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Abstract

Cholesterol is essential for normal brain function and development. Genetic disruptions of sterol 

biosynthesis result in intellectual and developmental disabilities. Developing neurons synthesize 

their own cholesterol, and disruption of this process can occur by both genetic and chemical 

mechanisms. Many commonly prescribed medications interfere with sterol biosynthesis, including 

haloperidol, aripiprazole, cariprazine, fluoxetine, trazodone and amiodarone. When used during 

pregnancy, these compounds might have detrimental effects on the developing brain of the 

offspring. In particular, inhibition of dehydrocholesterol-reductase 7 (DHCR7), the last enzyme 

in the biosynthesis pathway, results in accumulation of the immediate cholesterol precursor, 

7-dehydrocholesterol (7-DHC). 7-DHC is highly unstable, giving rise to toxic oxysterols; this 

is particularly pronounced in a mouse model when both the mother and the offspring carry the 

Dhcr7+/− genotype. Studies of human dermal fibroblasts from individuals who carry DCHR7+/− 

single allele mutations suggest that the same gene*medication interaction also occurs in humans. 

The public health relevance of these findings is high, as DHCR7-inhibitors can be considered 

teratogens, and are commonly used by pregnant women. In addition, sterol biosynthesis inhibiting 

medications should be used with caution in individuals with mutations in sterol biosynthesis 

genes. In an age of precision medicine, further research in this area could open opportunities to 

improve patient and fetal/infant safety by tailoring medication prescriptions according to patient 

genotype and life stage.
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Cholesterol and the brain

Cholesterol is indispensable for all mammalian cells (1). In particular, the brain requires 

an abundance of this lipid. Although the human brain only accounts for about 2% of total 

body weight, it contains as much as 25% of cholesterol and cholesterol derivatives (2, 3). As 

the blood-brain-barrier (BBB) prevents cholesterol from entering the central nervous system 

(4) from the rest of body, the brain fully relies on its own cholesterol biosynthesis. The 

developing brain starts synthesizing its own cholesterol during embryonic development (5, 

6). All cholesterol in the brain is unesterified (7). Eighty percent of cholesterol is found in 

the myelin sheaths (8) (oligodendrocytes) and plasma membranes of the various brain cells 

(9).

Human brain cholesterol continues to increase from birth (~6 mg/g) until myelination is 

complete in young adults (23 mg/g) (2, 10). The estimate is that in the adult human 

brain cholesterol half-life is approximately 5 years (11). Cholesterol synthesis in the CNS 

exceeds the need for new cholesterol, so the excess is consistently cleared through excretory 

pathways as 24-hydroxycholesterol (24-OH-Chol) (12) at a rate of 6.4 mg/24 h (11, 13). 

While energetically unfavorable, this excess of cholesterol biosynthesis might play an 

important physiological role, and serve a neuroprotective role when CNS insults arise.

While all brain regions contain high amounts of cholesterol, rodent studies suggest that 

there are considerable differences in sterol content (and presumably synthesis) across the 

various brain regions (6, 14, 15). This is likely to be true also in humans, as different brain 

regions have distinct sterol levels, and express different levels of transcripts/proteins of sterol 

biosynthesis encoding enzymes (16). During development, CNS regions with the highest 

levels of sterol include the spinal cord, brainstem, cerebral white mater, and midbrain (17).

The function of cholesterol in the CNS goes beyond being a structural component of 

cellular membranes and lipid rafts: it is required for synapse and dendrite formation, axonal 

guidance, and it serves as a precursor for various biosynthetic pathways (Figure 1) (18). 

While endogenous cholesterol synthesis is essential for brain development, intact cholesterol 

metabolism is also critical for normal functioning of the adult brain (19). In the elderly, 

high brain cholesterol is associated with better memory function, while low cholesterol is 

associated with an increased risk for depression (20, 21). Dysfunction of the cholesterol 

biosynthesis pathways and/or metabolism might contribute to a number of psychiatric and 

neurodegenerative disorders including major depression, bipolar disorder, schizophrenia, 

Huntington’s disease, and Alzheimer’s disease (22–25).
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Cholesterol biosynthesis pathway

Cholesterol is a membrane building molecule that is essential for life. In addition to 

ensuring membrane fluidity and playing a critical role in lipid raft assembly, the sterol 

biosynthesis pathway provides crucial precursors to many cellular processes, including 

steroid hormones and bile acids (26, 27). The formation of cholesterol molecule starts with 

acetate and involves a long sequence of enzymatic reactions coupled with a considerable 

energy investment of 36 ATP and 26 NADPH molecules (28, 29). Cholesterol synthesis 

takes place in the smooth endoplasmic reticulum, and cholesterol is required for efficient 

endoplasmic reticulum-to-Golgi transport of secretory membrane proteins (30, 31). Finally, 

cholesterol plays a critical role in vesicle fusion and motion (32).

The pre-squalene part of the pathway gives rise to farnesyl pyrophosphate, isoprenoids, 

and geranylgeranyl pyrophosphate which are important for anchoring multiple signaling 

proteins (RAS, phosphoinositide 3-kinase, AKT) to the membrane. The last, post-squalene 

phase of cholesterol biosynthesis, staring with lanosterol, is divided into the Bloch and 

Kandutsch-Russell branches (33–35) (Figure 2). This biosynthesis tree also gives rise to 

C4-methylated sterols (known as meiosis-activating sterols) and vitamin D (36).

The excess cholesterol is removed from the brain as 24S-hydroxycholesterol (24OHC) (37). 

24OHC is the end product of cholesterol elimination by the neurons, and this conversion 

is mediated by neuron-specific cholesterol 24-hydroxylase (CYP46A1) (38). CSF from 

patients affected by neurodegenerative diseases show increased levels of 24OHC, including 

mild cognitive impairment and Alzheimer’s disease. In these patients, the CSF concentration 

of 24OHC is correlated with CSF ApoE, cholesterol and Tau, and it appears that 24OHC and 

cholesterol are sensitive biomarkers for evaluation of MCI and AD progression and severity 

(39).

Technological advances in sterol measurements

Sterol biosynthesis assessment was revolutionized by advances in liquid chromatography-

mass spectrometry (LC-MS/MS) technology (17, 35). In particular, about five years ago 

4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) derivatization finally permitted the assessment 

of five post-lanosterol sterols in a 1-minute reaction from fewer than 5,000 cells (40). 

This allowed high-throughput testing of the NIH Clinical Collection of biologically active 

compounds (Molecular Libraries Roadmap Initiative) for their ability to interfere with sterol 

biosynthesis. Assessment of 727 compounds, tested in Neuro2a cells at 1 µM concentration, 

revealed that 37 compounds were DHCR7 inhibitors, 20 chemicals increased desmosterol, 

and 24 compounds elevated lanosterol levels (41, 42). Several of the tested compounds 

inhibited more than one of the sterol synthesis enzymes. Using the same technology and 

methodology, these findings were quickly followed up by screening of an FDA-approved 

drug library (a unique collection of 2697 approved medications) from Selleck Chemicals 

(43). The outcome of these studies was astonishing: of the FDA-approved medications 

showing sterol biosynthesis inhibition, 27 made the list of the 200 most prescribed 

pharmaceuticals in the US. These studies provided a chemical tool set to begin exploring 

the mechanistic involvement of the entire cholesterol biosynthetic pathway in a number 
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of disorders, and set the stage for cataloguing commonly used medications with sterol-

inhibiting side effects.

The latest major breakthrough in sterol measurement is the most recently published 

N,N-dimethylglycine (DMG) derivatization based LS-MS/MS method (44). The DMG-

derivatization, coupled with LC-MS/MS allows unparalleled resolution of previously hard 

to measure sterols, with a capability of separating molecules with almost identical chemical 

properties (e.g. 7-DHD from 8-DHC). This new method also allows simultaneous analysis 

of 14 sterols and 7 oxysterols in a single sample in about 15 minutes using electrospray 

ionization (ESI) method (compared to atmospheric pressure chemical ionization [APCI] 

used in the previous PTAD studies). Further advancements are expected to come from ion-

mobility spectrometry (iMS) technology, which adds ‘just in place’ assessments, allowing 

important sterol measurements in individual brain regions (45, 46).

Neuronal and glial cholesterol biosynthesis

As the brain synthesizes its own sterols, it expresses the genes that are necessary for 

sterol synthesis. The expression of these genes is complex at the subcellular, cellular and 

regional level. For example, hippocampal neurons and midbrain neurons express very high 

levels of multiple sterol synthesis enzymes (including β-Hydroxy β-methylglutaryl-CoA 

[HMG-CoA] and 7-dehydrocholesterol reductase [DHCR7], the first and the last enzymes in 

the pathway) (47). However, until recently neuronal sterol synthesis was considered small 

and irrelevant, as it was believed that the main source of cholesterol for the neurons is 

provided by glial cells in an Apolipoprotein E (APOE) dependent fashion (48, 49). Based 

on recently published findings, we can confidently state that this is not the case during 

development.

In recent studies we and others established that embryonic cortical neurons are a site of an 

active de novo cholesterol synthesis (50). In addition, we found that neurons have higher 

levels of most cholesterol intermediates than astrocytes. Furthermore, 93% and 98% of 

the sterol precursors found in neurons and astrocytes, respectively, were part of the Bloch 

pathway. More specifically, the most abundant sterols in neurons (in order of abundance) 

are cholesterol >> desmosterol >> 7-DHD = zymosterol = zymostenol > all other sterols. In 

astrocytes, a similar profile is observed where the most abundant sterols are cholesterol >> 

desmosterol >> 7-DHD > all other sterols.

Although either the Kandutsch-Russell or Bloch biosynthetic pathways can theoretically 

synthesize cholesterol, our findings show that the two pathways are not equally utilized in 

the developing brain cells. In all cell lines investigated to date (e.g. fibroblasts, Neuro2a 

cells, neurons, astrocytes) cholesterol is the most abundant sterol followed by desmosterol, 

which indicates that all the investigated cell types in the brain and peripheral tissues 

preferentially use the Bloch pathway, where desmosterol is the immediate precursor to 

cholesterol (41, 51). While the 24-dehydrocholesterol reductase (DHCR24) enzyme can 

theoretically reduce the C24 double bond at any stage in the post-squalene synthesis, our 

findings suggest that over 90% of DHCR24 activity serves the conversion of desmosterol 

into cholesterol. The preferential use of the Bloch pathway by developing neurons is 
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confirmed by assessment of de novo synthesis in the presence of 13C6-glucose: the levels 

of 13C-desmosterol (last intermediate in the Bloch pathway) are ~ 60 times higher than 
13C-7-DHC (last intermediate in the Kandutsch-Russell pathway) (50). However, data in the 

literature suggests that the balance of these two pathways is dynamic and may change under 

pathophysiological conditions (52). For instance, detection of novel sterol intermediates in 

a cancer cell line led to the initial discovery of the Kandutsch-Russell pathway (33, 34). To 

date, such data are not available for CNS disorders, and this shift in the balance between 

pathways should be a further topic of investigation.

Developing neurons and astrocytes both synthesize, release and take up cholesterol 

depending on their homeostatic needs under in vitro conditions (50). However, strong 

neuronal cholesterol biosynthesis does not appear to be the result of in vitro conditions. 

Developing neurons express the key cholesterol biosynthesis enzymes HMG-CoA and 

DHCR7 in the mouse brain, and cortical projection neurons synthesize cholesterol during 

their entire lifetime. Furthermore, during the phase of maximal membrane growth and 

greatest cholesterol demand, neuronal cholesterol biosynthesis is indispensable in the mouse 

brain (53).

Our results show that during early postnatal development, the steady-state levels of 

cholesterol are higher in neurons than in astrocytes, coupled with a significantly higher 

amount of cholesterol produced in neurons. While exogenous sterol uptake in neurons 

depends on sterol binding to ApoE, astrocytes can take up free sterols from the extracellular 

milieu (50). This complex interplay between neuronal and astroglial cholesterol trafficking 

suggest that the early developmental control of sterol levels is a tightly regulated 

homeostatic process, where glial cells might act as a “cholesterol sink” or “cholesterol 

source” depending on the developmental needs of neurons. Furthermore, recent studies of 

Berghoff et al. (54) highlighted the critical interplay between microglia and demyelination, 

showing that microglia facilitate repair of demyelinated lesions via post-squalene sterol 

synthesis. Very little is known about oligodendrocyte (55) and microglia (56) sterol 

synthesis or these cells’ possible roles in developmental sterol homeostasis, and this 

promises to be a rewarding research area.

Sterol intermediates and toxic oxysterols

The immediate precursor of cholesterol is 7-DHC, which is converted to cholesterol by 

the DHCR7 enzyme (57). Thus, any disruption of DHCR7 leads to accumulation of the 

precursor, 7-DHC, (57) with yet unexplored effects on intracellular lipid sorting (58). 

Importantly, 7-DHC is the most oxidizable lipid known to date, with a propagation rate 

constant of 2,160 (59). This is an extraordinary 200 times greater propagation rate that 

of cholesterol and 10 times greater that of arachidonic acid. Simply put, 7-DHC is highly 

unstable and spontaneously oxidizes (60, 61). The result is formation of highly reactive 

autoxidation sterols, called 7-DHC derived oxysterols (62, 63). 7-DHC derived oxysterols 

are toxic, affecting cell viability, differentiation and growth (64). Others and we have shown 

that DHCEO, the most stable and best-studied 7-DHC derived oxysterol has a profound 

effect on neuronal morphology, neurite outgrowth and fasciculation (65), potentially through 

Sonic hedgehog signaling (66). At least one study also suggests that elevated 7-DHC alters 
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raft sterol composition and perturbs raft protein content (67), although other studies found 

that cholesterol and 7-DHC possess virtually the same ability to condense and order cellular 

membranes (68).

However, not only 7-DHC derived oxysterols have biological effects. All sterols can 

be modified by enzymatic and non-enzymatic processes through oxidation of the sterol 

backbone and/or oxidation of the side chains (69). Through action of several cytochrome 

P450 enzymes (CYPs), cholesterol itself is modified to give rise to about a dozen oxysterols 

(28, 70). In healthy tissue these oxysterols have complex biological functions: they are 

ligands for LXR and ROR nuclear receptors with roles in regulation of cholesterol 

biosynthesis, and inflammation (71, 72). Notably, some oxysterols are pro-inflammatory 

while others have anti-inflammatory effects. These biological effects are very complex, 

multifaceted, and not understood in sufficient detail. For example, 24SOHC is the main 

mechanism for excretion of excess cholesterol from the brain (73), yet it is also considered 

a positive allosteric modulator of NMDA receptors (74, 75). Furthermore, together with 

24SOHC, 25-epoxycholesterol serves as a ligand for LXRs, and through interaction with 

frizzled (Class F) G protein-coupled receptor smoothened (SMO) activates hedgehog 
signaling (76).

Genetic disruption of cholesterol biosynthesis

A complete absence of cholesterol biosynthesis is incompatible with life. Mutations in 

the pre-squalene steps during normal development are lethal in all eukaryotes due to 

the disruption of critical membrane-based signaling (77). Mutations in the post-squalene 

pathway can be viable if partial cholesterol synthesis is preserved, but give rise to severe 

developmental disorders (26). Mutations in the enzymes serving post-lanosterol biosynthesis 

are associated with Smith-Lemli-Opitz syndrome (SLOS) (mutations in DHCR7) (78), 

desmosterolosis (mutations in DHCR24) (79), chondrodysplasia punctata (mutations in 

EBP) (80), lathosterolosis (mutations in SC5D) (81, 82), and CHILD syndrome (mutations 

in NSDHL) (83) (Figure 2). All of these syndromes affect brain and craniofacial 

development, and lead to intellectual and developmental disabilities.

Smith-Lemli Opitz syndrome (SLOS).

In the human population, SLOS is the most commonly diagnosed genetic disorder of sterol 

biosynthesis, with a frequency of 1:50,000 live births (84). It has a recessive inheritance 

pattern most commonly associated with compound heterozygosity, where different mutant 

alleles are inherited from each parent (85, 86). Biochemically it is characterized by highly 

elevated 7-DHC and oxysterol levels, reduced cholesterol, and decreased desmosterol (87–

91). The phenotype of these patients is complex, and it depends on the amount of residual 

cholesterol biosynthesis (88, 92–95). Brain magnetic resonance imaging findings in SLOS 

point to myelination deficits, and found significant correlations between MRI findings 

with sterol levels and somatic malformations (96). Clinical manifestations can include 

craniofacial dysmorphic features, and 50–70% of patients meet the diagnostic features 

for autism spectrum disorders (97). Treatment of these patients is mainly symptomatic, 

as dietary cholesterol supplementation does not appear to improve brain function (98–
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100). It is important to point out that reduced cholesterol biosynthesis is only part of the 

pathophysiology of SLOS – it is likely that the toxic levels of 7-DHC and 7-DHC-dervied 

oxysterols play a critical part in the disrupted development that lead to the SLOS phenotype 

(101–103).

DHCR7 heterozygosity.

The carrier frequency (the proportion of individuals with one copy of a known SLOS-

inducing DHCR7 mutation) is approximately 3% among persons of European ancestry 

(84, 104). At this time, over 200 mutations have been described in the DHCR7 gene 

(105). Humans with single allele DHCR7 mutations appear to be healthy, without a distinct 

phenotype. However, human dermal fibroblasts with a single mutant allele in the DHCR7 
gene have elevated 7-DHC levels (51, 106). In addition, mouse studies suggest that even 

a single mutant allele might modulate biochemistry and behavior (107, 108). In addition 

to elevated 7-DHC levels these mice displayed a mild behavioral phenotype, including 

social dominance changes and differential response to a pharmacological challenge with a 

5-HT2a agonist, 1-(2,5-dimethoxy-4-iodophenyl)-2-amionopropane. This raises the question 

whether single-allele human DHCR7 mutation carriers might be more vulnerable to certain 

life circumstances that expose them to additional interference with sterol biosynthesis, or to 

oxidative stress (see below).

Chemical modulation of cholesterol biosynthesis

Hall et al. made a critical observation of cholesterol biosynthesis interference by 

medications, noting that some patients who used aripiprazole and trazodone were 

misidentified as SLOS patients based on their blood 7-DHC levels (109). Following up 

on these observations, over the last seven years we validated that haloperidol, aripiprazole, 

trazodone, and cariprazine are all strong inhibitors of sterol biosynthesis, and that they 

have profound biochemical effects on the fetal brain in rodent models (110–113). It is also 

important to point out that the above-mentioned compounds appears to inhibit directly the 

DHCR7 enzyme, as it occurs in the cell systems without the receptors targeted by the drugs.

Furthermore, our high-throughput screening data in cell culture systems revealed that 

many commonly used medications are sterol biosynthesis inhibitors (41–43, 114). 

Based on these data and literature review we estimate that the combined volume of 

sterol inhibiting medications, in the US alone, exceeded 300 million prescriptions in 

2017. Commonly used medications that inhibited sterol biosynthesis in our screenings 

include haloperidol, aripiprazole, cariprazine, trazodone, amitriptyline, bupropion, sertraline, 

buspirone, risperidone, nortriptyline, fluoxetine, doxepin, metoprolol, nebivolol, atenolol, 

propranolol, hydralazine, and hydroxyzine. Importantly, many of these medications are 

prescribed to pregnant women, cross the placenta, and reach the brain of the developing 

child – with mostly unknown long-term outcomes in the maternally exposed offspring. 

Most of these drugs carry an FDA warning, stating that “Animal reproduction studies have 
shown an adverse effect on the fetus and there are no adequate and well-controlled studies 
in humans, but potential benefits may warrant use of the drug in pregnant women despite 
potential risks.”
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Interaction of genetic and chemical inhibition

As described above, both genetic mutations and medication use can inhibit DHCR7 

function, resulting in 7-DHC elevation and toxic oxysterol production. This raised the 

question of whether genetic and environmental factors can interact, especially during 

development (Figure 3). To test this, we assessed the roles of medication, maternal Dhcr7 
genotype, offspring Dhcr7 genotype, and their interaction (110, 111). Our work focused on 

three commonly prescribed medications: aripiprazole, trazodone and cariprazine. We used 

cultured mouse cortical neurons and astrocytes, Dchr7+/− transgenic mouse models, and 

human dermal fibroblasts from individuals with single allele DHCR7 mutations (parents of 

children with SLOS) (51). Furthermore, we validated our findings in patients taking these 

medications (111, 112).

Cortical neurons and astrocytes.

In the latest study using DMG-derivatized LC-MS-MS ESI we examined the effects of three 

antipsychotics (haloperidol, aripiprazole, and cariprazine), two antidepressants (trazodone 

and sertraline), and an anti-arrhythmic (amiodarone) on sterol synthesis of developing 

cortical neurons and astrocytes (44). The method allowed us to simultaneously assess 14 

sterols and 7 oxysterols in a single sample run. Both neurons and astrocytes showed altered 

sterol composition in response to exposure to all six investigated drugs. ARI, HAL, TRZ and 

CAR strongly increased 7-DHC, coupled with reductions in desmosterol levels in both cell 

types.

The medications we tested are likely to affect all sterol-synthesizing cells in the brain, 

and perhaps the whole body. However, the physiological relevance of the different patterns 

of sterol biosynthesis inhibition by the various medications is currently unknown. The 

possibility of multi-system 7-DHC/oxysterol toxicity is consistent with the complex, 

characteristic dysmorphology phenotype seen in patients with SLOS.

Maternal drug exposure model.

We tested if medications given to pregnant mice affect cholesterol biosynthesis in 

developing brain of WT and Dhcr7+/− embryos. Embryos were maternally exposed to 

aripiprazole, cariprazine, trazodone or vehicle from E12 to E19 (110, 111, 113). This 

exposure time was chosen based on developmental closure of blood-brain-barrier, and 

allowed us to examine endogenous brain sterol synthesis. Levels of cholesterol, its 

precursors, medications and their metabolites were measured in the brain of pups at birth. 

We found that all three medications and their metabolites reached the brain of fetuses and 

inhibited the DHCR7 enzyme in the brain of all embryos, regardless of maternal or offspring 

Dhcr7 genotypes. These medications increased 7-DHC levels in WT pups to levels higher 

than those observed in Dhcr7+/− pups under vehicle-treated conditions, suggesting that the 

DHCR7 inhibiting drug effect is stronger than the Dhcr7+/− heterozygosity effect. Finally, 

we observed a summation between the genetic inhibition and chemical inhibition on 7-DHC 

levels, suggesting that Dhcr7+/− pups from Dhcr7+/− mothers are the most vulnerable to 

chemical DHCR7 inhibitors.
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In summary, maternally administered aripiprazole, cariprazine and trazodone all inhibited 

DHCR7 activity, increased 7-DHC, elevated resulting oxysterols, and decreased desmosterol 

in the exposed pups’ brains. Due to its long half-life, detectable levels of CAR, and a 

corresponding elevation in 7-DHC levels were observed in the brain of newborn pups up to 

14 days after drug exposure (111). Furthermore, three-way ANOVA analyses revealed that 

maternal Dhcr7+/− genotype significantly contributed to the observed 7-DHC elevation for 

CAR and ARI, but the TRZ-driven changes appeared to be driven only by drug exposure and 

pup Dhcr7+/− genotype.

The magnitude of the 7-DHC elevation we observed as result of drug treatment is quite 

remarkable (Figure 4). Namely, CAR-induced 7-DHC levels and the increased DHCEO 

levels detected in Dhcr7+/− pups are in the range of that seen in SLOS mouse models. It is 

also noteworthy that actual cholesterol changes we observed were always much milder than 

the changes in the sterol precursor profiles, suggesting that alterations in cholesterol levels 

are perhaps not the best readouts of disrupted sterol biosynthesis. As cholesterol is a very 

stable molecule with a long half-life (five years in the human brain), precursor/cholesterol 
ratios and oxysterol assessments might be much better indicators of the state of sterol 

biosynthesis in patients.

Human dermal fibroblast model.

Mouse sterol biosynthesis closely mimics human sterol biosynthesis, thus we hypothesized 

that our findings are very likely to be translatable to the human population. To test 

the relevance for human pathophysiology, we also performed several investigations on 

DCHR7+/+ and DCHR7+/− human dermal fibroblasts (51). To ensure that the DHCR7+/− 

mutations were representative of the carriers in the human population, we used biomaterial 

donated from parents of SLOS patients. Six matched pairs of fibroblast cultures were treated 

with ARI and TRZ, and their sterol profile was analyzed by LC-MS-MS. Upon treatment 

with ARI and TRZ, both DHCR7+/− and DHCR7+/− fibroblasts increased their baseline 

7-DHC levels by 10- to 60-fold (Figure 5). Notably, the total accumulation of 7-DHC was 

the highest in drug-treated DHCR7+/− cells. Repeating the same set of experiments in the 

presence of 13C-lanosterol revealed that ARI and TRZ strongly inhibited de novo sterol 

biosynthesis. The results suggest that DHCR7 mutation carriers have increased vulnerability 

to both ARI and TRZ exposure, and perhaps many other commonly used medications. 

Thus, this segment 1–4% of the population may be more likely to sustain deleterious health 

consequences when exposed to medications that increase levels of 7-DHC.

Human biobank findings.

To further investigate the human relevance of our findings, we assessed the blood 

levels of five sterols from patients who received psychotropic medications (112). We 

examined cholesterol, desmosterol, lanosterol, 7DHC and 8DHC levels in blood samples 

of 123 psychiatric patients on various antipsychotic and antidepressant drugs, and 85 

healthy controls. Three drugs, aripiprazole, haloperidol and trazodone were associated 

with increased circulating 7DHC and 8DHC levels, while five other drugs, clozapine, 

escitalopram/citalopram, lamotrigine, olanzapine, and risperidone, were not. In separate 

biobank sample studies, we found that 7-DHC levels were also higher in patients with 
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detectable levels of CAR and TRZ in their blood (111, 113). While these findings are 

only minimally informative about the sterol synthesis events in the brain (as brain and 

body sterol synthesis are distinct and separated by the blood-brain barrier), they lead us to 

the conclusion that drugs can possess sterol-inhibiting function both in the brain and the 

body. The long-term consequences of developmental sterol inhibition by medications remain 

unknown.

Public health considerations

Population studies have suggested that DHCR7 inhibitors act as teratogens for a developing 

child. A 2016 review by Boland and Tatonetti demonstrated that first-trimester exposure to 

DHCR7 inhibiting medications results in outcomes similar to those of known teratogens, 

and that DHCR7 activity should be considered during drug development and prenatal 

toxicity assessment (105). As a result, in the age of personalized/precision medicine, the 

implications of the current findings are quite significant.

First, heterozygous DHCR7 mutation carriers in the human population are quite frequent, 

and range from 1–4% depending on ethnicity and geographic region (84, 104). Emerging 

data suggest they are more vulnerable to side effects of treatment with sterol inhibitors.

Second, SLOS patients are often treated with psychotropic medications. The precise choice 

of medication should be an important consideration, as sterol biosynthesis inhibiting 

medications (such as aripiprazole, cariprazine, trazodone) might further exacerbate the 

already high 7-DHC levels in these patients.

Third, polypharmacy in the US is extremely high. An average person at age of 50 takes 

2.5 prescription medications (115). Many sterol biosynthesis inhibiting medications are 

highly prescribed (we estimate >300 million prescriptions/year in the US), and often taken 

simultaneously. The summation of these effects are unknown, but it would be reasonable to 

expect that that simultaneously prescribed drugs in this category likely have additive effects.

Fourth, it appears that the effects of 7-DHC elevation are most pronounced in the developing 

brain. Yet, pregnant women frequently use medications that inhibit sterol biosynthesis (116–

120). The long-term consequences of such drug use in the human population are not known, 

especially when the mother and/or unborn child are both single-allele DHCR7+/− mutation 

carriers. For this population, sterol biosynthesis inhibiting medications should be replaced 

by other drugs with similar activity that do not give rise to such side effects.

Finally, we need to educate the public and prescribing physicians that sterol-inhibiting side 

effect of frequently used medications are quite common, and that they represent a potential 

harm for the brain of offspring.

Further studies

The literature data reveals that our knowledge of sterol biosynthesis and its homeostatic 

mechanisms in the brain are greatly understudied.
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We can only partially predict which chemical structures (and new medications) will incur 

side effects of sterol biosynthesis inhibition. We know that medications containing the 

2,3-dichlorophenylpiperazine ring (like aripiprazole and cariprazine) are likely to be sterol 

biosynthesis inhibitors. However, many other medications elevate 7-DHC, but do not share 

an apparent chemical structure.

To date, we have no validated and approved medications that would decrease 7-DHC 

and oxysterol levels. While our HTS studies revealed a number of compounds that could 

potentially counteract 7-DHC elevation effects, and vitamin E counteracts peroxidation in a 

rodent model (101), this area remains greatly understudied.

Medication effects on sterol biosynthesis in the developing brain are undisputable. However, 

do these medications equally affect all brain and somatic cells during development? The 

various developing neuronal subpopulations might rely on sterol biosynthesis in specific 

ways, and could be differentially affected by DHCR7 (and other sterol) inhibitors. For 

example, heterozygous Dhcr7+/− transgenic animal model studies suggest that serotonergic 

neurons might be preferentially affected by sterol-inhibiting drug exposure (107, 121, 122), 

as these animals show differential response to 5HT agonists. Similarly, Dhcr7 is a negative 

regulator of sonic hedgehog signaling (66, 123, 124), which is essential for development 

for somatostatin-containing interneurons (125, 126). In addition, the sensitivity of peripheral 

neurons of the autonomic nervous system to disrupted sterol biosynthesis is unknown. As 

they are located outside the blood brain barrier and have access to the peripheral sterol 

pool, disturbances in their sterol synthesis might be governed by a set of different regulatory 

mechanisms.

The pathophysiology studies related to 7-DHC elevation have already yielded highly 

interesting and impactful results. Yet, the biological functions of at least two other, 

potentially very important sterol intermediates are not understood at all. 7-DHD (a precursor 

of desmosterol) and 8-DHC (an EBP-created isomer of 7-DHC) can also accumulate as 

result of treatment with approved medications. They are also highly oxidizable and give rise 

to oxysterols in the brain tissue. The recent advances in technology now allow to separate 

and measure these two compounds using the DMG-derivatized LC-MS-MS technology, 

helping us to further decipher this very complex process.
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Figure 1. Healthy cholesterol biosynthesis is essential for neuronal homeostasis.
Cholesterol is an essential structural component of membranes, critical for assembly and 

proper maintenance of lipid rafts, required for synapse and dendrite formation, necessary for 

axonal guidance, and it serves as a precursor for various biosynthetic pathways. Brain cells 

synthesize their own cholesterol, independent of the systemic cholesterol pool.
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Figure 2. Cholesterol biosynthesis and inborn errors of post-lanosterol biosynthesis.
The last, post-squalene phase of cholesterol biosynthesis, starting with lanosterol, is divided 

into the Bloch and Kandutsch-Russell branches. Mutations in the genes encoding the 

enzymes of post-lanosterol biosynthesis result in Smith-Lemli-Opitz syndrome (SLOS) 

(mutations in DHCR7), desmosterolosis (mutations in DHCR24), chondrodysplasia punctata 
1 (mutations in EBP) and lathosterolosis (mutations in SC5D). All of these syndromes affect 

brain and craniofacial development, and lead to intellectual and developmental disabilities. 

Note that these sterol biosynthesis enzymes participate in multiple conversion processes, but 

for simplicity, the arrows denote only one of their main actions.
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Figure 3. Genetic and medication effects on 7-DHC levels.
Both medications and genetic Dhcr7 heterozygosity elevate 7-DHC levels. In mouse models, 

when these two factors (with a similar biochemical consequence) are combined, their 

biochemical effects are greatly exacerbated during pregnancy. Many sterol biosynthesis 

inhibiting medications are highly prescribed (we estimate >300 million prescriptions/year in 

the US), are often used by pregnant women, and 1–4% of the human population carry 

single-copy mutations in the DHCR7 gene. The sterol inhibiting medication* DHCR7 
genotype interactions, and the long-term effects on the offspring brain are unknown in the 

human population.
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Figure 4. 7-DHC levels in the brain of newborn pups in response to maternal drug treatment and 
Dhcr7 genotype.
The X-axis denotes the three drug treatments (aripiprazole, trazodone and cariprazine), and 

the Y-axis denotes fold increase over vehicle-treated control. mWT and mHET denotes 

maternal Dhcr7+/+ and Dhcr7+/− genotypes, respectively; pWT and pHET denote pup 

Dhcr7+/+ and Dhcr7+/− genotypes, respectively. Note that all maternal treatments strongly 

elevate 7-DHC levels in the brain of newborn pups, and that the most affected pups are those 

with the Dhcr7+/− genotype born to Dhcr7+/− mothers (3–16 fold increase in brain 7-DHC 

levels, depending on medication). These 7-DHC levels reach up to 55% of the 7-DHC levels 

seen in the brains of untreated Dhcr7T93M/T93M transgenic SLOS mouse model pups (red 

dashed line). The long-term consequences of this 7-DHC elevation are currently not known. 

Data are compiled from these publications: (110, 111).
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Figure 5. Human fibroblasts strongly elevate 7-DHC levels in response to TRZ and ARI, in a 
DHCR7 genotype-dependent manner.
Note that 50nm ARI-treated DHCR7+/− human patient fibroblasts increase their 7-DHC 

levels up to 62 fold, reaching approximately 75% of 7-DHC levels seen in SLOS patient 

fibroblasts. Notably, similar results have been obtained for CAR (data not shown). Adapted 

from Korade at al, 2017 (51). ***p<0.001 vs control (DMSO).
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