (QSAR) study is a powerful in-silico method in terms of design 
and discovery of bioactive  compounds15. The presented work herein aimed to establish predictive QSAR model 
of PCs and their antioxidant activity with their 2D-structures and physicochemical properties as potential pre-
dictors. Multiple linear regression and discriminant analysis are mature multivariate statistical methods with 
reported application in the establishment of QSAR  models16–19. Multiple linear regression requires assumptions 
of homoscedasticity and independent errors, which would likely be violated by data derived from different 
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investigations. Although discriminant analysis could not provide the concrete predicted values of antioxidant 
effect, it could determine the probability of compounds’ classification without the requirements of modeling 
assumptions as multiple linear regression  does20,21. Thus, compounds from different sources could be incorpo-
rated together to fit QSAR model. Therefore, discriminant analysis was adopted to establish predictive models 
of PCs’ molecular characteristics and their antioxidant activity for further molecular design for the discovery 
and development of efficient antioxidants.

Data preparation and methods
The strategy of modeling and the selection of molecular descriptors were shown in Scheme 1: (1) Literature 
retrieval and data collection; (2) Filtering and generating molecular descriptors; (3) Model establishment and 
fitting evaluation.

Collection and preparation of compounds. DPPH (Compound 1) radical scavenging assay is a valid 
and widely-accepted method for evaluating molecular antioxidant activities. The antioxidant activity was calcu-
lated by the rate of DPPH scavenging as Formula (1), and the 50% inhibitory concentration  (IC50) or 50% effec-
tive concentration  (EC50) values were regarded as indicator for molecular antioxidant activity.

where  A0 and A are the absorbances in the absence and in the presence of antioxidant, respectively. The absorb-
ance reads for substance could be varied experiment by experiment. Compounds with values of  IC50/EC50 greater 
than 300 μM are hardly worthy for further development, therefore they would not be treated as lead compounds. 
Thus, 300 μM was applied as the cut point to differentiate positive and negative samples.

Phenolic compounds (PCs) were derivatives with hydroxy-containing substitutions on aromatic ring of phenol 
(Compound 2). The key words of DPPH, phenolic compounds, and  IC50/EC50 values were applied for literature 
search in the PubMed database. Meanwhile, phenol was used as the keyword to search for negative samples in 
ChEMBL database.

The overall quality control exclusive criteria for positive samples included the followings: (1) a clear posi-
tive control could not be found in the original literature; (2) the  IC50/EC50 values of the same positive control 
substances from different articles were obviously inconsistent. The exclusive criteria for negative samples were: 
(1) the  IC50/EC50 values were less than 300 μM in the literature; (2) compound’s DPPH scavenging activity was 
described though without generalizable  IC50/EC50 values.

(1)DPPH radical scavenging activity (%) =
(A0 − A)

A0
× 100%

Scheme 1.  The red area is the process of data mining, yellow is the process of filtering molecular descriptor, and 
blue is the process of model fitting evaluation.



3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:7860  | https://doi.org/10.1038/s41598-022-11925-y

www.nature.com/scientificreports/

1 2

Determination of molecular descriptors. The 200 molecular descriptors of well-defined, easy-inter-
pretable, and most-often used in QSAR were generated by applying Python’s Rdkit  package22. These molecular 
descriptors mainly fall into the following categories namely: drug-likeness and molecular fingerprints, physico-
chemical, topological, constitutional and electronic  property23. The semi-constant (more than 80% data with the 
same value) descriptors were excluded to eliminate redundant information and increase power-of-test, conse-
quently, a total of 122 descriptors were retained for later QSAR modeling.

QSAR model development. The performance of the obtained models mainly depends on their modeling 
descriptors. The model developed with improper descriptors would lead to either over-fitting or predict weakly 
and would be  useless23. The t-test was then used to initially filter molecular descriptors that were less relevant 
with antioxidant activity. The primary objective of discriminant analysis was to build QSAR models that could 
predict the antioxidant activity of unknown compounds more reliably and precisely. These two statistical analy-
sis methods were performed in SPSS 25.0, and the significance level was set as 0.05.

Evaluation of model fitting. Two validation techniques along with heat map were applied to assess the 
accuracy and robustness of the established QSAR model. The following analyses were carried out with SPSS 25.0 
and Microsoft® Excel® 2019.

(1) Back-substitution method By comparing the predicted classification of the discriminant function and the 
actual classification, the correct discriminant proportion of the classification function was calculated.

(2) Jackknife (Leave-One-Out cross-validation) (i) Individual sample was sequentially treated as predicative 
subset, and established the discriminant function with the remaining N-1 samples as training subset; (ii) 
Judging the correctness of predictive classification of predicative subset; (iii) Repeat the above two steps N 
times; (iv) Generating the correct classification proportion.

The error discriminant proportion (Formula (2)) of 10% or 20% was most often used as the standard to evalu-
ate the established model, that is, those error discriminant proportion in validation check less than the standard 
suggestion satisfactory established  model20. Furthermore, Kappa consistency coefficients (Formula (3)) were 
employed to evaluate the stability of the model.

where, PN is the number of predicted negative samples, and AP is the number of actual positive samples.

where,  P0 is observed coincidence rate, and  Pe is chance coincidence rate.
(3) The performance of established discriminant models on the randomly selected samples consisted each of 

10 positive and 10 negative samples respectively were visually presented by heat map.

Results
Structural molecular data. In total 140 PCs with unambiguous DPPH radical scavenging activity were 
collected from PubMed database, after sifting through chemicals and rearranging duplicated labels for com-
pounds with the same structure, 99 PCs were eventually included. Meanwhile, keeping phenol as the search 
keyword, negative samples in ChEMBL database, with a total of 8721 compounds were presented. To make 
the sample size of negative subset comparable to positive one, after sifting through the first 1200 pieces of data 
through exclusion criteria, 105 PCs were finally selected as negative subset (Scheme 1). The chemical structures, 
 IC50 values and literature source of 99 positive samples, whereas the chemical structures of 105 negative PCs 
were available in the supplemental document.

Initially filtered arguments. The t-test was performed to opt 87 molecular descriptors significantly related 
to the antioxidant activity of PCs (P < 0.05) (Table 1). Among them, 4 molecular descriptors belonged to drug-

(2)Error discriminant proportion =
PN

AP
× 100%

(3)Kappa consisitency coefficient =
P0 − Pe

1− Pe
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likeness and molecular fingerprints, whereas 35, 5, 13 and 30 molecular descriptors belonged to physicochemical 
property, electronic property, topological property, and constitutional property, respectively.

Establishment of QSAR model. Discriminant analysis was applied to establish QSAR model by incor-
porating above-mentioned 87 molecular descriptors. Estate_VSA2 and FractionCSP3 were first two included in 
Model 1 and 2 (Step 1 and 2 in stepwise discriminant analysis), but removed from final model (Final model was 
obtained in 20th step.). The 16 descriptors included in the final model (P < 0.001) were listed in Table 2 with the 
sequency of inclusion of model fitting.

Combined Tables 1 and 2, it could be found that in the final QSAR model, the molecular descriptor of 
drug-likeness and molecular fingerprints included qed  (X1), FpDensityMorgan2  (X3), FpDensityMorgan3  (X4) 
and FpDensityMorgan1  (X5); those of physicochemical property contained Kappa2  (X7), PEOE_VSA6  (X8), 
SMR_VSA4  (X9) and SlogP_VSA5  (X10); those of topological property comprised of MinAbsEStateIndex  (X6) 
and VSA_EState9  (X11); those of constitutional property consisted of NOCount  (X12), fr_C_O_noCOO  (X13), 
fr_allylic_oxid  (X14), fr_aryl_methyl  (X15) and fr_ester  (X16); and the electronic property was represented by 
MinAbsPartialCharge  (X2). The classification discriminant functions  (DF1,  DF2) were therefore generated based 
on estimation of corresponding β values (Table 2).

P
(

y = 1|x
)

= (−88.150)+ 47.691× X1 + 19.218× X2

+ (−67.637)× X3 + 14.345× X4 + 151.179× X5

+ 23.987× X6 + 0.353× X7 + 0.416× X8 + (−0.458)× X9 + (−0.481)× X10

+ 2.353× X11 + (−9.660)× X12 + (−10.962)× X13 + (−2.070)× X14

+ 2.719× X15 + (−7.376)× X16 (DF1)

Table 1.  Results of filtering molecular descriptors by t-test. All the P values were less than 0.05. a The types of 
molecular descriptors: “DF” denotes drug-likeness and molecular fingerprints “P” denotes physicochemical 
property, “T” denotes topological property, “C” denotes constitutional property, “E” denotes electronic 
property.

Descriptors t Typea Descriptors t Typea Descriptors t Typea

qed − 10.570 DF PEOE_VSA14 4.316 P HeavyAtomCount 4.415 C

MinAbsPartialCharge 8.807 E PEOE_VSA2 6.152 P NHOHCount 6.640 C

FpDensityMorgan2 − 4.704 DF PEOE_VSA3 2.684 P NOCount 6.429 C

FpDensityMorgan3 − 4.755 DF PEOE_VSA6 − 6.030 P NumAromaticCarbocycles 4.053 C

FpDensityMorgan1 − 4.376 DF PEOE_VSA8 2.058 P NumAromaticRings 3.794 C

HeavyAtomMolWt 4.695 P PEOE_VSA9 2.629 P NumHAcceptors 6.024 C

MaxAbsEStateIndex 6.917 T SMR_VSA1 7.549 P NumHDonors 7.201 C

MaxAbsPartialCharge − 7.485 E SMR_VSA10 5.525 P NumHeteroatoms 6.315 C

MaxEStateIndex 6.917 T SMR_VSA3 − 4.382 P NumSaturatedHeterocycles − 2.706 C

MinPartialCharge 7.485 E SMR_VSA4 − 2.525 P NumSaturatedRings − 2.230 C

ExactMolWt 4.331 P SMR_VSA5 − 2.577 P MolMR 2.875 P

MolWt 4.330 P SMR_VSA6 − 5.399 P fr_Al_COO 3.677 C

NumValenceElectrons 3.988 E SMR_VSA9 9.010 P fr_Ar_OH 10.104 C

MinEStateIndex − 7.975 T SlogP_VSA11 8.878 P fr_COO 3.849 C

MinAbsEStateIndex − 10.317 T SlogP_VSA2 2.459 P fr_COO2 3.849 C

MaxPartialCharge 8.807 E SlogP_VSA3 2.541 P fr_C_O 8.317 C

BertzCT 6.238 C SlogP_VSA5 − 2.360 P fr_C_O_noCOO 7.579 C

Chi0 4.749 P SlogP_VSA8 4.451 P fr_NH0 − 5.262 C

Chi0n 2.881 P TPSA 7.602 P fr_Ndealkylation2 − 4.482 C

Chi0v 2.792 P EState_VSA1 3.270 T fr_aldehyde 3.849 C

Chi1 4.148 P EState_VSA10 6.841 T fr_allylic_oxid 4.613 C

HallKierAlpha − 9.187 P EState_VSA2 12.192 T fr_aryl_methyl − 2.603 C

Kappa1 3.852 P EState_VSA3 3.701 T fr_benzene 4.053 C

Kappa2 2.233 P EState_VSA4 − 5.536 T fr_bicyclic 2.508 C

Kappa3 2.431 P EState_VSA7 − 2.701 T fr_ester 2.899 C

LabuteASA 3.827 P EState_VSA8 − 6.401 T fr_ether 2.749 C

PEOE_VSA1 5.858 P EState_VSA9 4.202 T fr_phenol 10.104 C

PEOE_VSA11 9.775 P VSA_EState9 6.962 T fr_phenol_noOrthoHbond 9.761 C

PEOE_VSA12 3.818 P FractionCSP3 − 8.698 C fr_piperdine − 3.833 C
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where, y = 1 means the belongingness of positive subset, y = 2 means the belongingness of negative subset.

P
(

y = 2|x
)

= (−112.807)+ 62.455× X1 + (−52.885)× X2 + (−112.116)× X3

+ 30.362× X4 + 200.918× X5 + 43.389× X6 + 2.401× X7

+ 0.820× X8 + (−0.078)× X9 + (−0.614)× X10 + 1.871× X11

+ (−5.499)× X12 + (−14.661)× X13

+ (−3.966)× X14 + 3.980× X15 + (−0.809)× X16 (DF2)

Table 2.  Results of discriminant analysis.

Independent Variable Molecular descriptors Lambda P
Coefficients of positive 
samples

Coefficients of negative 
samples

X1 qed 0.408  < 0.001 47.691 62.455

X2 MinAbsPartialCharge 0.337  < 0.001 19.218 − 52.885

X3 FpDensityMorgan2 0.177  < 0.001 − 67.637 − 112.116

X4 FpDensityMorgan3 0.172  < 0.001 14.345 30.362

X5 FpDensityMorgan1 0.239  < 0.001 151.179 200.918

X6 MinAbsEStateIndex 0.337  < 0.001 23.987 43.389

X7 Kappa2 0.303  < 0.001 0.353 2.401

X8 PEOE_VSA6 0.229  < 0.001 0.416 0.820

X9 SMR_VSA4 0.258  < 0.001 − 0.458 − 0.078

X10 SlogP_VSA5 0.182  < 0.001 − 0.481 − 0.614

X11 VSA_EState9 0.196  < 0.001 2.353 1.871

X12 NOCount 0.211  < 0.001 − 9.660 − 5.499

X13 fr_C_O_noCOO 0.248  < 0.001 − 10.962 − 14.661

X14 fr_allylic_oxid 0.380  < 0.001 − 2.070 − 3.966

X15 fr_aryl_methyl 0.167  < 0.001 2.719 3.980

X16 fr_ester 0.275  < 0.001 − 7.376 -0.809

Figure 1.  Relationship between antioxidant activity and molecular descriptors of PCs.

Table 3.  Classification results of back-substitution method. . McNemar’s test: P = 0.250.

Predicted group membership

Actual classification

TotalPositive samples (%) Negative sample (%)

Positive samples 96 (96.97%) 0 (0%) 96

Negative sample 3 (3.03%) 105 (100.00%) 108

Total 99 105 204



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:7860  | https://doi.org/10.1038/s41598-022-11925-y

www.nature.com/scientificreports/

In addition, Fig. 1 illustrated the correlation between molecular descriptors and DPPH radical scavenging 
activity of phenolic compounds. It was revealed that the antioxidant activity of PCs against DPPH was related to 
all types of molecular descriptors including drug-likeness and molecular fingerprints, physicochemical, topologi-
cal, constitutional and electronic property.

Evaluation of model fitting. As shown in Table 3, the classification results of back-substitution method 
were as following: 99 cases were positive samples, and 96 cases were determined as positive subset, with the 
correct discrimination proportion of 96.97%; As for the negative subset, all of the 105 chemical identities were 
determined negative, with the correct discrimination proportion of 100.00%. Furthermore, the Kappa consist-
ency coefficient of 0.971 suggested high consistence between the predictive classification and actual classifica-
tion. Jackknife cross-validation was employed to further evaluate the stability of the discriminant functions. 
The correct discriminant proportions were 95.96% and 99.05% for positive and negative samples, respectively 
(Table 4). The Kappa consistency coefficient calculated based on jackknife results was 0.951.

The results of both validation methods supported the accuracy and robustness of the obtained QSAR model. 
The heat map further visually validated the established QSAR model. As shown in Fig. 2, the color of the first 
and third molecular descriptors of the positive samples basically tend to be green, while the color of the negative 
samples tend to be red. The color of the two kinds of samples was opposite to the former on the fourth and fifth 
kinds of descriptors. Whereas the second kind of descriptor could distinguish the two kinds of samples effectively.

Table 4.  Classification results of jackknife cross-validation method. McNemar’s test: P = 0.375.

Predicted group membership

Actual classification

TotalPositive samples (%) Negative sample (%)

Positive samples 95 (95.96%) 1 (0.95%) 96

Negative sample 4 (4.04%) 104 (99.05%) 108

Total 99 105 204

Figure 2.  Heat map of the molecular descriptors matrix.
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Discussion
Positive samples were composed of PCs with definite DPPH radical scavenging activity, so it was easier to col-
lect chemical structures with specific  IC50/EC50 values in PubMed database. However, it was not applicable to 
search PCs without anti-DPPH radical activity. Therefore, the strategy of data mining to establish training sets 
was designed as the positive samples searched in PubMed database and negative samples collected in ChEMBL 
database.

In addition to that the assumption of homoscedasticity and uncorrelated residuals might be violated in posi-
tive subset, the negative subset could not be included in modeling fitting of multiple linear regression due to 
the lack of concrete  IC50/EC50 values. Therefore, stepwise linear discriminant analysis was employed to establish 
more robust QSAR model. In the point of view of drug discovery and development, the potential of molecular 
druggability demonstrated by positive bioactivity is more important than predicting their  IC50/EC50 values.

According to the molecular descriptors in the final model, each single type of chemical descriptors was 
indispensable to predict the DPPH scavenging activity of PCs, since at least one descriptor was included for 
corresponding type. The application of bond dissociation energy (BDE) on the antioxidant of compounds based 
on Gaussian methods was extensively  reported25–27. However, inconsistent results might be found for the same 
compound when using different algorithm, which impeded the generalization of BDE in terms of the molecular 
antioxidant prediction. In addition, we had attempted to establish QSAR models with the physicochemical 
properties and/or electronic properties of studied compounds as independent variables, but failed in obtaining 
a robust and reliable model. The success of drug development not only depend on molecular bioactivity. The 
toxicity and pharmacokinetics of the hits also play important role and should be  considered24. The drug-likeness 
and molecular fingerprints could well reflect certain similarities of drug in constitutional and physicochemi-
cal properties of related to compounds’ absorption, distribution, metabolism, excretion or toxicity (ADMET) 
properties. Compared to other bioactivity prediction model with single independent variable like BDE and our 
previous modeling experiments, it could be reasonably projected that establishment of the discriminant functions 
was based on the RDkit integrated molecular descriptors and possessed more accurate and robust prediction 
since the valuation of molecular bioactivities have been fully explained by the 5 types of chemical descriptors. 
Furthermore, the QSAR model established based on the discriminant function could predict the antioxidant 
activity of compounds relatively effectively, but it could not be judged chemical mechanism of antioxidant of 
individual compound. However, since the included descriptors contain 5 aspects of indicators, therefore, it could 
be reasonably assumed that the phenolic compounds with positive antioxidant activity display their bioactivity 
based on various mechanisms.

The error discriminant proportions found in both back-substitution method (0% and 3.03%, Table 3) and 
Leave-One-Out cross-validation method (4.04% and 0.95%, Table 4) were all less than 10%, hence the goodness 
of fit of the obtained QSAR model was satisfactory. According to the results shown in Table 3, the validity of 
established QSAR model was outstanding with Youden index close to 1 (Sensitivity = 0.9697, Specificity = 1).

Heat map, a vivid visualization method, was employed to qualitatively and objectively reflect the correlation 
between inclusive molecular descriptors and corresponding chemicals. Figure 2 illustrated the adequateness of 
the established QSAR model by manifestly different color patterns between the positive and negative samples.

The presented discriminant equations could provide in silico screening for the DPPH scavenging activity 
of PCs with new structures prior to in vitro and in vivo bioassays, in turn to form more economic and efficient 
drug development protocol. Inevitably, the study results confined the application to DPPH scavenging activity. 
To explore molecular antioxidant activities of other types such as superoxide anion radical scavenging activity 
and ferric ion reducing antioxidant power, it calls for additional investigations based on the same strategy as 
presented.

Conclusions
The DPPH radical scavenging activity of PCs was related with 5 types of chemical descriptors namely drug-
likeness and molecular fingerprints, physicochemical, topological, constitutional and electronic property. 
The reported model could serve as templates of QSAR for various parent nuclear compounds with different 
bioactivities.

Data availability
All data generated or analysed during this study are included in this published article [and its supplementary 
information files].
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