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This paper examines consciousness from the perspective of theoretical computer science
(TCS), a branch of mathematics concerned with understanding the underlying princi-
ples of computation and complexity, including the implications and surprising conse-
quences of resource limitations. We propose a formal TCS model, the Conscious
Turing Machine (CTM). The CTM is influenced by Alan Turing's simple yet powerful
model of computation, the Turing machine (TM), and by the global workspace theory
(GWT) of consciousness originated by cognitive neuroscientist Bernard Baars and fur-
ther developed by him, Stanislas Dehaene, Jean-Pierre Changeux, George Mashour,
and others. Phenomena generally associated with consciousness, such as blindsight,
inattentional blindness, change blindness, dream creation, and free will, are considered.
Explanations derived from the model draw confirmation from consistencies at a high
level, well above the level of neurons, with the cognitive neuroscience literature.

theoretical computer science j consciousness j artificial intelligence j global workspace j complexity
theory

The quest to understand consciousness, once the purview of philosophers and theolo-
gians, is now actively pursued by scientists of many stripes.* We study consciousness
from the perspective of theoretical computer science (TCS), a branch of mathematics
concerned with understanding the underlying principles of computation and complex-
ity. This abstract theory has provided both a theoretical foundation for the computer
revolution and (also) surprising new concepts and ingenious applications stemming
from considerations of computational complexity. It deals with the consequences and
unexpected insights that come from taking resource limitations into account. We claim
that the perspective and unique insights of TCS add to the understanding of conscious-
ness and related concepts, such as free will.

1. A TCS Perspective on Consciousness

Our view is that consciousness is a property of all properly organized computing sys-
tems, whether made of flesh and blood or metal and silicon. With this in mind, we
give a simple abstract substrate-independent computational model of consciousness
(section 2). We are not looking to model the brain nor to suggest neural correlates of
consciousness, interesting as they are. We are looking to understand consciousness and
its related phenomena.
We begin this introduction with a brief overview of TCS, its perspective, and an

example of a relevant seemingly paradoxical concept that got defined and understood
by TCS. We then outline how the perspective of TCS informs our model and under-
standing of consciousness. Following the Introduction, we present the Conscious
Turing Machine (CTM), which is our formalization of a variant of the global work-
space theory (GWT). The reader who wants the formal model first can go directly to
section 2.

1.1. TCS. Alan Turing’s seminal paper “On computable numbers, with an application
to the Entscheidungsproblem” (32) is arguably the genesis of TCS. That paper presents
a mathematical definition of a “computing machine,” now known as the Turing
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*The various approaches to the study of consciousness include psychological (1–3), philosophical (4–7), information theo-
retic measures (8, 9), neural correlates (10–12), and evolutionary (13). Our approach to consciousness is architectural, close
in spirit to refs. 14–17. It is also close in spirit to refs. 18–20. Related approaches include predictive processing (21–26). The
architectural approach to the study of consciousness was inspired by the architectural models of cognition. These were
developed largely at Carnegie Mellon University in Herb Simon’s The Sciences of the Artificial (27), Raj Reddy’s Blackboard
Model (28), Allen Newell’s Unified Theories of Cognition (29), and John Anderson’s ACT-R (30). The global workspace idea is
due to Newell (29). An important more recent architectural model of cognition is LIDA (31).
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machine (TM). In it, Turing defines a simple theoretical uni-
versal programmable computer that can compute any function
computable by any computer or supercomputer.†

Theorems are the raison d’etre of mathematical theories, and
Turing proves what might be called the first theorem of TCS,
namely the unsolvability of the Halting problem. In modern
parlance, this theorem proves there can be no universal (debug-
ging) program for determining which computer programs halt
and which do not; it is just not possible to construct one.
The unsolvability of the Halting problem is equivalent to the

undecidability of elementary number theory (35), and implies a
weak form of Kurt G€odel’s first incompleteness theorem (36).‡

After G€odel and Turing, mathematical logicians started cate-
gorizing which problems were solvable and which were not as
well as investigating the esoteric hierarchy of unsolvable
problems.
With the advent and wider availability of computing

machines in the 1960s, it soon became clear that a number of
important problems that were solvable in principle could not in
fact be solved, not even with the fastest conceivable computers,
and that this was not a problem with the state of technology
but something deeper.§

Researchers in the emerging field of TCS [notably Jack
Edmonds (38), Stephen Cook (39), Richard Karp (40), and
Leonid Levin (41)] realized that among natural finite (and
therefore, solvable) problems, there appeared to be a dichotomy
between those problems that were feasibly (efficiently) solvable
and those that were not, mirroring the earlier dichotomy
between solvable and unsolvable. Feasibly solvable became for-
malized mathematically as solvable (by some computer pro-
gram) in polynomial time (P). Furthermore, the realization
emerged that problems solvable in polynomial time and prob-
lems checkable in polynomial time (NP) might not be equiv-
alent.¶ Indeed, deciding the equivalence would answer the
famous million dollar P = ?NP question (42).
Besides defining a hierarchy of serial fast (poly time) compu-

tational complexity classes, TCS defines a hierarchy of parallel
superfast (polylog time) computational complexity classes. Both
hierarchies inform the definitions and choices employed in our
model. Michael Sipser’s book (43) is a great introduction to
TCS.
Understanding the dichotomy between easy and hard, quick

and slow, and their implications launched a complexity revolu-
tion with a rich theory, reframing of ideas, novel concepts, and
stunning applications. Indeed, developments in computational

complexity over the past 40 y have shown how to use hardness
to our advantage to deal with seemingly impossible problems.

We illustrate with the (relevant) concept of a computer-
generated random sequence, called a pseudorandom sequence.

On the face of it, the very idea of a pseudorandom sequence
is so incongruous that von Neumann (44) joked that “[a]nyone
who considers arithmetical methods of producing random dig-
its is, of course, in a state of sin.”

More precisely, a pseudorandom sequence generator is a feasible
(polynomial time) computer program for generating sequences
that cannot be distinguished from truly random sequences (gener-
ated by independent tosses of a fair coin) by any feasible computer
program. Thus, in the polynomial time world in which we live,
pseudorandom sequences are, for all intents and purposes, truly
random. This understanding was impossible without the clarifica-
tions made by TCS, including the distinctions between polyno-
mial and superpolynomial complexity (45).

An application of the above ideas is to replace the use of ran-
dom sequences in the (probabilistic) CTM by sequences produced
by pseudorandom generators supplied with (short) random seeds.
In particular, if the probabilistic CTM has “free will,” as will be
argued, then so does this deterministic variant of CTM. The free
will of this deterministic CTM is counter to some (perhaps
much) of the thinking on determinism (e.g., ref. 46).

1.2. Now for Consciousness. The TCS perspective is employed
in defining the CTM, a simple machine that formalizes mathe-
matically (and modifies with dynamics) the GWT of conscious-
ness originated by cognitive neuroscientist Bernard Baars (14) and
extended by Dehaene (15) and Mashour et al. (47) in their global
neuronal workspace theory (GNWT). In In the Theater of Con-
sciousness, Baars (16) describes consciousness through a theater
analogy as the activity of actors in a play performing on the stage
of working memory, their performance under observation by a
huge audience of unconscious processors sitting in the dark.

In the CTM, the stage of GWT is represented by short-term
memory (STM) that at any moment in time contains CTM’s con-
scious content. The audience members are represented by enor-
mously powerful processors—each with its own expertise— that
make up CTM’s long-term memory (LTM) (section 2.1.1). These
LTM processors make predictions and get feedback from CTM’s
world. Based on this feedback, learning algorithms internal to each
processor improve that processor’s behavior (section 2.6).

LTM processors, each with their own specialty, compete
(sections 2.1.2 and 2.3) to get their questions, answers, and
information in the form of chunks (section 2.1.3) on the stage
for immediate broadcast to the audience.

Conscious awareness—elsewhere called attention—is defined
formally in the CTM as the reception by the LTM processors
of the broadcast of CTM’s conscious content. In time, some of
these processors become connected via links (section 2.1.4) that
turn conscious communication (through STM) into uncon-
scious communication (through links) between these LTM pro-
cessors. Communication via links about a broadcasted chunk
reinforces its conscious awareness, a process that Dehaene, and
Changeux (10) call ignition.

While these definitions are natural, they are merely defini-
tions; they do not provide a proof that the CTM feels con-
scious. We argue, however, that these definitions, together with
explanations derived from the CTM model, capture commonly
accepted intuitive concepts of consciousness and agree, at a
high level, with cognitive neuroscience explanations of phe-
nomena generally associated with consciousness.

†Although a TM looks nothing like a modern-day computer, Turing did intend to construct
a practical programmable computing machine. In 1945, he brought with him to the British
National Physical Laboratory an 86-page detailed blueprint for a universal programable
computer, the automatic computing engine (ACE), which he intended to build (33). Politics
intervened, and only the less ambitious Pilot ACE (34) got built.

‡Before G€odel and Turing, mathematicians had the unshakable belief that with enough
knowledge and work, any mathematical problem could be solved. As the mathematician
David Hilbert famously said in 1930 at his retirement address: “This conviction of the solv-
ability of every mathematical problem is a powerful incentive to the worker. We hear
within us the perpetual call: There is the problem. Seek its solution. You can find it by
pure reason, for in mathematics there is no ignorabimus [sic]” (37).

§Suppose that when program P is run on computer C on any input of length n, it has run
time 2n. Let C+ be the same computer except that C+ runs twice as fast as C. Then, pro-
gram P, run on computer C+, on any input of length n + 1 will have run time 2n+1/2 = 2n,
which is the same running time as C on any input of length n. TCS considers the increased
speed of C+ (and therefore, C++, C+++, … ) over that of C to be insignificant for running P
when n is large.

¶Solvable in polynomial time (P) means it is possible to find a solution in time polynomial
in the size of the problem instance. Checkable in polynomial time (NP) means that given a
purported solution, its correctness can be checked in time that is polynomial in the size of
the problem instance. On the face of it, finding a solution seems harder than checking it;
properly coloring the nodes of a graph with three colors is hard (NP hard so likely not in
P), while checking if a three coloring is proper, meaning that no edge joins two nodes of
the same color, is easy (in P).
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Although inspired by Baars’ GWT architecture, the CTM
integrates additional features essential for its feeling of con-
sciousness. These include its dynamics, its rich multimodal
inner language (which we call Brainish) (section 2.2), and spe-
cial LTM processors that enable it to create models of the
world (sections 3 and 4).

1.3. Complexity Considerations. The consequences of limited
resources play a crucial role in our high-level explanations for
consciousness-related phenomena, such as change blindness
and the feeling of free will.
They also enter into fixing the detailed definition of CTM.

These details include, for example,

1) the formal definition of a chunk, which is the information
that each LTM processor puts into the competition for con-
sciousness at every tick of the clock (section 2.1.3);

2) the fast probabilistic competition algorithm that selects
which one of the many competing chunks reaches conscious-
ness (sections 2.3 and 2.4); and

3) the machine learning algorithm (section 2.6) in each processor
that uses feedback from global broadcasts, other processors,
and the outside world to update its processor’s competitiveness
and reliability.

Although inspired by Turing’s simple yet powerful model of
a computer, the CTM is not a standard TM. That is because
what gives the CTM its “feeling of consciousness” is not its
computing power nor its input–output maps but rather, its
global workspace architecture, its predictive dynamics (cycles of
prediction, feedback, and learning), its rich multimodal inner
language, and certain special LTM processors such as the
Model of the World processor.
As we have said, we are not looking for a model of the brain

but for a simple model of consciousness, and even there, the
CTM model can hardly be expected to explain everything; it is
too simple for that. The reasonableness of the model (and its TCS
perspective) should be judged by its contribution to the discussion
and understanding of consciousness and related “hard” problems.
This paper presents an overview of the CTM model; we refer

the reader to refs. 48 and 49 for additional details. Whereas ref. 48
explores explanations for the feelings of pain and pleasure in the
CTM, this paper presents additional phenomena generally associ-
ated with consciousness. We start (in section 4) with three examples
related to vision (blindsight, inattentional blindness, and change
blindness) and then, follow with a discussion of dreams and free
will. We give explanations derived from the model and draw confir-
mation from consistencies at a high level with the cognitive neuro-
science literature.# Confirmation for the model also comes from
agreement with aspects of other theories of consciousness.
In what follows, statements about the CTM are in roman.

Statements particular to humans or animals are generally in italics.

2. CTM Model Overview

2.1. Basic CTM Structure and Definitions of Consciousness in
the CTM. We assume that the CTM has a finite lifetime T. Time
is measured in discrete clock ticks, t = 0, 1, 2, … , T∼ 1010

(roughly 10 ticks per second, that being the alpha rhythm of the
brain). The CTM is born at time 0.

The CTM is a seven-tuple,
< STM, LTM, Up Tree, Down Tree, Links, Input, Output>
with the following components.

2.1.1. STM and LTM processors. In the CTM, STM is a small
memory capable of holding a single chunk, defined in section
2.2. LTM is a (massive) collection of N processors, N > 107,
with each processor being a random access machine with a ran-
dom access memory large enough to hold a small multiple of T
chunks. Processors are in LTM only, not in STM, so when we
say processor, we mean LTM processor. Certain special LTM
processors are particularly responsible for CTM’s feeling of
consciousness. These include especially a Model of the World
processor, an Inner Speech processor, and other Inner general-
ized Speech processors for handling inner vision, inner tactile
sensation, and so on (section 3).
2.1.2. The Up Tree competition and Down Tree broadcast. The
Down Tree is a simple down-directed tree of height 1 with a
single root in STM and N edges directed from that root to the
leaves, one leaf in each LTM processor.

The Up Tree is an up-directed binary tree of height h with N
leaves, one leaf in each LTM processor, and a (single) root in STM.
LTM processors, each with their own specialty, compete via the Up
Tree competition (section 2.3) to get their questions, answers, and
information into STM for immediate broadcast via the Down
Tree to the audience of all LTM processors. For simplicity in
CTM, all LTM processors submit information to the competition
for STM, and all processors receive all broadcasts from STM. In
humans, however, the dorsal stream of vision is never conscious (never
gets to STM); only the ventral stream is conscious (53).

This bottom-up/top-down cycle is analogous to the global neuronal
workspace (GNW) hypothesis (17) that “ conscious access proceeds in
two successive phases … In a first phase, lasting from ≈100 to ≈300
ms, the stimulus climbs up the cortical hierarchy of processors in a pri-
marily bottom-up and nonconscious manner. In a second phase, if the
stimulus is selected for its adequacy to current goals and attention
state, it is amplified in a top-down manner and becomes maintained
by sustained activity of a fraction of GNW neurons, the rest being
inhibited. The entire workspace is globally interconnected in such a
way that only one such conscious representation can be active at any
given time.”
2.1.3. Chunks, conscious content, conscious awareness, and
stream of consciousness. Questions, answers, and information
are conveyed in the form of chunks (defined formally in sec-
tion 2.2). The chunk that wins the Up Tree competition to get
into STM is called the conscious content of CTM.

In the CTM, unlike Baars’ theater, there is always exactly
one and the same actor in STM (the stage).jj At every step in
time, that actor gets handed the winning chunk as a script for
immediate broadcast via the Down Tree. We say that CTM
becomes consciously aware of this content when it is received
by all LTM processors via this broadcast.**

#We note a historical synergy between TCS and neuroscience. Turing’s simple computer
model led neuroscientist Warren S. McCulloch and mathematician Walter Pitts (50) to
define their formal neuron, itself a simple model of a neuron. Mathematics forced their
model to have inhibition, not just excitation—because without inhibition, loop-free circuits
of formal neurons can only compute monotonic functions—and these do not suffice to
build a universal TM. The McCulloch–Pitts neuron also gave rise to the mathematical for-
malization of neural nets (51) and subsequent deep learning algorithms (52), further illus-
trating ongoing synergies.

jjIn humans, the storage capacity of STM is roughly 7 ± 2 chunks (54), where a chunk can be a
word, a phrase, a digit, and so on. A few chunks cycling through STM can simulate some
aspects of an STM that holds several chunks. Cycling can happen via the Up Tree
competition and the Down Tree broadcasts. In this way, CTM can keep thoughts alive in
STM continuously through many cycles by sending the thought from processor to STM to
processors to STM and so forth.

**A primary reason to keep the number of chunks in STM small (exactly one in our
model) is to ensure that all processors focus on the same information in the broadcast
from STM. (Another reason is to keep the model as simple as reasonably possible for an
understanding of consciousness.) Leslie Valiant (ref. 55, pp. 127–128) does not assert that
focus is primary. He asserts instead that limited computational resources and constraints
imposed by the need to learn are the primary reasons for the small size of conscious
information. While these are reasonable factors, the principle factor in our opinion is the
required focus.
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We have defined conscious awareness as the reception by all
LTM processors of STM’s broadcast rather than the appearance
in STM of the winning chunk to emphasize that the feeling of
consciousness arises after processors, including especially the
Model of the World and Inner Speech, receive the broadcast.
Our definition of conscious awareness in the CTM aligns

roughly with what cognitive neuroscientists call “attention” (for
example, refs. 18 and 47). What we call the feeling of conscious-
ness in the CTM (section 3) aligns roughly with what cognitive
neuroscientists call “awareness” or “subjective consciousness.”
CTM is constantly bubbling with the activity of chunks

competing for STM, its winners being (constantly) broadcast
from STM to LTM. The time-ordered chunks that are broad-
cast from STM to LTM form a stream of consciousness. This
stream, as argued in section 3, is part of the subjective feeling
of consciousness.

2.1.4. Links, unconscious communication, and global ignition. All
communications between processors initially occur via STM. For
example, processor A can submit a query to the Up Tree competi-
tion for STM. If the query wins the competition, it is broadcast
to all LTM processors. Processor B may then submit an answer
via the competition, which if it wins, gets broadcast and so on.
If A acknowledges that B’s answer is useful sufficiently often,

then a bidirectional link forms between A and B. This linking
is reminiscent of the Hebbian principle (56) that “ [n]eurons that
fire together wire together.”
In addition to processors sending chunks to the Up Tree

competition, processors send chunks over links. In this way,
conscious communication (through STM) between A and B
can turn into direct unconscious communication by chunks
being sent (through links) between A and B.†† As additional
links form between A and B, we say that the link between A
and B is strengthened.
Links are channels for transmitting information between

processors. Those chunks sent between linked processors fol-
lowing the broadcast of CTM’s conscious content can reenforce
and sustain conscious awareness. This reenforcement is related to
what Dehaene and Changeux (10) call “ global ignition” in their
GNWT. As Dehaene (15) writes, “Global ignition … occurs
when a broadcast excitation exceeds a threshold and becomes self-
reinforcing, with some neurons exciting others that, in turn, return
the excitation. The connected [cells] burst into a self-sustained state
of high level activity, a reverberating ‘ cell assembly,’ as Hebb called
it.”

2.1.5. Input and Output maps: Sensors and actuators. CTM’s
environment (Env) is a subset of Rm(t), where R denotes the real
numbers, m is a positive integer dimension, and t (a nonnegative
integer) is time. Input maps take (time-varying) environmental
information acquired by CTM’s sensors (which for simplicity, we
assume are part of the input maps) and send it to designated
LTM processors that convert the environmental information into
chunks (section 2.2). Output maps take command information
from LTM processors to actuators (which we assume are part of
the output maps) to act on the environment.

2.1.6. Summary of connections. In summary, there are five kinds
of connections in the CTM that provide paths and mecha-
nisms for transmitting information. The five, also shown in

Fig. 1 (connections in the CTM to and from an LTM proces-
sor), are

1) Env ! LTM: directed edges from the environment via sen-
sors to processors of the sensory data;

2) LTM ! STM: via the Up Tree;
3) STM ! LTM: via the Down Tree;
4) LTM ! LTM: bidirectional edges (links) between process-

ors; and
5) LTM ! Env: directed edges from specific processors (like

those that generate instructions for finger movement) to the
environment via actuators (like the fingers that receive
instructions from these processors) that act on the environ-
ment (via the actions of the fingers from these processors).

2.2. Brainish (the CTM’s Multimodel Inner Language), Gists,
and Chunks. Brainish is CTM’s inner language used to com-
municate between processors whether via the competition and
broadcasts or directly through links. On the other hand, lan-
guages used internally by processors vary in general from one
processor to another; they include but are not restricted
to Brainish.

Brainish is the language used to express inner speech, inner
vision, inner sensations, imaginings, and dreams. It includes
coded representations of inputs and outputs all expressed with
succinct multimodal Brainish words and phrases called gists. A
gist can hold the essence of a scene or the (high-level expand-
able) idea of a proof. It can be an answer to a query, an insight
of some sort, a dream image, a (description of) pain, and so on.
Brainish is able to express and manipulate images, sounds, tac-
tile sensations, and thoughts—including unsymbolized
thoughts—better than outer languages, like English, Chinese,
or “Doggish” (see ref. 57). We claim that having an expressive
inner language is an important component of the feeling of
consciousness (section 3).

Information is carried on all edges, between processors,
between STM and LTM, from input to LTM, and from LTM
to output by chunks.

A chunk is a six-tuple
< address, t, gist, weight, intensity, mood >,
where

address is the address of the LTM processor that produced the
chunk, t is the time that the chunk was produced, gist is the
information “concisely expressed” in Brainish that the proces-
sor intends to communicate, weight is a valenced number that
the processor gives the gist, and intensity and mood start off
(at time t) as jweightj and weight, respectively.

We note that the size of the chunk (and hence, the size of its
components, including its gist) will necessarily be bounded by
computational complexity considerations (section 2.4 and ref.
48 have more specifics).

Fig. 1. Connections in the CTM to and from an LTM processor.

††If the CTM has 107 LTM processors, corresponding to ≈107 cortical columns in the brain,
and if all pairs of processors are initially linked, there will be ≈1014 links, which is a large
possibly infeasible number of links. Worse yet, a processor with 107 inputs might need to
run its own personal competition to decide what to look at. Although one might want cer-
tain special processors linked initially, we choose for simplicity to have no processors
linked at birth.
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2.3. The (Probabilistic) Up Tree Competition: The Coin-Flip
Neuron and Competition Function. The Up Tree competition
is the mechanism that determines which LTM processor will
get its chunk into STM. At each clock tick t = 0, 1, … , T,
the tth competition starts with each processor p putting its
chunk into the node that is the processor’s leaf of the Up Tree.
After a chunk is submitted to the Up Tree competition and
while it moves up the "competition tree", its address, t, gist,
and weight remain unchanged, but its intensity and mood get
updated to incorporate ever more global information.
Deciding whether or not a chunk moves up a level or drops out

is made by a fast tiny parallel circuit, with one such circuit located
in each of the nonleaf nodes of the Up Tree, each making its deci-
sion in one clock tick (the time between two successive clock ticks).
In the probabilistic Up Tree competition, which we discuss

here, each node of the Up Tree has and uses a coin-flip neuron
in its built-in circuit. A coin-flip neuron is a device that takes as
input a (ordered) pair (a, b) of nonnegative real numbers (a ≥ 0
and b ≥ 0) and in one step, does the following:

if a > 0 or b > 0, it outputs a with probability a/(a + b), else
b; if a = b = 0, it outputs a with probability 1/2, else b.

At each clock tick, the circuit in a nonleaf node v runs a local
competition that probabilistically selects one of v’s two (sibling)
children based on a comparison of the chunks they contain and
then moves (a variant of) the chosen chunk into v. That chunk
is said to be the winner of the local competition at/for v.
The local competition employs the Up Tree's competition

function f, a function that maps chunks to nonnegative real
numbers in a fraction of a clock tick, to choose the local
winner.
Specifically, suppose at level s, 0 < s ≤ h, and node vs at that

level, chunkp(L) and chunkp(R) are the chunks in vs’s left and
right children, respectively. Then,

1) with probability ff(chunkp(L))/(f(chunkp(L)) + f(chunkp(R)))
if the denominator ≠ 0 or with probability 1/2 if the
denominator = 0g, chunkp(L) is the local winner;

2) else chunkp(R) is the local winner.

We now specify the chunk that moves into vs. Suppose that
the local winner at vs is the variant of chunkp,t,0 having addressp,
t, gistp,t,0, and weightp,t,0. Then, the chunk that moves into vs
will be

chunkp,t,s ¼< addressp, t, gistp,t,s,weightp,t,s, intensityp,t,s,

moodp,t,s >; where

gistp,t,s = gistp,t,0; weightp,t,s = weightp,t,0; intensityp,t,s =
(intensityp(L),t,s�1) + (intensityp(R),t,s�1); and moodp,t,s =
(moodp(L),t,s�1) + (moodp(R),t,s�1).
Note that intensityp,t,s = ∑p’ (intensityp’,t,0) and moodp,t,s =

∑p’ (moodp’,t,0), where the two sums ∑p’ are over all LTM
processors p’ in the subtree rooted at vs.
Remark 1: Updating the chunk at node vs consists of computing the
probabilities needed to select the local winner and then, to make the
needed modifications of its intensity and mood. This must all be
done in one clock tick. This puts bounds on both the amount of
computation that can be performed in a node and on the size of the
chunk in that node (section 2.4 and ref. 48 have more specifics).
By a simple induction, the winner of the Up Tree competition

(the conscious content of CTM at time t + h) will look like

chunkp,t,h ¼< addressp, t, gistp,t,0,weightp,t,0, intensityp,t,h,

moodp,t,h >;

where intensityp,t,h = ∑all N processors p’ in LTM (intensityp’,t,0)
and moodp,t,s = ∑all N processors p’ in LTM (moodp’,t,0).

Let t ≥ h. The current mood of CTM at time t, moodt, is
defined to be the mood of the chunk that is broadcast from
STM at time t. Thus, CTM becomes consciously aware of
moodt at time t + 1.
Remark 2: moodt = ∑all N LTM processors p moodp,t-h,0, so moodt/N
is the average mood of the chunks submitted to the competition at
time t2 h.

moodt is a measure of CTM’s “optimism/happiness” if positive,
or “pessimism/sadness” if negative at time t. [In humans, “ emotion is
always valenced—either pleasant or unpleasant—and dependent on the
pleasure system” (58).]

intensityt is a measure of CTM’s level of “energy/enthusiasm/
confidence” at time t.

We say that a competition function f is additive if
f(chunkp,t,s(vs)) = f(chunkL(vs)) + f(chunkR(vs)). Examples of
additive competition functions include f(chunkp,t,s) = intensi-
typ,t,s or more generally,

fðchunkp,t,sÞ ¼ intensityp,t,sþ c �moodp,t,s for any real c, � 1

≤ c≤þ1, but not f ðchunkp,t,sÞ ¼ jmoodp,t,sj:

We call a CTM with a probabilistic Up Tree competition a
probabilistic CTM. In this paper, unless otherwise stated, all
CTMs will from now on be probabilistic.
Theorem. If the competition function f of a probabilistic CTM is
additive, then every chunk submitted to the Up Tree competition gets
a fraction of time in STM proportional to its importance as deter-
mined by f. Specifically, the probability that a submitted chunkp,t,0
gets into STM is‡‡

f chunkp,t,0
� �

=∑all NLTM processors p’f chunkp’,t,0
� �

:

As a consequence, for additive f, the permutation chosen to assign
processors to leaves of the Up Tree has no effect on the sequence of
broadcasts from STM. Additionally, even those chunks with low f
value have some chance of getting into STM. (Ref. 48 has more spe-
cifics, including the statements of this and other theorems and their
proofs.)§§

2.4. Complexity of Computation and Time Delay for Conscious
Awareness. For t > 0 and s > 0, the computation to update
the chunk at node vs in the Up Tree competition consists of

1) two fast computations of f, a sum and division of their values,
and a fast probabilistic selection;

2) putting the address, gist, and weight of the chunk selected
into vs; and

3) summing the intensities and moods of the chunks associated
with vs’s children and setting those sums to be the intensity
and mood of the chunk at vs.

These computations, all three of which must be completed
in 1 time unit, put a bound on both the size of the chunk in a

‡‡The following questions arise. Why is a tree necessary? Why not just compute
f(chunkp,t,0)/∑all N LTM processors p’ f(chunkp’,t,0) in one step to get the probability of a chunk
winning the competition? The answer is that, however you do it, you need log N steps to
compute the∑.

§§We note that f(chunkp,t,s) = jmoodp,t,sj is a bad choice for more reasons than that it is
not additive. If at level 0, two sibling chunks have weights +100 and �100 and all other
chunks have weight = +1, then neither of the two high-intensity siblings will reach STM.
This might occur if you spy a $10 bill on the ground, but someone else picks it up. In that case,
the pleasure of finding the $10 bill and the pain of losing it will never reach consciousness. You
would be unconscious of both. This seems unlikely to us.
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node and the amount of computation that can be performed in
that node.¶¶

2.5. Memories and the High-Level Story. We assume that each
processor p stores in its internal memory the sequence of tuples,
ordered by time t, consisting of the chunkp,t,0 that it submitted
to the competition, the chunk it received at time t by broadcast
from STM, and a select subset## of chunks it received at time t
from links or from input maps. These sequences are a substan-
tial part of CTM’s memories.
This “history” provides a high-level story of what p saw and

did. High-level stories account in large part for CTM’s sense of
self in its feeling of consciousness (section 3). CTM calls on
high-level stories coupled with prediction algorithms to create
dreams (section 4.5).
Periodically, this stored information may be pruned so only

“salient” chunks remain, the most salient being those that rep-
resent terrible, wonderful, or unexpected events. In general
(section 2.6), every processor makes predictions regarding the
chunks it generates, modifies, and stores.

2.6. Predictive Dynamics = Prediction + Feedback + Learning
(Sleeping Experts Algorithm). Processors require feedback to
assess correctness and detect errors in their predictions and to
learn how to both boost correctness and diminish and cor-
rect errors.

• Predictions in CTM are made by LTM processors for all
chunks whether submitted to the competition for STM, to
other processors through links, or to actuators that effect the
environment.

• Feedback comes from chunks that are received in broadcasts
from STM, through links, and from the environment via
input maps.

• All CTM learning and error correcting take place in
processors.

There is a continuous cycling of prediction, feedback, and
learning within CTM. The CTM needs to be alerted to any-
thing unusual, surprises of any kind, in order to deal with such
things if necessary and to improve its understanding of the
world in any case. Prediction errors (e.g., “surprises”) are mini-
mized by this cycling.
Processors especially need to know if they were too timid or

too bold in setting their jweightsj, so they can correct their
weight-assigning algorithms. Sleeping Experts Algorithms
(SEAs) are a class of learning algorithms employed by LTM
processors to do just that [Blum and coworkers (59–61)]. Here
is one of the simplest versions of the SEAs.
Embolden a processor (raise the intensity it gives its chunks)

if

1) its chunk did not get into STM and
2) its information is more valuable (in the SEA’s opinion) than

what got into STM.

Hush a processor (lower the intensity it gives its chunks) if

1) its chunk got into STM and
2) its information is found (perhaps later) to be less valuable

than that of some chunk that failed to get into STM.

SEAs play a role in whether or not processors get their
chunks into STM. They also play a role in whether or not pro-
cessors “pay attention” to gists in chunks that are sent to them
via links. The jweightj of a chunk is an indication of how
important the processor that generated the chunk believes its
gist to be, and this will influence whether or not a processor
that receives the chunk will pay attention to it.

2.7. Comparison of CTM with the GWT Model. We conclude
this section with a comparison between the CTM and Baars’
GWT model (Fig. 2).

Aiming for simplicity, we have eliminated or simplified
many features. For example, the CTM has just one “actor” on
stage holding just one chunk at a time. Additionally, all pro-
cessors in the CTM are in LTM. We have eliminated the cen-
tral executive since its functions can be handled by processors.
In the CTM, inputs and outputs go directly to and from LTM
processors, not directly through STM.

In the CTM, chunks compete in a well-defined competition
to get onto the stage (STM). Conscious awareness (attention) is
the reception by all LTM processors of the broadcasted win-
ning chunk (i.e., CTM’s conscious content), not an event that
occurs between input and STM. The roles of Baddeley and
Hitch’s verbal rehearsal and visuospatial sketchpads (62) are
assumed by LTM processors.

Predictive dynamics (cycles of prediction, feedback, and
learning) and a multimodal inner language (Brainish) as well as
computational and complexity considerations are explicit key
CTM features.

Finally, as in the “extended mind theory” (63), CTM can
have access to existing technology, such as Google, Wikipedia,
WolframAlpha, AlphaGo, and so on, in the form of LTM pro-
cessors tasked to use these apps. This is one way to ensure that
CTM has a huge collection of powerful processors at the start
of its life (t = 0), a collection that is augmentable throughout
its life.

Key features of the CTM model and its dynamics resonate
with properties of consciousness that Dennett (64) outlines.

[Neither] a Master Scheduler, nor a Boss Neuron, nor a
Homunculus or Res Cogitans [govern the transitions of our
conscious minds]. [What governs] must be a dynamical,
somewhat competitive process of contents vying for fame, for
cerebral celebrity … or relative clout against the competi-
tion. What determines the winners? Something like micro-
emotions, the strength of positive and negative valences that
accompany and control the destiny of all contents, not just
obviously emotionally salient events such as obsessive memo-
ries of suffering or embarrassment or lust, but the most eso-
teric and abstract theoretical reflections.

Although inspired by Baars’ GWT architecture, the CTM
integrates features essential for its feeling of consciousness. This
is the focus of the next section.

3. The Feeling of Consciousness

While CTM is consciously aware by definition of the
conscious content broadcast from STM (section 2.1.3), this
definition does not explain what generates the feeling of con-
sciousness in CTM.

¶¶The space required to store a chunk must be large enough to store a log2N bit address
and to store a gist whose length is no greater than what is required to store approxi-
mately one line of English or its equivalent in Brainish, very roughly 210 bits. If 1 time unit
is 100 ms and there are 107 LTM processors, then the time from a chunk being placed
into competition by an (unconscious) LTM processor to becoming CTM’s conscious con-
tent will be about 2.3 s. If the broadcast takes another 100 ms, the total time to conscious
awareness will be about 2.4 s. This time can be reduced from 2.4 to 0.7 s if the interior
nodes of the Up Tree each have 10 children instead of 2. (Section 4.6 has the implications
of an Up Tree delay on free will in the CTM and/or humans.)

##Assuming that CTM is a good model for the brain, it is not possible for each of its N ≈ 107

processors to record from all other N � 1 processors, as that would require CTM to have more
links than there are neurons in the brain.
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We argue that the feeling of consciousness in CTM is a con-
sequence principally of its extraordinarily expressive Brainish
language, coupled with CTM’s architecture, certain special pro-
cessors, and CTM’s predictive dynamics (prediction, feedback,
and learning).

1) Brainish. The multimodal Brainish language describes the
sensory world exactly as it is perceived. This perception con-
sists of gists in the multimodal language of sensations. Its
words include gists for odors (the odors as they are perceived
by the nostrils), pains (the terribly unpleasant sensations of
pain), faces (what one sees when looking at someone’s face),
and so on. Dreams are important because they show what gists
can express when the CTM has neither input nor output.

2) Architecture. This includes the Up Tree competition to
gain access to STM (section 2.3) and subsequent global
Down Tree broadcast of the winner to all LTM processors
(particularly all processors that play a special role in
generating the feeling of consciousness.

3) Special processors. We single out a few such processors,
which have specialized algorithms built into them at birth.

a) The Model of the World processor constructs models of
CTM’s worlds based on information it gets from the
environment or from stored possibly modified inner
memories. We define CTM’s inner world to be the
sparse “CTM” model that the Model of the World pro-
cessor creates of the CTM. We define CTM’s outer
world to be the model it creates of the environment.
Importantly, the Model of the World processor tags parts
in its models of the world (inner and outer) with labels
and descriptions annotated in Brainish with sensations
they (can) have and actions they (can) perform.

b) The Inner Speech processor extracts whatever speech is
encoded in the gist broadcast by STM and sends it to the
same locations that the input map sends gists of outer
speech (the gists created by the input maps). This is sent
initially via STM and then later after links are formed,
via links directly. Inner speech, the gists produced by the
Inner Speech processor, enables CTM to recollect its
past, predict its future, and make plans. The gists of inner
speech (such as those that occur in talking to oneself or the
talking and hearing in a dream) are nearly indistinguish-
able from the gists of outer speech. In humans, inner
speech sounds so much like outer speech that it can be diffi-
cult, as in schizophrenia, to distinguish between inner and
outer speech (65).

c) Inner Vision and Inner (tactile) Sensation processors
map whatever images and sensations are broadcast from
STM to whatever locations the input maps send outer
scenes and outer sensations. The gists of inner vision can
be barely distinguishable from the gists of outer vision
(the visual gists created by the input maps). CTM’s
memories and predictive abilities enable CTM to create
the inner images and sensations that CTM uses to gen-
erate imaginings and dreams (section 4.5). To thwart
schizophrenic hallucinations, the human brain distinguishes
inner images from outer images. The brain has various tricks
for doing this, one being to make dreams hard to remember.

These processors inform the “eyes” and “skin” in CTM's
models of the world that “see” whatever the CTM recalls from
visual memory and “tactily sense” whatever CTM recalls from
sensory memory. These eyes and skin are CTM’s mind’s eye
and mind’s skin. We consider these processors to be Inner gen-
eralized Speech processors.

4) Predictive dynamics. Additionally, we argue that CTM’s
continuous cycling through prediction, feedback, and learn-
ing (section 2.6) plays a role in CTM’s feelings of conscious-
ness (1). The feelings are further enhanced by (parallel)
predictive dynamics in CTM’s Model of the World proces-
sor, where planning and testing are constantly carried out by
the CTM. Positive feedback gives CTM an indication that it
understands what is going on; negative feedback—unless it is
about something that could not have been predicted, such as
an unexpectedly loud noise—gives CTM evidence of some-
thing that it did not know or understand.

We also add

5) a minimal (general) ability to think and make plans and
6) the motivation (= energy + drive) to make a plan and then

pursue it.

We now return to the Model of the World processor to
describe a central task, that of tagging various constituent parts
of its models as either self or not self (else unknown).

How does the Model of the World processor determine
what is or is not self? If the broadcast of a chunk (a CTM
thought) is immediately followed by an actuator carrying out
an action in the environment—and that same thought leads to
the same action consistently and repeatedly—then that indi-
cates the actuator is part of self. The Model of the World pro-
cessor has additional important jobs that give the CTM its
sense of self, including creating imaginings, creating maps of its

Fig. 2. Sketches of models: Baars' GWT model (left) and the CTM (right).
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environment and registering movements in its environment,
helping to plan actions in the environment, helping to predict
the actions of self and not self in the environment, and correct-
ing predicted actions of self and not self.
When (through broadcasts) the CTM detects itself thinking

about its own consciousness, the Model of the World processor
tags the "CTM" in its models as “conscious.”
We now look at why the CTM considers itself conscious. It

cannot be because the Model of the World processor or any
other processor feels it is conscious, as processors are just
machines running algorithms—and (such) machines have no
feelings. We propose that CTM as a whole feels conscious, as
the term is normally understood, as a consequence in part of the
fact that the Model of the World processor views the "CTM" in
its models of the world as conscious and that this view is broad-
cast to all processors. Here, "CTM" is a simple learned represen-
tation of the much more complex CTM. Our explanation for
CTM’s feeling of consciousness aligns closely with the attention
schema theory of Michael Graziano et al. (18).

4. High-Level Explanations

We now explore how CTM might experience a variety of phe-
nomena generally associated with consciousness. We believe
that our explanations, derived from the model, provide a high-
level understanding of how conscious experiences are or might
be generated. These draw confirmation from consistencies with
the psychology and neuroscience literature at a high level.
Previously (48), we explored explanations for the feelings of

pain and pleasure in the CTM. Here, we consider additional
phenomena, again from the perspective of the CTM. We start
with three examples related to vision (blindsight, inattentional
blindness, and change blindness) and then follow with a discus-
sion of dreams and free will.

4.1. Blindsight. Blindsight provides a striking example of the
difference between conscious and unconscious awareness (66).
In blindsight, the person does not consciously see the outer world.
When asked to fetch something across a cluttered room, a typical
response is “ but I cannot see.” Nevertheless, the person can respond
adeptly if cautiously to the request. What is going on?
In the CTM, visual input goes directly from the vision sen-

sors to a subset of LTM processors that process visual input.
However, in the blindsighted CTM due to some malfunction,
perhaps a break in the Up Tree or some other inability for the
vision processors to enter chunks competitively into the compe-
tition, this information does not get up to STM and hence,
does not get globally broadcast. For this reason, CTM is not
consciously aware that it can see. However, information can
still be communicated between (unconscious) processors via
links. So, visual information received by the vision processors
can be sent through links to the walk processor that controls
the leg actuators. At a high level, this explanation is consistent
with explanations of blindsight in humans given in ref. 67.

4.2. Inattentional Blindness. Inattentional blindness occurs
when an individual fails to perceive a visual stimulus that is in
plain sight. It is “the failure to notice the existence of some-
thing unexpected when attention is focused on some other
task” (68).
For example, in the famous selective attention test (69, 70),

viewers of the “ invisible gorilla” film were asked to “ count how
many times the players wearing white shirts pass the basketball.”
Nearly all viewers gave close to the correct number (48) but were
stunned when asked, “Did you see the gorilla?” What is going on?

Let us suppose the CTM is viewing the gorilla film. The
input query about the white-shirted players gains access to
STM and is then immediately broadcast to all LTM processors.
To carry out the task, CTM’s vision processor assigns high
intensities to white-shirted gists and very low intensities to any-
thing black. The chunk with the “gorilla” gist has little chance
to enter STM. The CTM does not consciously see the gorilla.

The CTM explanation of inattentional blindness reduces to
the differential intensities given to gists, lower intensities given
to irrelevant ones, and the competing advantages of chunks
with higher intensities.

According to simulations performed in ref. 10, during certain
“ ignited” states, “ spontaneous activity can block external sensory
processing.” They relate this blocking to the cause of inattentional
blindness. In our view, blocking the “sensory processing” in
human brains of black objects is roughly equivalent to the
CTM dramatically lowering the intensity of black gists in
chunks, thus lowering the chances of those chunks entering
STM. The effect of differential intensities in the CTM is also
consistent with theoretical implications that inattentional blind-
ness in humans “ can serve as a filter for irrelevant information. It
may also filter out unexpected events” (68).

4.3. Change Blindness. Change blindness occurs when individ-
uals fail to notice large changes in pictures or scenes (71). It is
“the failure to notice when something has changed from one
moment to another” (68).

An instructive example is the Whodunnit video (72). A detective
enters a murder scene proclaiming, “Clearly somebody in this room
murdered Lord Smythe” and immediately interrogates each suspect
in turn. The maid proclaims, “ I was polishing the brass in the
master bedroom.” The butler says, “ I was buttering his Lordships
scones,” and Lady Smythe says, “ I was planting my petunias in the
potting shed” (enough information for the clever detective to solve
the murder on the spot).

However, why did we not notice the many incongruous
scene morphs between the beginning screen shot and the end?

From the perspective of the CTM, in viewing the Whodun-
nit video, CTM has the impression of seeing the whole but
does not notice the changes that take place as the trench coat,
flowers, painting, and so on are replaced by variants. That is
because of the following.

1) The filming is cleverly staged so that there are cuts from the
whole scene to the suspects (e.g., the maid alone), eliminating
transitions that show the dark trench coat replaced by the white
one, the bear replaced by the suit of armor, the rolling pin
replaced by the candelabra, the dead man now with a change of
clothes and raised leg, and so on. The video input never signals
CTM’s vision processor that the “scene” has been modified.

2) Importantly, the same gist describes both the beginning and
ending scenes equally well: “The living room of a mansion
with detective, butler, maid, others, and a man apparently
dead on the floor.”

Under these conditions, the CTM experiences change
blindness.

Again, the CTM explanation is consistent with the literature
on change blindness in humans. For example, according to ref.
68 confirming earlier work in ref. 71,

[g]iven that change detection requires adequate representation of
the pre- and post-change scenes as well as a comparison, any
task characteristics that influence the richness of the representa-
tion or the tendency to compare representations should affect
detection. The semantic importance of the changing object
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appears to have the biggest influence on the likelihood the sub-
ject will attend, and therefore notice, the change.

4.4. Illusions. Inattentional blindness and change blindness
might be considered examples of illusions.
The CTM is consciously aware by definition of the gists (in

chunks) that are broadcast from STM. (Those gists reached
STM from LTM. LTM got them directly from sensors via
input maps, from other LTM processors through links, and
from STM by broadcasts.) The gists are stored in LTM memo-
ries for many reasons, one being to supply the processors’ high-
level stories (section 2.5), such as those that occur in dreams.
In CTM, the stream of consciousness is the sequence of gists

broadcast from STM (section 2.1.3). Each visual gist at each
moment gives the CTM the sense that it sees the entire scene
before its eyes, although it sees at most a tiny fraction of the
scene. The illusion of the whole has several explanations, the
main one being that a multimodal Brainish gist can describe a
hugely complex scene, like “I’m standing before a Japanese style
garden containing a brook, path, bridge, and trees.” Could that
gist contain the details of a 12-million-pixel photograph from
an iPhone camera, which is what it feels like we are seeing? The
illusion of the whole is a consequence of the highly suggestive
(succinct) information in a gist. The CTM conjures up the
scene in a kind of magic act. Keith Frankish (73) calls this the
illusionism theory of consciousness.

4.5. Dream Creation. Dreams are the ultimate illusions. Some
people claim not to dream, but most do (74). Their dreams may be
visual, auditory, tactile, etc. They are often related to emotional
processes (2, 75). They can express great pain and fear (nightmares)
or great pleasure (as in flying dreams). One can feel crippling pain
in the leg and wake up to find that the pain is completely illusory;
there is no pain at all. One can be lying face down and wake
face up.
In the CTM, a built-in Sleep processor keeps track of time,

habits, day/night, etc. and has internal algorithms to monitor
the need for sleep. If and when the Sleep processor determines
that sleep is needed, it takes control by raising the intensity of
its own chunks enough to get them into STM and to keep
other chunks out. This has roughly the same effect as lowering
the intensities of chunks from other LTM processors. It also
blocks or greatly reduces the intensity of various inputs (eyes
and ears), and it blocks signals that activate outputs (such as to
limbs). The CTM sleeps. This is the sleep state.
The Sleep processor continuously monitors the need for

sleep and as that need diminishes, reduces the intensity of its
own chunks proportionately. This eventually permits dream
gists (in chunks) to reach STM. This is the dream state.
Finally, when the Sleep processor releases its choke hold on
inputs and outputs, the CTM wakes up. That is in the CTM.
In humans, non-REM sleep and REM sleep can alternate several
times before awakening (76).
When CTM is in the dream state, a processor acting as Dream

Creator becomes active (that is, starts getting its chunks into
STM). The gists in these chunks contain kernels of ideas (typically
based on earlier CTM activities, concerns, imaginations). When
these chunks are broadcast, all processors, including those that
play key roles in the feeling of consciousness, receive those broad-
casts and compete to respond. This gives the CTM the same sense
of being alive while in the dream state as when it is awake.
The Dream Creator and the other processors take turns

interacting back and forth. The conversation—the back-and-
forth interaction—between Dream Creator and the gamut of

processors is the sequence of gists that constitutes the dream.
This sequence is the dream stream of consciousness.

The dream essentially stitches together this sequence of
chunks to produce a dream stream of consciousness (inner
movie) that 1) sees, hears, and senses the dream world and 2)
affects what appears in that dream world. Such an (interactive)
inner movie displays a range of sensory inputs (images, smells,
and sounds) and generates a range of actions.

When the CTM is asleep but not dreaming, most processors
cannot get their chunks into STM. Exceptions include detec-
tors of especially loud noises and the sleep processor itself. The
Sleep processor’s chunk in STM blocks most other processors’
chunks from reaching STM. By design, it holds an empty gist,
so the CTM is not conscious or barely so.

After the CTM leaves the sleep state to enter the dream state,
a fraction of LTM processors, such as the Inner Vision proces-
sor, can get their chunks into STM. Thus, while dreaming, the
CTM is conscious and can experience events vividly.

As discussed earlier (section 3), key processors, such as those
for Inner Speech, inner Vision, Inner Sensations, and Model of
the World, play special roles in generating the feeling of con-
sciousness in CTM. These processors play similar roles when
CTM is dreaming.

Here are some examples of how processors help with dream
creation.

• The Inner Speech processor culls the inner speech from the
multimodal gists broadcast from STM and sends that speech
to the same processor that receives outer speech. This process
causes speech in dreams to sound like outer speech. The
Inner Vision and Inner Sensation processors help in a similar
way with dream creation.

Dreams demonstrate the power of Brainish gists. What CTM
sees, hears, feels, and does in a dream is necessarily fabrications by
processors that can recall, modify, and submit creations to the
competition for STM. These fabrications are realistic because they
use the same gists that are generated while awake. Thus, dreams
generate the sense of a realistic world even while CTM is
completely divorced from external inputs. As a consequence, they
can appear so realistic that for CTM, as for humans (77), it may
become hard to distinguish dreams from reality. (This problem is
avoided in humans if dreams are hard to remember.)

High level confirmation comes from research [ref. (78) refer-
ring to (79)], demonstrating that in humans, the same neural pat-
tern of activity occurs when one sees a face, brings the face back
from memory, or when the face appears in a dream. They also
point out that in REM sleep, the activation of the motor cortex in
a dream, when one has the sensation of movement, is the same acti-
vation as when awake.

• The Model of the World processor predicts the effect that
CTM’s actions will have in its (inner and outer) world. It
does this from the effect of those actions in its models of the
world. The Dream Creator can use this same prediction
machinery to create dreams.

Dreams also enable the CTM to test itself in unknown and
possibly dangerous situations. In both humans and CTM,
dreams can be laboratories for experimenting with various pos-
sible solutions.

However, unlike what occurs in waking consciousness,
inconsistencies are more likely to occur unnoticed in dreams
than while awake since the CTM’s “consistency checkers” in its
Model of the World processor are not getting input from the
environment. Hence, the CTM can fly in its dreams.
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Zadra and Stickgold (78) assert that in humans, “Dreams
don’t replay memories exactly; they create a narrative that has the
same gist as some recent memory and could have the same title.”
They note that “REM sleep provides a brain state in which weak
and unexpected associations are more strongly activated than nor-
mal strong associations, explaining how it aids in finding the
remote associates and perhaps explaining the bizarreness in our
REM sleep dreams.”

4.6. Free Will. The problem of free will is ancient. It appears in
Lucretius (De Rerum Natura, first century BC): “If all move-
ment is always interconnected, the new arising from the old in
a determinate order—if the atoms never swerve so as to origi-
nate some new movement that will snap the bonds of fate, the
everlasting sequence of cause and effect—what is the source of
the free will possessed by living things throughout the
earth?” (80).
The paradox of free will is captured by Dr. Samuel Johnson’s

(1709 to 1784) observation (81): “All theory is against the free-
dom of the will; all experience is for it.”
Stanislas Dehaene (15) bestows a contemporary voice: “Our

brain states are clearly not uncaused and do not escape the laws of
physics—nothing does. But our decisions are genuinely free when-
ever they are based on a conscious deliberation that proceeds auton-
omously, without any impediment, carefully weighing the pros and
cons before committing to a course of action. When this occurs, we
are correct in speaking of a voluntary decision—even if it is, of
course, ultimately caused by our genes [and circumstances].”
We add to Dehaene that computation takes time. To make a

decision, CTM evaluates its alternatives in an evaluation that takes
time, and during that time, the CTM is free, indeed can feel free,
to choose whichever outcome it deems (computes) best.
The TCS perspective thus informs our definition of free will.

Free will is the freedom to compute the consequences of differ-
ent courses of action—or as much of those consequences as is
possible within the available resources (time, space, computa-
tional power, and information)—and to choose from them
whichever course of action best suits one’s goals.

This definition incorporates both predictive dynamics (com-
pute the consequences of different courses of action) and
resource constraints (time, space, computational power, and
information).
For example, consider a CTM that is called on to play a

given position in a game of chess. Different processors suggest
different moves. The CTM’s main chess-playing processor
(assuming one exists; otherwise, a processor that has a “hi-level”
view of the game) indicates, by broadcast of a chunk in STM,
that it recognizes it has a choice of possible moves and that the
decision of which move to make merits a careful look at the
consequences of each move. At this point, faced with a selec-
tion of possible moves but not yet having evaluated the conse-
quences of those moves, the CTM is free to choose whichever
move it reckons best within the time constraints.
Will the CTM feel that it has free will?

1) Consider the moment that the CTM asks itself “What move
should I make?,” meaning that this question has risen to the
STM stage and through broadcast, has reached the audience
of LTM processors. In response, a number of those process-
ors submit suggestions to the competition. The winner of
the competition reaches the stage and gets broadcast. Because
gists are short, any such broadcast is short and therefore, rea-
sonably articulable.

2) The continued back-and-forth comments, commands, ques-
tions, suggestions, and answers that appear in STM and
globally broadcast to LTM give the CTM a knowledge of its
control. If the CTM was asked how it generated a specific
suggestion (i.e., what thinking went into making that sugges-
tion), its processors would be able to articulate the fraction
of conversation that reached the stage (although perhaps not
much more than that in the short term).

3) Many LTM processors compete to produce the CTM’s final
decision, but CTM is only consciously aware of what got
into STM, which is not all of what was submitted to the
competition. Moreover, much of CTM, meaning most of its
processors, is not privy to the unconscious chatter (through
links) among processors. To the CTM, enough is con-
sciously unknown about the process that the decision
appears at times to be plucked from thin air. Even so,
although CTM does not consciously know how its sugges-
tions were arrived at, except for what is in the high-level
broad strokes broadcast by STM, it knows that its sugges-
tions came from inside itself. The CTM can rightly take
credit for making its suggestions (after all, they did come
from inside the CTM) and can explain some of them with
high-level stories (section 2.5), and as for what it cannot
explain, it can say “I don’t know” or “I don’t remember.” It
is the knowledge that there are choices—that it (the CTM)
has knowledge of and about those choices and that it has
ignorance as well—that generates the feeling of free will.
Deterministic or not, the experiential feeling is one of free
will.

How important is randomness for this explanation of the
feeling of free will? Notice that no quantum physics is required
in the CTM for the above explanation. The only randomness is
that of the coin-flip neurons in the Up Tree competition and
whatever randomness, if any, the processors use in their proba-
bilistic algorithms. It can be shown, moreover, that the above
argument for the feeling of free will still applies for a
completely deterministic CTM (e.g., one that uses pseudoran-
domness). It follows—and we expect this will be a source of
contention—that even in a completely deterministic world, the
CTM will feel it has free will.

5. Summary of Methods

We consider consciousness from the perspective of TCS, a non-
experimental area of mathematics. Inspired by Alan Turing’s
simple yet powerful model of a computer, the TM, and by Ber-
nard Baars’ Theater of Consciousness, we define a substrate inde-
pendent computational model of consciousness, the CTM.
Formal definitions of conscious content, conscious awareness,
and the stream of consciousness in the CTM are followed by
arguments that the CTM supports high-level explanations for
these and other phenomena associated with consciousness,
including the feeling of consciousness. One purpose of our
model is to argue these claims. Another is to provide a TCS
foundation for understanding consciousness.

SI Appendix and ref. 49 extend this paper with additional fig-
ures and frequently asked questions (FAQ).

Data Availability. This is a TCS paper. There are no data underlying this work,
but please see the linked SI Appendix for additional information including an
extended summary, a new section on altered states, and relations of the CTM to
other theories of consciousness.
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