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Abstract 15 

We exploit identification of neuron types during extracellular recording to demonstrate how the 16 

cerebellar cortex’s well-established architecture transforms inputs into outputs. During smooth 17 

pursuit eye movements, the floccular complex performs distinct input-output transformations of 18 

temporal dynamics and directional response properties. The responses of different interneuron 19 

types localize the circuit mechanisms of each transformation. Mossy fibers and unipolar brush 20 

cells emphasize eye position dynamics uniformly across the cardinal axes; Purkinje cells and 21 

molecular layer interneurons code eye velocity along directionally biased axes; Golgi cells show 22 

unmodulated firing. Differential directional response properties of different neuron types localize 23 

the directional input-output transformation to the last-order inputs to Purkinje cells. Differential 24 

temporal dynamics pinpoint the site of the temporal input-output transformation to granule cells. 25 

Specific granule cell population dynamics allow the temporal transformations required in the 26 

area we study and generalize to many temporal transformations, providing a complete 27 

framework to understand cerebellar circuit computation. 28 

 29 

Impact statement 30 

We dissect the circuit computations performed by the floccular complex of the cerebellum 31 

during an exemplar sensory-motor behavior, taking advantage of knowledge of the circuit 32 

architecture, existence of discrete neuron types, and a newfound ability to identify neuron types 33 

from extracellular recordings. Our results describe the contributions of the major neuron types to 34 

the cerebellar input-output computations, identify the population dynamics needed in granule 35 

cells to support those computations, and to create a basis set to enable temporally-specific motor 36 

behavior and motor learning. 37 

 38 

Introduction 39 

Understanding how neural circuits process information to generate behavior is a fundamental 40 

goal of systems neuroscience. Population dynamics1,2 is a key feature of neural processing, and 41 

the challenge of generating behavior can be envisioned as multiple transformations3 of 42 

population dynamics - from sensory inputs4 to intermediate representations5 to the ultimate drive 43 

of precise muscle activations6. A complete understanding of how neural circuits transform 44 

population dynamics requires four key components: 1) precise control over the input stimuli and 45 

quantifiable behavioral outputs, 2) fundamental knowledge of the necessary brain regions and 46 

their underlying neuron types and circuit architecture, 3) recordings of activity from complete 47 

neural populations in the requisite brain regions, and 4) the ability to link neuron types with 48 

neural responses for the major neuron types within each circuit. We have achieved all four 49 

components for one brain region and one sensory-motor behavior and therefore can explain how 50 

a specific circuit computes, in both space and time.  51 

The cerebellum offers unique advantages for understanding neural circuit computations. First, 52 

the cytoarchitecture of the cerebellum is highly conserved across regions and species7,8, with a 53 

well-characterized circuit organization9 and discrete neuron types9,10 organized around a primary 54 

three-layer feedforward network11,12: incoming mossy fibers synapse onto granule cells, whose 55 

parallel fiber axons provide excitatory input to Purkinje cells, the sole output of the cerebellar 56 
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cortex. Additional neuron types10, including Golgi cells, unipolar brush cells, and molecular 57 

layer interneurons (among others13,14), use both feed-forward and recurrent connections11 to 58 

modulate the activity within the pathway between mossy fibers and Purkinje cells. Second, many 59 

cerebellar regions are crucial for the precise execution of motor behaviors15–19. Motor behaviors 60 

provide an ideal behavior to study neural circuit function as the parameters of movements can be 61 

quantified with high spatial and temporal precision. Third, recent advances in large-scale multi-62 

contact electrode technology20,21 have enabled extracellular recordings from large populations of 63 

well-isolated cerebellar neurons during motor behaviors22–27. Finally, and crucially, our recent 64 

work allows identification of many of the cerebellar neuron types directly from extracellular 65 

recordings made during behavior23,28. Together, the cerebellar circuit, advances in recording 66 

technology, parametrizable motor behavior, and cerebellar neuron-type identification satisfy the 67 

four key requirements to link neural circuit function to behavior. 68 

Here, we reveal how a full cerebellar circuit computes by taking advantage of knowing the input-69 

output transformation in the cerebellar floccular complex during an exemplar motor behavior for 70 

which it is essential18,29, smooth pursuit eye movements. The floccular complex causally controls 71 

smooth pursuit: it has disynaptic connections to extraocular motoneurons30 and microstimulation 72 

elicits short-latency smooth eye movements31,32. Recordings from directly-identified Purkinje 73 

cells33,34 and putative mossy fiber inputs tentatively characterize the input-output transformation 74 

of the floccular circuit. Purkinje cell responses are related to eye velocity32,35,36 with directional 75 

preferences that align with the vestibular labyrinths37. Mossy fiber inputs exhibit responses 76 

resembling motor corollary discharge signals, driven principally by a combination of eye 77 

position and velocity37,38 along the horizontal and vertical axes37. The requirement for seamless 78 

interaction of coordinate frames dictated by vestibular sensory signals and eye movement motor 79 

corollary discharge creates contrasting dynamics of floccular inputs and outputs and defines a set 80 

of floccular input-output transformations.  81 

Our contribution is to show how specific interneuron types work together to transform mossy 82 

fiber inputs into Purkinje cell outputs through circuit function and to highlight how the floccular 83 

circuit operation could generalize widely. We overcame two challenges that have prevented a 84 

complete understanding of cerebellar computations from extracellular recordings to date: 1) 85 

granule cells are inaccessible to conventional recording technologies23, and 2) Purkinje cells 86 

were the sole neuron type within the cerebellar circuit that could be identified definitively. Our 87 

recordings from several classes of identified interneurons allow us to discriminate among 88 

previously-proposed models of granule cell dynamics39–44. We used computational modeling to 89 

identify granule cell representations with the capacity to generate the measured responses of all 90 

downstream neural populations. The result is a complete model of cerebellar circuit processing 91 

that incorporates granule cell computations, accounts for downstream population dynamics, and 92 

also explains several previous behavioral and neurophysiological observations during cerebellar-93 

dependent smooth pursuit learning. Thus, we believe we have identified how a complete neural 94 

circuit computes to generate well-calibrated motor behavior. 95 

Results 96 

We first confirm prior reports that the floccular complex performs directional and temporal 97 

transformations, rather than acting as a simple relay from mossy fiber inputs to Purkinje cell 98 

outputs. We further demonstrate that different functional computations are partitioned along 99 

neuron-type boundaries.  100 
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The floccular complex performs active computations during pursuit 101 

We recorded extracellular action potentials from the floccular circuit (Figure 1A) while monkeys 102 

performed smooth pursuit eye movements. Using expert identification28 (see Methods), validated 103 

via ground-truth optogenetic identification in mice23, we successfully identified all major neuron 104 

types schematized in Figure 1A, with the exception of granule cells. During smooth pursuit 105 

tracking, monkeys fixated a central dot for a randomized interval (400-800 ms) before the target 106 

started to move at a constant velocity for 650 ms. In the example trial in Figure 1B, the target 107 

moved rightward at 20 deg/s. Monkeys tracked the target throughout its motion and maintained 108 

eccentric fixation for an additional 350 ms to receive fluid reward. Targets moved at 10, 20, or 109 

30 deg/s along the four cardinal directions.  110 

 

Figure 1. Temporal and directional input-output transformations performed by the cerebellar 

floccular complex during smooth pursuit. (A) Simplified schematic of the cerebellar circuit in the 

floccular complex. (B) Eye and target position (top) and velocity (bottom) versus time for an example 

smooth pursuit trial where the target moved exclusively in the horizontal direction. (C) Population 

dynamics derived via principal component analysis conducted across target speeds (10, 20, 30 deg/s, 

increasingly dark lines) and directions (ipsiversive, contraversive, up, and down) for mossy fibers (top) 

and Purkinje cells (bottom). (D) Mean population responses of mossy fibers and Purkinje cells in their 
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preferred and anti-preferred directions, relative to their respective baseline responses. Shaded bands 

represent mean ± SEM across neurons. Histograms on the right summarize the regression coefficients 

for model of firing rate in the preferred and anti-preferred directions as a function of eye position (P), 

velocity (V), and acceleration (A). (E) Polar plots showing the distribution of preferred directions 

across the populations of recorded mossy fibers and Purkinje cells. Preferred directions are defined as 

pursuit direction with maximal mean positive deviation of firing rate (0 to 650 ms after target motion 

onset) relative to the pre-trial baseline response. We note that the difference in direction tuning in 

Purkinje cell state-space trajectories between C and E is due to the sign-agnostic nature of principal 

component analysis along with the comparable magnitudes of Purkinje cell modulation in the preferred 

and anti-preferred directions.   

 111 

Separate principal component analyses of the firing rates in populations of mossy fibers and 112 

Purkinje cells reveal distinct neural state-space trajectories1,45 (Figure 1C). Mossy fiber 113 

trajectories aligned closely with the horizontal and vertical axes of the eye. The trajectories 114 

terminated eccentrically in state-space with magnitudes that scaled with pursuit speed, indicating 115 

persistent activity related to eccentric eye positions across all speeds and directions following 116 

pursuit termination. In contrast, Purkinje cell trajectories showed principal axes that were rotated 117 

relative to the cardinal axes. Their neural trajectories returned to near the origin at movement 118 

completion, consistent with the absence of a relationship to eye position. For both neuron types, 119 

the first two dimensions captured a substantial portion of the response variance (38% and 29% 120 

for mossy fibers and 23% and 20% for Purkinje cells, a considerable amount given that we are 121 

accounting for responses in 4 directions by 3 speeds of target motion). 122 

To directly link neural trajectories to firing patterns, we compared mean population responses in 123 

the preferred and anti-preferred directions (preferred + 180°) across all speeds (Figure 1D). 124 

Mossy fiber responses resembled eye position traces, with persistent firing at movement 125 

termination that scaled approximately linearly with pursuit speed (preferred direction R2 = 0.83 ± 126 

0.03). The asymmetry of mossy fiber responses in the preferred versus anti-preferred directions 127 

stems from complete cessation of firing in the anti-preferred direction for some mossy fibers. In 128 

contrast, Purkinje cell responses peaked approximately 200 ms after motion onset with 129 

magnitudes that scaled with pursuit speed (preferred direction R2 = 0.75 ± 0.03) and returned to 130 

baseline at the end of pursuit regardless of final eccentric eye position. Thus, an important 131 

signature of whether neurons have position-related responses is whether firing rate (1) remains 132 

elevated at the end of the movement while the monkey fixates an eccentric target and (2) post-133 

movement responses scale with target speed because faster target motions make the final eye 134 

position more eccentric. Regression analysis confirmed equal relations to eye position and 135 

velocity with no relation from eye acceleration for mossy fibers, and a dominant relation to eye 136 

velocity in Purkinje cells (histograms on right of Figure 1D). Statistical analysis verified that 137 

encoding of position (t(185)=4.08, p < 10-5), velocity (t(185)=-2.86, p=0.005) and acceleration 138 

(t(185)=-2.12, p=0.035) all differed across mossy fibers versus Purkinje cells (independent 139 

samples t-test). Documentation of the responses of each individual Purkinje cell and mossy fiber 140 

appears in Supplemental Figure 1.  141 

Directional tuning properties also differed between mossy fibers and Purkinje cells (Figure 1E). 142 

Mossy fibers showed uniformly distributed preferred directions across the principal axes 143 

(circular dispersion: 𝑅= 0.13). Purkinje cells’ preferred directions were more strongly biased, 144 
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with preferred directions close to ipsiversive and downwards (𝑅= 0.58), consistent with prior 145 

reports22,35,36,38,46,47. Together, these analyses reveal two fundamental circuit computations: a 146 

temporal transformation that converts the sustained activity of mossy fibers into transient 147 

responses in Purkinje cells and a directional transformation that converts uniformly distributed 148 

directional inputs into biased directional outputs.  149 

Distinct temporal dynamics of different cerebellar neuron types 150 

Having established that the cerebellum must perform transformations of mossy fiber population 151 

dynamics, our next goal was to identify whether different cerebellar neuron types have distinct 152 

computational roles in transforming inputs to outputs. Indeed, mean firing rate profiles for each 153 

neuron type during preferred direction pursuit at 20 deg/s suggested functional distinctions 154 

across neuron classes (Figure 2A). The responses of mossy fibers and unipolar brush cells 155 

closely tracked eye position and remained elevated during eccentric fixation at the end of pursuit. 156 

Molecular layer interneurons and Purkinje cells exhibited more transient temporal patterns 157 

related to eye velocity, with firing rates that returned to close to baseline at the end of the 158 

movement while the monkey fixates an eccentric target. Golgi cells showed minimal modulation 159 

during pursuit.  160 

 

Figure 2. Functional heterogeneity of responses across cerebellar neuron types during smooth 

pursuit eye movements. (A) Mean modulation of firing rate as a function of time for cerebellar 
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neurons, segregated by neuron type, during 20 deg/s pursuit in each neuron’s preferred direction. Firing 

rates show the modulation relative to a pretrial baseline. Error bands show mean ± SEM across 

neurons. (B) Top and bottom plots show the projection of neuron firing rates in their preferred direction 

onto the first two principal components (PC1 and PC2) computed across all identified neurons recorded 

in the cerebellar flocculus. The different colored traces show the time course of the relevant principal 

component projection, and the contributions of eye position, velocity, and acceleration derived by 

fitting a kinematic model to the projected timeseries. Black dashed trace shows the overall fit of the 

kinematic model to the time course of the projected principal component. (C) Scatter plot of the 

weighting onto the first two principal components. Each dot corresponds to an individual identified 

neuron, colored by neuron type. Mean centroids are: Golgi cells, (0.006 ± 0.002, 0.005 ± 0.002); 

Purkinje cells, (0.016 ± 0.003, 0.042 ± 0.005); molecular layer interneurons (0.042 ± 0.007, 0.034 ± 

0.013); mossy fibers (0.059 ± 0.005, 0.014 ± 0.006); and unipolar brush cells (0.075 ± 0.007, 0.001 ± 

0.008). (D) Distribution of angular locations, irrespective of magnitude, for each neuron type derived 

from the scatter plot shown in C.  

 161 

Functional segregation across neuron types remained clear when analyzed at the level of 162 

individual neurons instead of population means. Principal component analysis of trial-averaged 163 

responses for pursuit in each neuron’s preferred direction at 20 deg/s identified two dominant 164 

components that together explained 81% of the population variance (49% and 32%, 165 

respectively). The first component (Figure 2B, top) showed a near monotonic increase over time 166 

with sustained deviation from baseline following pursuit termination. Linear regression of 167 

kinematic variables showed a strong relation to eye position (standardized coefficient, β = 0.84) 168 

and eye velocity (β = 0.50). The second principal component (Figure 2B, bottom) exhibited an 169 

early peak followed by a return to near baseline; it was strongly related to eye velocity (β = 0.83) 170 

and somewhat to eye acceleration (β = 0.24). 171 

Individual neuron weights in the two-dimensional space defined by the two dominant 172 

components revealed across-class distinctions along with some within-class variation (Figure 173 

2C). For instance, Golgi cells are concentrated near the origin, Purkinje cells show near zero 174 

weights in the first dimension but consistently positive weights in the second dimension, and 175 

mossy fibers and unipolar brush cells show the opposite trend with weights centered near zero in 176 

the second dimension but strongly positive in the first dimension. Permutation analysis revealed 177 

that all neuron type centroids were significantly different from a neuron-type agnostic 178 

distribution (mossy fibers, n = 86, p = 10-4; unipolar brush cells, n = 30, p = 10-4 Golgi cells, n = 179 

186, p = 10-4; Purkinje cells, n = 101, p = 10-4; molecular layer interneurons, n = 23, p = 0.039). 180 

Much of the within-neuron-type variation in the spatial distribution shown in Figure 2C results 181 

from heterogeneity in response magnitude rather than fundamental differences in temporal 182 

processing within neuron types. Probability distributions of the angle of each neuron within the 183 

two-dimensional space (Figure 2D) show marked differences across neuron types in the 184 

distributions of the relative contributions of the first two principal components to neuron firing. 185 

The distinctive neuron-type-specific response patterns highlight active computation within the 186 

circuit to alter the temporal properties of the signals, with potentially distinct computational roles 187 

for each neuron type. 188 

Distinct roles of cerebellar interneurons in floccular circuit processing 189 

Using our ability to identify other neuron types in the cerebellar circuit reliably23,28, we next 190 

examine the contributions of Golgi cells, molecular layer interneurons, and unipolar brush cells 191 
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to the input-output transformations as these neuron types likely serve to alter information 192 

transmission through the cerebellar circuit. 193 

 

Figure 3. Response characteristics of Golgi cells, molecular layer interneurons, and unipolar 

brush cells during smooth pursuit eye movements. (A) Autocorrelogram of an exemplar Golgi cell 

(top). Raster plot of the same Golgi cell aligned to the onset of ipsiversive target motion (bottom). 

Black curve shows the mean firing rate across all trials shown in the raster plot. (B) Preferred and anti-

preferred (preferred + 180°) direction modulation of firing, averaged across the complete Golgi cell 

population, relative to baseline firing. (C) Probability distribution showing the modulation across the 

Golgi cell population in the preferred pursuit direction. (D) Probability distribution of CV2 of Golgi 

cells computed across complete recording sessions. Red dotted lines in C and D denote population 

means across all Golgi cells. (E) Raster plots for an exemplar molecular layer interneuron in its 

preferred (top, upwards pursuit) and anti-preferred directions (bottom, downwards pursuit). Black 

curves denote the mean firing rate of the molecular layer interneuron across the trials shown in the 

raster. (F) Mean responses of the complete molecular layer interneuron population in the preferred and 

anti-preferred pursuit directions (20 deg/s pursuit), again relative to baseline firing. (G) Probability 

distributions of preferred directions for molecular layer interneurons (purple) and simultaneously-

recorded Purkinje cells (blue). (H) Rasters for an exemplar unipolar brush cell in its preferred 

(downwards) and anti-preferred (upwards) pursuit directions. Black curves denote mean firing rates 

during pursuit across the trials plotted in the raster. (I) Mean firing rate of the unipolar brush cell 

population, relative to baseline, in their preferred and anti-preferred directions. (J) Comparison of 
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standardized coefficients relating eye position (P), velocity (V) and acceleration (A) to firing rates of 

mossy fibers (pink, top) and unipolar brush cells (brown, bottom) for pursuit in each neuron’s preferred 

direction at 20 deg/s. Shaded regions and error bars in all panels denote mean ± SEM across neurons. 

 194 

Golgi cells are inhibitory neurons that are hypothesized to regulate granule cell activity via 195 

recurrent excitation from granule cells’ parallel fibers48–50. Given their position in the cerebellar 196 

circuit, Golgi cells could contribute to either the temporal or directional transformations. For 197 

instance, Golgi cell responses consistent with eye position might subtract or block the component 198 

of mossy fiber activity related to eye position via feedforward or recurrent inhibition, thereby 199 

creating granule cell responses related primarily to eye velocity. Yet, we found that Golgi cells in 200 

the floccular complex showed minimal modulation during smooth pursuit.  201 

A typical Golgi cell showed regular firing at a low rate of ~12 spikes/s and no temporal 202 

modulation of firing during ipsiversive pursuit at 20 deg/s (Figure 3A). The full Golgi cell 203 

population also showed limited modulation during pursuit in their preferred or anti-preferred 204 

directions at 20 deg/s (Figure 3B), quantified as the mean modulation in the preferred direction 205 

(Figure 3C, 0.62 ± 0.13 spikes/s). Golgi cell firing was highly regular as measured by the mean 206 

“CV251” (Figure 3D, 0.25 ± 0.01). Only 46/186 Golgi cells showed statistically significant 207 

modulation via permutation testing across pursuit directions. We conclude that Golgi cells 208 

provide tonic but temporally-unmodulated inhibition of granule cells. 209 

Molecular layer interneurons are positioned to perform feedforward or lateral inhibition52 of 210 

Purkinje cells and thus could impact Purkinje cell activity both directionally and temporally. We 211 

identified molecular layer interneurons by their monosynaptic inhibition of known Purkinje cells 212 

in spike-timing cross-correlograms (see Methods). In its preferred direction, a typical molecular 213 

layer interneuron’s firing (Figure 3E) is related primarily to eye velocity, as it returned to near 214 

baseline levels at pursuit termination, mirroring Purkinje cells. The same molecular layer 215 

interneuron displayed minimal modulation of firing rate during pursuit in the anti-preferred 216 

direction, a trend confirmed in averages of firing rate across the complete molecular layer 217 

interneuron population (Figure 3F). The mean modulation of the molecular layer interneuron 218 

population was 12.2 ± 3.0 spikes/s in their preferred direction, but only 0.4 ± 1.6 spikes/s in their 219 

anti-preferred direction. The preferred direction of molecular layer interneurons was almost 220 

always opposite that of their connected Purkinje cells (Figure 3G, mean angular distance: -121.8° 221 

± 10.4°, circular mean ± SEM). The opposite preference for pursuit across the two populations 222 

suggests that molecular layer interneurons likely contribute to the directional preferences of 223 

Purkinje cells by providing inhibition in the Purkinje cell’s anti-preferred direction of pursuit.  224 

Unipolar brush cells are relatively common in the oculomotor regions of the cerebellar cortex, 225 

but relatively rare in other cerebellar regions53, suggesting a potential specialization for 226 

oculomotor behavior54. A typical unipolar brush cell (Figure 3H) showed clear positive and 227 

negative modulation in its preferred and anti-preferred directions and had fully sustained 228 

modulation in both directions after pursuit termination implying that they, like mossy fibers, 229 

respond primarily to eye position. The same response profile appeared in the averages across the 230 

complete population of unipolar brush cells, with sustained activity post-pursuit (Figure 3I). 231 

Regression analysis to fit the firing rate of each neuron as a function of the simultaneously 232 

recorded eye position, velocity, and acceleration showed stronger eye position encoding for 233 
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unipolar brush cells compared to mossy fibers (Figure 3J, standardized coefficient, β = 0.65 ± 234 

0.07 versus 0.40 ± 0.06, t(114) = -2.36, p = 0.02). The more dominant eye position response of 235 

the full population of unipolar brush cells suggests that they either perform integration of their 236 

mossy fiber inputs, consistent with previous in vitro analyses55,56, or selectively discount velocity 237 

signals in their inputs from mossy fibers. Documentation of the response of each individual 238 

Golgi cell, molecular layer interneuron, and unipolar brush cell appears in Supplemental Figure 239 

1. 240 

Golgi cells, molecular layer interneurons, and unipolar brush cells do not seem to play a role in 241 

the temporal input-output transformation in the floccular complex. Golgi cells are largely 242 

unmodulated, molecular layer interneurons are already related to eye velocity, and unipolar brush 243 

cells are more related to position than are mossy fibers. Any role for the excitatory unipolar 244 

brush cells would require subtraction from spontaneous activity that is thought not to exist in 245 

granule cells57. Finally, the temporal transformation cannot be explained by synchrony in 246 

multiple mossy fibers inputs to a granule cell because we found no evidence for mossy fiber 247 

synchrony other than the amount expected from covariation of mossy fiber firing rates during 248 

pursuit (Supplemental Figure 2).  249 

A data-driven approach for identifying granule cell transformations 250 

Two key findings motivated a computational investigation of the transformation of mossy fiber 251 

input in the granule cell layer, given that we were not able to record from granule cells 252 

themselves. First, our analysis of other cerebellar neuron types, above, failed to reveal any 253 

candidates to mediate the temporal transformation from mossy fiber position signals to the 254 

velocity-related Purkinje cell responses. Second, Purkinje cell and molecular interneuron 255 

population responses both reflected the absence of a large position component, suggesting that 256 

they receive common inputs after a temporal transformation in the granule cell layer. 257 

We started with a modeling approach using recurrent neural networks (Figure 4A), with the goal 258 

of identifying the requisite properties of granule cell processing in a data-driven manner. 259 

Recurrent neural networks are particularly amenable to understanding circuit computations 260 

because the dynamics governing how the model achieves the desired computation is 261 

unconstrained yet amenable to rigorous interrogation58–60. We realize that the recurrent neural 262 

network is not biologically realistic, but our goal in this analysis was to ask a computational 263 

question about ‘how’ to solve the computational problem and defer realistic biological 264 

implementation until we have identified the crucial components of the transformation.   265 

We fed single-trial mossy fiber inputs into a recurrent “hidden” layer whose weighted outputs 266 

were then supplied as inputs to model “granule units” (Figure 4A, arrowhead). The granule units 267 

were constrained to have strictly positive responses by a sigmoid activation function. Their 268 

outputs were transformed via a fully-connected non-negative weight matrix that was optimized 269 

to predict the time-varying single-trial firing rates of Purkinje cells (see Methods). The recurrent 270 

neural network in the model produced dynamics that allowed the model Purkinje cells to 271 

reproduce the mean temporal profiles of recorded Purkinje cell responses across a range of 272 

pursuit speeds (Figure 4B, R2 = 0.97).  273 

We obtained insights into the underlying computations by examining the diversity of temporal 274 

response properties exhibited by the granule units. When the recurrent neural network was 275 
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supplied with a step input, some units produced transient, high-pass filter like responses, while 276 

others showed more sustained, low-pass filter like activity (Figure 4C), reminiscent of bandpass 277 

filters with varying time constants. The latency of each granule unit’s peak response was 278 

correlated to its response duration (correlation test between rise and decay time constants, t(70) = 279 

6.88, p < 10-9). Similar patterns of units that we could characterize as high-pass and low-pass 280 

were evident when we drove the model with trial-averaged mossy fiber pursuit responses (Figure 281 

4D). Thus, the model network learned a range of temporal filtering characteristics where the 282 

degree of filtering and subsequent duration of firing were temporally linked.  283 

A generative model of granule cell temporal transformations 284 

We developed a generative model of granule cell firing that could capture the key characteristics 285 

revealed by the recurrent neural network model in Figure 4A-D. Replacing the recurrent neural 286 

network model with a generative model served two primary purposes. First, it allowed us to 287 

embed granule cell population responses in otherwise biomimetic circuit models. For example, 288 

we could simulate the fact that granule cells receive only four upstream inputs12,61,62, a feature 289 

not present in the recurrent network model. Second, a generative model affords the flexibility to 290 

predict granule cell population dynamics to novel inputs, enabling us and others to extend the 291 

model and investigate how it generalizes beyond the specific behavior and dataset from our 292 

cerebellar region and task.  293 

Based on the predictions of the RNN model and from iterative attempts to understand how the 294 

granule cell population response would contribute to multiple features of pursuit behavior, we 295 

incorporated four key features into the generative model: 1) a broad range of temporal filter 296 

responses across the population so that granule units temporally tile the duration of the trial; 2) 297 

strongly correlated onset and offset time constants to enable scalar variability63 (i.e., “Weber 298 

law”) behavior for learned timing; 3) increasing granule unit population activity with increasing 299 

pursuit speeds to allow Purkinje cell firing to scale with speed; and 4) consistent timing of 300 

individual granule unit activations across pursuit speed to enable generalization across pursuit 301 

speeds. These characteristics are consistent with previously proposed “spectral timing” models of 302 

granule cell activity39,64,65. 303 

We simulated each granule unit as a dynamical system with two states. The system functioned as 304 

a generalized differentiator whose output was half-wave rectified (see Methods). The resulting 305 

granule units exhibited a range of temporal filtering properties that agreed well with the step-306 

responses of model granule units predicted by the recurrent neural network. Some had rapid 307 

input integration and fast decay leading to short-latency, transient responses, while others had 308 

slower integration and decay leading to more prolonged activity with later peaks (Figure 4E). We 309 

contrived a strong correlation between the rise and decay time constants (t(88) = 31.1, p = 10-49). 310 

The granule unit responses in the generative model showed temporal diversity similar to that in 311 

the recurrent neural network model (compare Figures 4D and F) when supplied with the mean 312 

mossy fiber response during pursuit (Figure 4G) as input. As expected, the activity of early-313 

peaking units returned to baseline quickly and that of late-peaking units remained elevated for 314 

longer durations (see responses of three exemplar granule units, Figure 4H). The mean response 315 

of a population of 100 granule units (Figure 4I) qualitatively matched the temporal profiles 316 

observed in experimentally recorded Purkinje cells (Figure 4J, blue curves). Further, optimizing 317 

the weights of the granule units via non-negative least squares to the mean responses across the 318 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 22, 2025. ; https://doi.org/10.1101/2025.02.21.639459doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.21.639459
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 12 

population of Purkinje cells provided an excellent fit (Figure 4J, R2=0.92). Thus, temporal tiling 319 

in a population of granule cells can solve the position-to-velocity transformation from mossy 320 

fiber to Purkinje cells. We note that there are a number of implementations of short-term 321 

plasticity in the mossy fiber to granule cell synapse that could produce the temporally-tiled 322 

granule cell basis set implemented by our models of granule unit activity66. Also, other extant 323 

models of granule cell responses42 share some of the features of the generative model and, 324 

therefore, are able to reproduce the time varying Purkinje cell firing to some degree, albeit less 325 

well than our model (Supplemental Figure 3). 326 

 

Figure 4. Models reveal a potential mechanism of the temporal transformation between mossy 

fibers and Purkinje cells. (A) Recurrent neural network (RNN) model architecture schematic. RNN 

units acted as a pool of potential dynamics for putative “granule units” (black arrowhead). (B) Success 

of the model architecture shown in A to account for Purkinje cell data. Dashed black traces show mean 
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RNN model responses to three different speeds of target motion. Blue traces show soft-normalized45 

population mean Purkinje cell firing rates across speeds. (C) Responses of granule units in the RNN 

model to a step change in the input from mossy fibers at t=0 ms. Each unit’s response was normalized 

to its maximum firing rate. Rows are ordered by the time of the peak response. (D) Responses of 

“granule units” in the RNN model to the three trained pursuit speeds shown in B. Each granule unit’s 

response was normalized to its peak response across all three pursuit speeds and ordered based on the 

timing of the peak response to 30 deg/s target motion (far right). (E) Responses of granule units in the 

generative model to a step input of mossy fiber responses, as in C. (F) Responses of granule units in the 

generative model to four randomly sampled mossy fiber inputs across pursuit speeds. Granule unit 

responses are normalized and ordered based on the time of their peak response to 30 deg/s pursuit, as in 

D. (G) Mean responses of mossy fibers supplied as input to the generative granule unit model. (H) 

Representative responses of 3 granule units to the mean mossy fiber input shown in G. (I) Mean 

population responses of the granule unit populations in F across pursuit speeds. (J) Fits (black traces) to 

the mean responses of Purkinje cells across pursuit speeds (colored traces) by the non-negative 

weighted outputs of the generative model of granule units.  

 327 

A cerebellar circuit model that reproduces the directional and temporal response 328 

properties of individual Purkinje cells and molecular layer interneurons 329 

Armed with a generative model of granule population processing, our next step was to determine 330 

whether weighted combinations of generative granule cells could reproduce the temporal firing 331 

rate responses and direction tuning of individual molecular layer interneurons and Purkinje cells 332 

during pursuit eye movements. The circuit model (Figure 5A) consisted of 86 mossy fibers with 333 

the firing profiles from our recorded population, 1,000 granule units based on the generative 334 

filter model, 250 molecular layer interneurons (augmented from our recorded n=23 population), 335 

and our 101 recorded Purkinje cells. Each granule unit received input from 4 randomly-chosen 336 

mossy fibers (Figure 4B, left top), consistent with the number of inputs observed 337 

anatomically12,61,62. As the mossy fiber population showed preferred direction distributions 338 

aligned to the cardinal axes with approximately equal magnitudes (Figure 5B, right top) and 339 

relatively symmetric tuning (Figure 5B, left bottom), the modeled granule unit population 340 

inherited the uniform distribution of preferred directions across the cardinal directions (Figure 341 

5B, right bottom). We used non-negative least squares regression of the full population of 342 

granule unit inputs to fit the firing profiles of the 250 molecular layer interneurons across pursuit 343 

directions (see Methods). We obtained excellent fits of both direction tuning and temporal 344 

dynamics (top row of Figure 5C, purple trace, R2=0.98) with a mean R2 of 0.98 across the 345 

augmented population of molecular layer interneurons (Figure 5E). 346 

We also obtained excellent fits to the simple-spike firing of all individual Purkinje cells 347 

(examples in Figure 5C) with weighted inputs from both the granule cell activations and the 348 

augmented molecular layer interneuron population; preferred directions of molecular layer 349 

interneurons were rotated by 180° to account for the opposite preferred directions relative to 350 

Purkinje cells (Figure 3G). For the three example Purkinje cell responses in Figure 5C the 351 

minimum R2 was 0.97. Across the population of 101 Purkinje cells, the mean R2 was 0.94 352 

(Figure 5F). Thus, the simplified model of granule cell dynamics provides a sufficient basis set 353 

to account fully for the activity of individual molecular layer interneurons and Purkinje cells. 354 
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Figure 5. Model granule cell populations provide a sufficient basis for simulation of molecular 

layer interneuron and Purkinje cell responses. (A) Schematic diagram of a circuit model of the 

cerebellar cortex used to predict the responses of individual molecular layer interneurons and Purkinje 

cells. (B) Schematic denotes random convergence of four mossy fibers on a model granule cell (with 

intrinsic dynamics, see Methods). Bottom plot shows the responses of an example mossy fiber to 20 

deg/s pursuit in the four cardinal directions. Right polar plots show the magnitude and preferred 

directions of mossy fibers (top) and directional preferences of modeled granule cell units (bottom). (C) 

Fitted responses of an exemplar molecular layer interneuron (top row) and three exemplar Purkinje 

cells (rows 2-4) to 20 deg/s pursuit in four directions relative to each neuron’s preferred direction of 

pursuit. Black traces show model fits in all panels. (D) Blue traces show mean modulation of Purkinje 

cell firing, black graces show mean model fits, and purple and gray graces show mean inputs from 

molecular layer interneurons and granule units. (E) Mean model R2s for molecular layer interneurons 

and (F) Purkinje cells. Vertical red lines in E-F denote the mean across the respective populations.  

 355 

To understand how the model works, and potentially how the cerebellar circuit computes, we 356 

analyzed the weighted contribution of granule cells and molecular layer interneurons to Purkinje 357 

cell firing across directions (Figure 5D). In the preferred direction, Purkinje cell activity was 358 
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driven almost entirely by excitatory input from the granule units. In the anti-preferred direction, 359 

the molecular layer interneuron population provided significant inhibitory input to counteract the 360 

fact that granule units delivered increased rather than decreased excitation. In orthogonal axes, 361 

inputs from granule units and molecular layer interneurons approximately cancelled, resulting in 362 

Purkinje cell responses that were unmodulated from baseline levels. Thus, our model predicts 363 

that the two inputs operate partly as reciprocal excitation and inhibition and partly in the 364 

balanced E/I regime that seems to predominate in the cerebral cortex67–70.   365 

Emergent properties of the cerebellar circuit model 366 

Our cerebellar circuit model was capable of performing the temporal and directional 367 

transformation between mossy fiber inputs and Purkinje cell simple-spike firing during pursuit 368 

eye movements across directions. We next sought to test whether the model had emergent 369 

properties that could account for previously described behavioral and neurophysiological 370 

observations obtained during pursuit-direction learning46,71–74.  371 

Previous recordings in the floccular complex during pursuit learning tasks have demonstrated the 372 

critical role of climbing fiber-mediated plasticity at the parallel fiber to Purkinje cell 373 

synapse46,47,73,75. Complex-spike firing on single learning trials causes a well-time depression of 374 

simple-spike firing on the next trial46,47,73,75. Further, the probability of complex-spike firing 375 

across blocks of tens to hundreds of learning trials is correlated with the magnitude of reductions 376 

in simple-spike responses46,75. When imbued with these features, the circuit model in Figure 5 377 

reproduced multiple experimental observations that were not built into its design. We will show 378 

below that the properties of the granule unit basis set in relation to time and eye velocity are 379 

necessary features for the emergent properties of the model during pursuit learning. 380 

To produce directional learning in pursuit, the monkey tracks a target that moves at a constant 381 

speed in an initial “pursuit direction.” After a fixed duration, an orthogonal velocity component 382 

(the “instruction”) is added to the target’s motion, so that the target moves diagonally71,72 (Figure 383 

6A, top). In the velocity domain, target motion comprises a 650-ms duration step of velocity in 384 

the initial, pursuit direction (Figure 6A, middle), along with a 400-ms duration step of velocity in 385 

the learning direction starting 250 ms later (Figure 6A, bottom). The instructive change in target 386 

direction drives behavioral learning, assayed in the next trial or over short bouts of learning 387 

trials. Learning comprises an appropriately-timed deviation of the eyes in the direction of the 388 

preceding instruction that accumulates over trials (Figure 6A, arrowhead). The instruction also 389 

evokes complex-spike responses in the 100 milliseconds following the instructive stimulus 390 

(Figure 6D, shaded region) and causes a well-timed depression of simple-spike firing rate 391 

(Figure 6G).  392 

The model reproduces our previous results on generalization of single-trial learning72. To study 393 

generalization, we induced learning with pursuit target motion at 20 deg/s and measured learning 394 

in the subsequent test trial with slower or faster pursuit target motion (Figure 6B). In our 395 

experiments72, eye movement deviation in the instruction direction of the test trial scaled with 396 

test target speed in the pursuit direction (Figure 6E). We simulated the learning conditions in our 397 

model by reducing the connection weights from the subset of parallel fibers active at the time of 398 

instruction during pursuit at 20 deg/s (250 ms, red arrow) and measuring the learning-induced 399 

changes in Purkinje cell simple-spike output on the subsequent trial for pursuit speeds of 10, 20, 400 

and 30 deg/s. The model predicted a learned depression in the Purkinje cell population response 401 
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relative to simulated probe trials without a preceding learning trial that scaled with pursuit target 402 

speeds (Figure 6H), in agreement with our behavioral results. The scaling of firing rates with 403 

pursuit speed arises because the magnitude of granule cell population activity increases with 404 

pursuit speeds and a fixed amount of synaptic depression causes a post-synaptic response that 405 

scales with the firing of the pre-synaptic fibers. 406 

 

Figure 6. Emergent properties of the circuit model of the cerebellar cortex during pursuit 

learning. (A) Target position trajectory during a direction-learning trial (top). Eye and target velocity 

timeseries in the original pursuit direction (middle) and orthogonal instructive direction (bottom). 

Arrowhead in the bottom plot highlights eye velocity after 100 learning trials in the same direction. (B) 

Target velocity profiles for a learning paradigm that tests speed generalization. Learning is instantiated 

as in A (top and middle traces). Speed generalization is probed in test trials (bottom) where target speed 

in the original pursuit direction is varied. (C) Target velocity profiles for a pursuit learning paradigm 

that tests learned timing of the instructive stimulus. An instructive signal occurs at either 150 ms, 250 

ms, or 500 ms after target motion onset (middle). Learning is probed after 100 learning trials in a test 

trial with target motion only in the pursuit direction (bottom). (D) Complex spike response measured 

during direction learning in trials where the instruction was in the preferred complex-spike direction 

(CS-on) of the Purkinje cell under study. Grey shaded region denotes instruction-linked complex-spike 

period. (E) Eye velocity responses after learning, tested with probes of various speeds from B. Data 

adapted from reference 72. (F) Eye velocity responses after 100 learning trials using different instruction 

timings, as in C. Data replotted from reference 71. (G) Complex-spike-linked trial-over-trial change in 

simple-spike firing for the Purkinje cell shown in D. Grey shaded region highlights the well-timed 

simple-spike depression due to the occurrence of a complex spike following the instruction from D. (H) 

Model predicted change in simple-spike responses to the paradigm of B. (I) Model predicted change in 
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simple-spike firing following a single learning trial with each of the three instruction timings from the 

experimental paradigm of C. Shaded regions in all panels denotes mean ± SEM across neurons or 

behavioral learning paradigm replicates. 

 407 

The model also reproduces the impact of the timing of the instructive stimulus71 on the 408 

magnitude and duration of the learned behavioral response. To study learned timing, we repeated 409 

several hundred learning trials with a fixed interval of 150, 250, or 500 ms between the onset of 410 

target motion and the time of the instruction71 (Figure 6C).  In the data, longer intervals yielded 411 

smaller and temporally-broader behavioral learned responses (Figure 6F). We simulated learned 412 

timing in our model by reducing the connection weights to Purkinje cells from parallel fibers that 413 

were active at one of the three intervals post-target motion onset: 150 ms, 250 ms, and 500 ms 414 

(colored arrows in Figure 6I). The resulting changes in modeled Purkinje cell simple-spike 415 

responses (Figure 6I) were consistent with the timing-dependent characteristics observed in 416 

learned eye movement responses (Figure 6F). The dependence of modeled learned response on 417 

the timing of the instructive stimulus is due to positive correlation between peak and duration 418 

time constants for granule layer units. Granule cell axons subject to plasticity due to an early 419 

complex spike have smaller response widths than do the granule cells active later in the pursuit 420 

trial. Comparable temporal basis sets provide a neural mechanism for the learned timing in eye 421 

blink conditioning66. 422 

Links between complex spikes and Purkinje cell directional and temporal tuning 423 

By genetically altering the projections from the inferior olive to the flocculus in mice, an elegant 424 

study demonstrated that the directional modulation of Purkinje cell simple spikes is dictated by 425 

the directional preference of climbing fibers76. With this in mind, we wondered whether the 426 

simple-spike responses measured in floccular Purkinje cells in the monkey during pursuit may 427 

have emerged as a consequence of the tuning of climbing fibers and whether climbing fibers 428 

might control direction tuning, temporal dynamics, or both. Therefore, we investigated the 429 

potential relationship between complex-spike responses and Purkinje cell simple-spike activity, 430 

now during baseline pursuit rather than in relation to pursuit learning.  431 

We observed an anti-correlation between the directional preferences of simple spikes and 432 

complex spikes, both in absolute preferred direction22,46,47,77,78 (Figure 7A) and, for both the 433 

preferred and non-preferred directions, in the magnitude of the simple-spike response during 434 

pursuit and the probability of complex spikes (Figure 7B, R2 = 0.16, t(196) = -6.2, p < 10-9). 435 

Here, we aligned Purkinje cell simple- and complex-spike responses to the preferred direction of 436 

complex spikes (CS-on), defined as the direction of pursuit that elicited the maximum increase in 437 

complex-spike responses relative to baseline from pursuit onset to offset. In the CS-on direction, 438 

higher probabilities of complex spikes were associated with larger inhibitions of simple-spike 439 

firing during pursuit.  In the CS-off direction, lower probabilities of complex spikes were 440 

associated with larger increases in simple-spike firing. Thus, complex-spike firing could dictate 441 

simple-spike direction tuning.  442 

The relationship between the temporal response properties of simple and complex spikes is less 443 

obvious and emerged clearly only when we considered both the modulation provided by 444 

molecular layer interneurons and the properties of the granule unit temporal basis set. Alone, the 445 

temporal dynamics of complex-spike firing (Figure 7C) aligns poorly with that of simple-spike 446 
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firing during pursuit. In the CS-on direction, the inverse of complex-spike firing starts earlier, 447 

rises faster, and decays more quickly compared to simple-spike firing (black vs. red traces, 448 

bottom graph of Figure 7D). In the CS-off direction, the inverse of complex-spike firing shows 449 

both an early transient increase and a positive spike after the end of target motion (cyan trace, 450 

Figure 7C), neither of which has a correlate in simple-spike firing (compare black vs. cyan 451 

traces, top graph Figure 7D). Thus, a linear model linking the timeseries of complex-spike 452 

activity to modulation of Purkinje cell simple-spike responses across our population showed 453 

limited predictive power but consistently negative correlations (Figure 7E, r = -0.14 ± 0.03; t(99) 454 

= -5.4, p < 10-5 in the CS-on direction and r = -0.24 ± 0.02; t(99) = -11.3, p < 10-18 in the CS-off 455 

direction). 456 

 

Figure 7. Evidence that complex spike mediated plasticity may create and/or maintain aspects of 

the temporal and directional dynamics of Purkinje cell firing. (A) Distribution of preferred pursuit 

directions for Purkinje cell simple spikes (blue) and their associated complex spikes (red). (B) 

Relationship between simple-spike modulation during pursuit in the CS-on (preferred CS) and CS-off 

(preferred CS + 180°) directions as a function of complex-spike modulation across all Purkinje cells. 

Black line denotes best linear fit. (C) Red and teal traces show firing rate of complex spikes in the 

preferred and anti-preferred complex-spike direction, smoothed using a 50 ms boxcar filter and 

averaged across Purkinje cells. (D) Comparison of Purkinje cell simple-spike modulation versus scaled 

and inverted complex-spike modulation in the CS-off (top) and CS-on (bottom) directions. Arrowhead 

denotes a region of particularly poor fit between simple-spike and complex-spike modulation. Colored 

and black traces show complex-spike and simple-spike firing. (E) Histogram of Pearson’s correlation 

coefficient between the timeseries of complex-spike activity shown in C and simple-spike activity 
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shown in D in the CS-on and CS-off directions. Vertical lines denote the population mean. (F) 

Predicted simple-spike firing from a model that incorporates the granule unit temporal basis set, 

complex-spike firing linked plasticity, and molecular layer interneuron inputs to create the mean 

Purkinje cell firing rates (blue trace) in the preferred simple-spike direction. (G) Same as F for the anti-

preferred simple-spike direction. Note that the simple spike traces differ between panels D and F-G due 

to the alignment direction (CS-on versus simple-spike preferred direction). Shaded regions in all panels 

denotes mean ± SEM across neurons. 

 457 

We found a tight link between the temporal properties of simple- and complex-spike firing when 458 

we used the successful circuit model of Figure 5 to adapt the parallel fiber to Purkinje cell 459 

synapses on the basis the complex-spike responses of our population of Purkinje cells during 460 

pursuit. To obtain the fits in Figure 7F and G, we decreased the weights of individual granule 461 

cell inputs to Purkinje cells based on the product of each granule unit’s response during pursuit 462 

and the mean complex-spike response measured in the same direction. From the excitatory input 463 

of granule cells, we subtracted the weighted input of molecular layer interneurons. Thus, the fits 464 

shown in Figure 7F and G had two unknowns: the magnitude of parallel fiber synaptic 465 

depression due to a complex spike and the weight of inputs from molecular layer interneurons.  466 

The excellent match between observed and predicted mean simple-spike firing (Figure 7F and G) 467 

implies that climbing-fiber inputs coupled with granule layer activity could contribute to the 468 

temporal dynamics of cerebellar output. As before, the success of the predictions depends on 1) 469 

the temporal basis set in the granule unit population, 2) refinement of the strength of inputs from 470 

the granule layer basis set by complex-spike mediated plasticity, and 3) direction-tuned 471 

inhibition from molecular layer interneurons to create decreases in simple-spike firing because 472 

plasticity of the inputs from spontaneously-silent granule cell inputs cannot drive Purkinje cell 473 

responses below baseline.   474 

 475 

Discussion 476 

The brain generates behavior through the operation of neural circuits that transform the dynamics 477 

of their inputs79–81 to generate outputs that facilitate appropriate downstream neural processing82. 478 

As neural circuits are comprised of multiple neuron types9,83–90, a full understanding of the nature 479 

of the transformations mandates a multi-level understanding of the “parts list” of a brain area via 480 

both identification of the characteristic neuron types and description of their functional 481 

characteristics during behavior. Here, we demonstrate that discrete neuron types within a well-482 

defined neural circuit have distinct functional roles that allow the circuit to perform fundamental 483 

transformations of population dynamics to facilitate behavioral output. We also show how 484 

complex-spike mediated plasticity complements the distinct neuron-type computations to 485 

facilitate the transformations between mossy fiber inputs and eventual Purkinje cell outputs. 486 

Computation by a neural circuit 487 

To understand how a specific circuit computes, we took advantage of new technology that 488 

allowed us to identify neuron types in the cerebellar cortex from extracellular recordings23,28. The 489 

canonical cerebellar circuit, including its intrinsic interneurons, has a conserved architecture 490 

across regions and species7,8 and supports a wide range of behaviors ranging from motor 491 

control15 to communication91,92 to cognition93,94. We recorded the temporal dynamics and 492 

directional organization of firing in identified mossy fiber input elements and Purkinje cell 493 
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output neurons as well as from intrinsic interneurons: unipolar brush cells, Golgi cells, and 494 

molecular layer interneurons, all during a repeatable, quantifiable behavior. Further, we extended 495 

the measured responses to identify the necessary properties of the granule cell population, even 496 

though we lack the ability to directly record its responses using current technologies. 497 

We suggest that an input-output transformation of temporal dynamics occurs in the cerebellar 498 

input layer, potentially via synaptic66 or granule cell intrinsic95,96 mechanisms. A directional 499 

transformation occurs through circuit mechanisms in the last-order inputs to the output neurons. 500 

We confirmed the veracity of the proposed computation through simulation of a circuit model 501 

that predicts the responses of each individual Purkinje cell in our sample. Further, the model has 502 

multiple emergent properties that agree with known experimental observations71,72. We think that 503 

we have explained how the cerebellar circuit computes during a specific sensory-motor behavior 504 

that requires the region of the cerebellum we studied, namely the floccular complex.   505 

The properties of the temporal basis set provided by the granule unit population were critical for 506 

the success of our model. They were: 1) a broad range of temporal filter responses such that 507 

granule units temporally tile complete trial; 2) strongly correlated onset and offset time constants 508 

resulting in scalar variability63; 3) granule unit population activity that increased with increasing 509 

pursuit speeds; and 4) consistent timing of individual granule unit activations across pursuit 510 

speed to enable generalization of learning across pursuit speeds. These characteristics are 511 

consistent with previously proposed “spectral timing” models39,64,65, and allow us to effectively 512 

discount alterative models of granule unit processing64. We can make quite specific predictions 513 

about granule cell activity because (1) we measure the mossy fiber inputs and (2) we have far 514 

more degrees of behavioral freedom than other tasks used to place limits on granule layer 515 

processing to-date. For example, cerebellar-dependent eyelid conditioning has a single primary 516 

degree of freedom: the timing between the conditioned and unconditioned stimuli. We can vary 517 

timing, pursuit speed, and pursuit direction, enabling more strenuous constraints on our model of 518 

circuit processing. 519 

Our analysis provides a roadmap for asking whether the cerebellar cortex performs a “universal 520 

transform” that aligns with the universal architecture of the cerebellar circuit97,98. For example, 521 

there is enough data about the responses of neurons in the eye blink area in mice99 or rabbits100 to 522 

deploy our analysis approach in the eye blink cerebellar region and ask whether a universal 523 

transform exists across these two behaviors. More generally, it seems plausible that many or all 524 

regions of the cerebellar cortex compute temporal transformations, and the temporal basis set 525 

provided by our model granule units could support many different temporal transformations on 526 

the time scale of movements. Further, the multiple plasticity mechanisms101,102 in the cerebellar 527 

cortex could adapt the transformations so that they are specialized across behaviors and areas. 528 

Meta-plasticity103 combined with the general nature of the granule unit basis set may provide an 529 

even broader ability for the cerebellum to provide region-specific and task-specific circuit 530 

transformations.  531 

Our strategy for understanding circuit transformations certainly generalizes to different 532 

cerebellar regions and likely to other brain areas. Its key features were: 1) an ability to map 533 

extracellular signals to cerebellar neuron types28 that is validated across species for multiple 534 

regions of the cerebellum23, 2) interpretational context that provides an understanding of how 535 

modulation of firing rate in floccular Purkinje cells alters eye movements104,105, 3) a region that 536 
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performs quantifiable temporal and directional transformations of its inputs within a broader 537 

brain network that is understood quite thoroughly106, 4) quantitative behavioral paradigms to 538 

characterize the temporal and spatial organization of inputs, outputs, and internal processing, and 539 

5) computational analyses to validate the proposed circuit model.  540 

Specifics of floccular circuit computation 541 

Temporal processing. In the floccular complex, mossy fiber inputs signal eye position with a 542 

modest relation to eye velocity38; Purkinje cell outputs are related to eye velocity107 with a 543 

modest relation to eye acceleration35. Our data imply that the input-output transformation of 544 

temporal dynamics occurs in the granule cell layer, potentially via cellular mechanisms at the 545 

mossy fiber to granule cell synapse66. We localized the transformation to that synapse through 546 

the observation that all downstream neurons, including Golgi cells, molecular layer interneurons, 547 

and Purkinje cells, show evidence of the full temporal transformation.  548 

Our analyses suggest the role of two kinds of granule layer interneurons, Golgi cells and unipolar 549 

brush cells, in distinct aspects of granule cell activity. While we predicted a priori that Golgi 550 

cells would be instrumental in actively performing temporal transformations, and they may be in 551 

other systems, they proved to be only weakly temporally modulated (in relation to eye velocity) 552 

in our system. They seem to provide tonic inhibition that may help to create a sparse but 553 

temporally diverse108 representation in the granule cells. Consistent with in vitro results55,56, 554 

unipolar brush cells seem to temporally integrate the characteristics of upstream mossy fiber 555 

inputs, potentially diversifying the temporal inputs to granule cells109,110. 556 

An engineer would not perform temporal transformations by creating a temporally-sparse basis 557 

set as an intermediate population code that transforms sustained inputs into a temporally-558 

distributed set of transient responses. Yet, biology may use that strategy because it allows a 559 

broad range of transformations of temporal dynamics, not just mathematical differentiation, and 560 

has the added advantage of affording temporally-specific learning of sensory-motor 561 

transformations. Sadly, current extracellular recording technology does not yet allow access to 562 

granule cell responses23. Thus, our theory, like others, makes a prediction that will need to be 563 

tested once technology has evolved.  564 

Directional processing. In the floccular complex, mossy fiber inputs are organized according to 565 

the cardinal directions – left, right, up, down – while Purkinje cell outputs prefer “ipsiversive” 566 

(towards the side of recording) or downward plus slightly contraversive eye motion36. Our 567 

analysis of the direction tuning in different neuron types implies that parallel fibers with all 568 

direction tunings cross the dendrites of individual Purkinje cells. Multi-directional signals are 569 

necessary in the parallel fiber inputs to each Purkinje cell, both to allow cerebellar learning to 570 

tune the directionality of Purkinje cells and to enable directional learning in pursuit72. Thus, 571 

unlike the temporal transformation in the input layer, the directional transformation in the 572 

floccular complex appears to occur in the molecular layer. 573 

Molecular layer interneurons play key roles in directional tuning for both baseline pursuit 574 

responses and learning. For baseline pursuit responses, they inhibit Purkinje cells; their 575 

modulation of firing rate for eye movement in the non-preferred direction drives Purkinje cell 576 

simple-spike responses below their spontaneous firing rates. During learning, molecular layer 577 

interneurons provide necessary inhibition that allows a directional depression of simple-spike 578 
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firing46,47,73,75 through complex-spike mediated synaptic depression of directional parallel fiber to 579 

Purkinje cell synapses. We note that our statements about molecular layer interneurons are 580 

limited to the class called “MLI-1”, which inhibit Purkinje cells27 and constitute our entire 581 

expert-identified sample. We cannot make any statements about the class called “MLI-2”, which 582 

inhibit other MLIs but were not included in our sample.   583 

Functional significance of the input-output transformations. Why is it necessary to 584 

functionally differentiate the signals of mossy fiber inputs to the floccular complex? We assume 585 

that the inputs to the flocculus are limited by the “language” spoken by the brainstem107, where a 586 

“neural integrator” transforms transient inputs into the sustained firing needed to maintain stable 587 

eye position at any eccentric position111. Thus, the corollary discharge inputs to the floccular 588 

complex signal eye position. Yet, the output from the floccular complex must interface in the 589 

brainstem with the head-velocity-related inputs from the vestibular system and thus must signal 590 

eye velocity. The cerebellum’s transformations need to adapt to the fixed and immutable 591 

demands of the sensory and motor periphery.  592 

Limitations of the study 593 

We see several limitations. First, our study is correlative in nature and thus constrained by the 594 

experimental conditions we tested. However, the ability of our cerebellar circuit model to explain 595 

past experimental observations71,72 suggests that we have obtained a fundamental understanding 596 

of how the circuit operates during pursuit. Second, we could not record granule cells and had to 597 

rely on computational modeling and intrinsic knowledge of the cerebellar circuitry to place limits 598 

on the properties of the granule cell population. Future advances in recording technology may 599 

allow us or others to test our predictions of granule layer processing. Finally, we recorded and 600 

described the activity of the principal neuron types in the cerebellar circuit but did not 601 

characterize several neuron types that remain difficult to identify (i.e., candelabrum, Lugaro, and 602 

globular cells). The role of these “Purkinje layer interneurons” awaits technology for recording 603 

and identifying them definitively. 604 

 605 
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Methods 617 

All experimental procedures were approved in advance by the Duke Institutional Care and Use 618 

Committee under protocols A085-18-04, A062-21-03, and A016-24-01. All animal care and 619 

experimental procedures followed the guidelines outlined in the NIH Guide for the Care and Use 620 

of Laboratory Animals (1997). Three rhesus macaques (macaca mulatta, all male, 10-15 kg) 621 

were used in this study. Portions of the dataset analyzed for this manuscript have been included 622 

in three previous reports22,23,28. 623 

General procedures 624 

Prior to behavioral training or neurophysiological recordings, monkeys were instrumented with a 625 

head-restraint device, an eye coil, and at least one recording cylinder via separate surgical 626 

procedures, all performed with aseptic technique. For each surgical procedure, animals were 627 

deeply anaesthetized with isoflurane. Animals received peri- and post-operative analgesia until 628 

they had completely recovered. In the first of multiple surgical procedures, head restraint 629 

hardware was attached to the animal’s skull to allow measurement of the animal’s eye position 630 

without concomitant head movements. In a later surgery, we sutured a small coil of wire to the 631 

sclera of one eye112, allowing measurement of the animal’s eye position using the search coil 632 

technique113. Following these two surgical procedures, animals were trained to perform smooth 633 

pursuit eye movements during discrete trials of target motion in exchange for fluid reward. The 634 

experimental paradigm is described in detail below. Once the animal had demonstrated excellent 635 

smooth pursuit tracking abilities, as evidenced by minimal intervening saccadic eye movements, 636 

we affixed a stainless-steel recording cylinder above a craniectomy, allowing access to the 637 

floccular complex of the cerebellum with microelectrodes. The position of this cylinder was 11 638 

mm lateral to the midline, angled at 26° relative to the frontal plane, and pointed towards the 639 

interaural axis.   640 

Behavioral task 641 

Each day animals were seated in a dark room, 30 cm in front of a CRT monitor (80 Hz refresh 642 

rate, 2304 x 1440 pixels, 480 x 310 mm). Their heads were attached to the chair via the 643 

previously implanted restraint hardware. Horizontal and vertical eye position signals were 644 

separately digitized at 1,000 Hz using the search coil system. We computed the velocity of the 645 

animal’s eye movement offline using a 2nd order causal Butterworth low-pass filter with a cutoff 646 

frequency of 10 Hz. As we were principally interested in the relationship between floccular 647 

neural responses and smooth pursuit eye movements, we removed any saccadic eye movements 648 

from ongoing pursuit using an automated procedure22. The occurrence of a saccade was 649 

identified offline using eye velocity (50 deg/s) and eye acceleration thresholds (1,250 deg/s2). 650 

Onset and offset of each saccade were determined as the time when the animal’s eye velocity or 651 

acceleration fell below both thresholds for more than 10 ms. In all analyses, we treated eye 652 

kinematics during saccades as missing data. 653 

Stimulus presentation was controlled via our lab’s custom “Maestro” software. The visual 654 

stimulus in all trials was a small (0.5° diameter) black spot shown on a light gray background. In 655 

a small subset of trials, animals were required to fixate a stationary target placed at one of nine 656 

locations, evenly spaced within a 10° x 10° square. The monkey was required to fixate the dot at 657 

each position (within ±1°) continuously for one second in exchange for reward. In the majority 658 

of trials, animals tracked smoothly moving targets. Each smooth pursuit trial began by fixating 659 

the dot in the center of the screen for a randomly chosen intertrial interval (400-800 ms, 660 
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uniformly distributed). After the fixation interval, we used Rashbass’ step-ramp paradigm114. On 661 

each trial, the target moved in the “pursuit direction” with a speed of 10, 20, or 30 deg/s. At the 662 

onset of target motion, the target was stepped backwards by 1.5°, 3°, or 4.5° for each of the three 663 

target velocities. The backwards step minimizes catch-up saccades caused by the visual latency 664 

of the pursuit system115. The target moved at constant velocity for 650 ms before stopping at an 665 

eccentric position for an additional 350 ms. The majority of pursuit trials were performed in the 666 

four cardinal directions. We also performed some trials spaced every 45 degrees, but only for 20 667 

deg/s target speeds. Animals were rewarded for keeping their eyes within an invisible 3° 668 

bounding box centered on the pursuit target for the duration of the trial, including initial fixation, 669 

pursuit, and eccentric fixation at the end of the trial. Animals were trained extensively on the 670 

pursuit task prior to neurophysiological recordings.  671 

Neurophysiology recordings 672 

All recordings were made in the ventral paraflocculus and flocculus, a region we call the 673 

floccular complex. These regions have been shown to be crucial for the execution of smooth eye 674 

movements18. In addition, electrical stimulation of this region of the cerebellum drives smooth 675 

movement of the eye towards the side of stimulation31,32. We acutely inserted either single 676 

tungsten microelectrodes (FHC, 1-2 MΩ) or, more commonly, custom designed Plexon S-Probes 677 

into the brain each day through the previously implanted recording cylinder. Plexon S-probes 678 

featured 16 tungsten recording contacts, each 7.5 µm in diameter. The 16 contacts were arranged 679 

in two columns (50 x 50 µm separation between adjacent contacts). Almost all of our recordings 680 

come from the S-Probes.  681 

We identified the floccular complex by its strong activity during smooth pursuit eye movements, 682 

presence of infrequent Purkinje cell complex spikes, and the depth relative to the tentorium. 683 

Upon arriving in the floccular complex, we waited a minimum of 30 minutes, up to several 684 

hours, before beginning neurophysiological recordings. This initial period maximizes the 685 

stability of the recording by minimizing drift of neural units across the recording contacts.  686 

Neurophysiological data were recorded using the Plexon Omniplex system. We used analog 687 

Butterworth low-pass hardware filters (4th order, 6 kHz cutoff) prior to digitization to minimize 688 

any interference from the eye coil system and prevent aliasing. Wideband neural activity on each 689 

contact was recorded at 40 kHz, synchronized to behavioral data using high speed TTL pulses, 690 

and stored for later offline analysis.  691 

To identify well-isolated single neurons from our wideband voltage recordings, we leveraged the 692 

Full Binary Pursuit116 (FBP) spike sorting package. The FBP sorter is specifically designed to 693 

optimally resolve temporally and spatially overlapping action potentials, a frequent occurrence in 694 

the cerebellar cortex due to the relatively high baseline firing rates of many cerebellar neurons. 695 

Following spike sorting, we manually curated all neural units to ensure high quality single-units. 696 

We specifically excluded neural units that showed evidence of contamination by either 697 

background noise or other units. We assayed contamination primarily via assessment of 698 

refractory period violations, measured as the rate of spikes that violated a presumed 1 ms 699 

absolute refractory period. Across all monkeys, we recorded n=1,152 single units. Across this 700 

sample of neurons, mean refractory period violations were 0.6 ± 2.5% (mean ± SD) of all 701 

recorded spikes. We measured the maximum peak-to-peak voltage deviation of the mean action 702 

potential waveform/template on the channel with the largest spike and compared this amplitude 703 
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to the level of background noise measured on the same channel (the primary contact). The mean 704 

signal-to-noise ratio, defined as the amplitude of the spike divided by an estimate of noise 705 

computed as 1.96-times the standard deviation of background noise, was 5.6 ± 2.9 (mean ± SD). 706 

We converted neuron spike trains into firing rates by causally convolving each spike train with a 707 

dual exponential kernel. The kernel (τrise = 0.1 ms and τdecay = 50 ms) mimics the properties of 708 

post-synaptic currents117 while preserving the ability to measure latencies with high precision. 709 

Autocorrelograms were computed using previously described techniques22, and normalized by 710 

the bin width (1 ms), placing autocorrelograms in units of spikes/s. 711 

Expert identification of cerebellar neuron types 712 

A detailed discussion of the methodology for identification of cerebellar neuron types in our 713 

recordings has been published previously28. Briefly, we began by identifying a subset of units as 714 

ground-truth Purkinje cells based on their unique extracellular properties. Purkinje cells receive 715 

excitatory inputs from parallel fibers as well as strong inputs via climbing fibers from the inferior 716 

olive that drive post-synaptic Purkinje cell complex spikes. During complex spikes and for 717 

several milliseconds thereafter, Purkinje cells are prevented from firing simple spikes, resulting 718 

in a stereotypical complex-spike-induced pause in simple spikes. We included only Purkinje 719 

cells that had a complex-spike-induced pause. 720 

We identified molecular layer interneurons by establishing monosynaptic functional inhibitory 721 

relationships between these neurons and simultaneously recorded ground-truth Purkinje cells. 722 

Therefore, our sample of molecular layer interneurons constitutes principally MLI-1’s, classified 723 

by others based on their genetic13 and connection profiles27. Golgi cells were identified by their 724 

low firing rate responses, characteristic extracellular waveforms118, and presence within the 725 

granule cell layer. Mossy fiber inputs to the cerebellar cortex were identified based on the 726 

presence of a negative-after-wave (NAW). The NAW corresponds to the postsynaptic response 727 

of granule cells within the cerebellar glomerulus119. We note that while a NAW is sufficient to 728 

identify mossy fibers, it is possible to record from mossy fiber axons that do not show marked 729 

NAWs. To ensure that our sample contained only known mossy fibers, we excluded from 730 

analysis putative mossy fibers that lacked a NAW. Unipolar brush cells were identified based on 731 

established functional responses recorded by in vitro studies showing that unipolar brush cells 732 

elongate the timescales of discrete mossy fiber input over 10s to hundreds of milliseconds55,56. 733 

We considered units to be unipolar brush cells if triggering their firing off simultaneously 734 

recorded mossy fiber bursts yielded temporally-elongated responses. We recently validated our 735 

expert-labeling approach using a deep-learning classifier trained on ground-truth 736 

optogenetically-identified recordings in mice23.  737 

Principal component analysis 738 

To identify the primary modes of temporal information contained in the cerebellar population 739 

during smooth pursuit eye movements, we performed principal component analysis across all 740 

expert-identified neurons. As the responsiveness of cerebellar neurons to pursuit varied widely, 741 

we wanted to ensure that highly responsive neurons did not bias our estimate of the principal 742 

component directions. Therefore, we performed soft-normalization of neuron firing rates45, 743 

measured in their preferred direction, prior to principal component analysis. Soft-normalization 744 

squashes modulations less than 5 spikes/s to timeseries near zero and scales modulations of 745 

greater than 5 spikes/s to approximately unit magnitude. After soft-normalization, we smoothed 746 

the firing rate traces using a boxcar filter with a 50 ms width. To identify the principal 747 
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components across speed and direction for mossy fibers and Purkinje cells, we used the same 748 

preprocessing procedures separately in each respective population. Then, we concatenated the 749 

within-neuron responses to different speeds and directions, resulting in an N x (S*D*Nt) matrix, 750 

where N represents the number of units in each population, S represents the number of speeds 751 

(three: 10, 20, 30 deg/s), D the number of directions (four: ipsiversive, up, contraversive, down), 752 

and Nt the number of timepoints in each sample (1,100). As with the complete population, 753 

principal components analysis identified the modes of temporal profiles across the neuron 754 

dimension in each population. 755 

Regression of neuron firing rates to eye kinematics 756 

To evaluate the contributions of different eye kinematic signals to the firing rates of cerebellar 757 

neuron types, we performed linear regression analysis by fitting kinematic models to each 758 

neuron’s mean time-varying firing rate during smooth pursuit. Depending on whether the firing 759 

in the anti-preferred direction hit a floor at zero firing rate, we fit the data either in the neuron’s 760 

preferred direction or across both its preferred and anti-preferred directions simultaneously. For 761 

each neuron, we fit models of the following form: 762 

𝑟(𝑡) = 𝑤𝑝𝑒(𝑡 + 𝜏𝑑) + 𝑤𝑣 𝑒̇(𝑡 + 𝜏𝑑) + 𝑤𝑎 𝑒̈(𝑡 + 𝜏𝑑) + 𝑏  (1) 

In Equation 1, r(t) represents the mean firing rate of the neuron across pursuit trials and is 763 

expressed as a weighted sum of the mean eye position (𝑒), velocity (𝑒̇), and acceleration (𝑒̈) at a 764 

future timepoint, (𝑡 + 𝜏𝑑). The parameter 𝜏𝑑 refers to the temporal lead of the firing rate relative 765 

to the kinematics. The scalar parameter, b, is a neuron-specific bias. We determined the unknown 766 

parameters, {𝑤𝑝, 𝑤𝑣, 𝑤𝑎, b} using least squares for each delay from 0 to 100 ms. The optimal 767 

delay was identified by minimizing the mean squared error across the range of delays. To assess 768 

the relative contribution of each kinematic variable to the overall firing rate, we computed 769 

standardized (𝛽) coefficients by normalizing each weight by the ratio of the standard deviation of 770 

the corresponding regressor to the standard deviation of the observed firing rate. 771 

Recurrent neural network model of granule cell transformations 772 

We constructed a recurrent neural network model to investigate features of the transformation 773 

between mossy fiber inputs and Purkinje cell outputs. We supplied as inputs to the model single-774 

trial firing rate responses of individual mossy fibers (n = 86) during 10, 20, or 30 deg/s smooth 775 

pursuit trials in the preferred direction of each mossy fiber. We trained the complete network 776 

model to predict the single-trial firing responses of our recorded Purkinje cell population. 777 

Purkinje cell responses were in their preferred directions with speeds that were trial-matched to 778 

the speed of pursuit supplied as mossy fiber inputs (e.g., mossy fiber inputs corresponding to 779 

single-trial responses during 10 deg/s target motion were paired with Purkinje cell outputs also 780 

measured during 10 deg/s pursuit). To ease training, we preconditioned the input and output data 781 

by soft-normalizing45 the responses of the mossy fiber and Purkinje cell responses. The soft-782 

normalized mossy fiber inputs were supplied to a pool of RNN units, whose dynamics were 783 

governed by: 784 

𝜏𝒙̇(𝑡) = −𝒙(𝑡) + 𝜎(𝑊𝑖𝒖(𝑡) + 𝑊𝑟𝒙(𝑡) + 𝒃)  (2) 

In Equation 2, the activity of each of 25 RNN units is represented by the vector x. The parameter 785 

τ corresponds to the time constant of network integration (fixed at 10 ms). The matrix 𝑊𝑟 786 
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(dimensions 25 x 25) serves as recurrent weights on RNN unit activity from the previous 787 

timestep while the matrix 𝑊𝑖 (dimensions 25 x 86) weighs incoming mossy fiber inputs, 788 

represented by u(t). The vector b serves as a time-invariant bias. The combination of inputs from 789 

upstream mossy fiber activity, recurrent inputs, and the bias parameter was passed through a 790 

non-linear activation function, σ, chosen to be the sigmoid function. The reservoir of RNN units 791 

served as the temporal bases for the subsequent “granule unit” layer. Each granule unit received 792 

a weighted set of inputs from the 25 RNN units. Granule unit inputs were passed through a 793 

sigmoid activation function, constraining the activity of individual granule units between zero 794 

and one. Finally, a set of fully connected weights mapped the n = 100 granule units onto each 795 

output Purkinje cell. Unlike previous layers, we constrained the weight matrix between granule 796 

units and Purkinje cells to be strictly positive. The complete network was simultaneously trained 797 

using the Adam120  optimizer with cosine annealing with warm-restarts121. We used drop-out 798 

layers during training with 50% probability of dropout before and after the granule unit layer to 799 

avoid overfitting and ensure that the dynamics necessary to represent Purkinje cell firing rates 800 

were distributed throughout the granule layer units. We used early termination to stop training 801 

when the cross-validated error from a withheld 10% of the single trial data failed to decrease for 802 

more than 10 training epochs.  803 

We evaluated performance of the network by supplying as input the trial-averaged activity 804 

(rather than single-trial activity) of mossy fibers and measuring the network predicted Purkinje 805 

cell responses. We compared the predicted responses to the mean measured, soft-normalized, 806 

Purkinje cell responses across target speeds. We also examined the nature of the computation 807 

performed by the complete network. To do so, we supplied a step-response of mossy fiber 808 

activity as input. Prior to t=0 ms, the input to the network corresponded to the soft-normalized 809 

baseline activity of each mossy fiber, as measured before target motion onset. At t=0 ms, we 810 

stepped the response of each mossy fiber to the soft-normalized response measured at the 811 

termination of target motion across pursuit in the 20 deg/s condition. We then interrogated the 812 

responses of the granule units across time from before to the end of the step change in input. 813 

A generative model of granule cell dynamics 814 

Our goal was to establish a simplified mathematical description of granule cell processing that 815 

recapitulated the primary results established by our recurrent neural network model. Namely, the 816 

granule units from the RNN model showed 1) a broad range of integration time constants (time 817 

to peak) following a step input, 2) neurons with a later peak showed broader temporal responses, 818 

3) larger amplitude responses across the granule population for faster pursuit speeds, and 4) 819 

consistent peak timing across pursuit speeds in individual granule units. While multiple models 820 

are likely capable of showing these primary features, our implementation focused on a non-821 

mechanistic description whose parameter values can be easily interpreted relative to their 822 

functional outcomes. We emphasize that the generative model is not meant to be mechanistically 823 

biomimetic, merely operational to explore the features of successful temporal basis sets. 824 

We began by establishing synaptic input to each granule unit: 825 

𝑢𝑛(𝑡) =
∑ 𝑤𝑖𝑀𝐹𝑖(𝑡)4

𝑖=1

∑ 𝑤𝑖
4
𝑖=1

  
 (3) 
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where, 𝑢𝑛 represents the total synaptic input to the granule unit. The four mossy fibers were 826 

chosen randomly from our sample irrespective of their preferred directions and individual 827 

weights of mossy fibers, wi
 , were chosen from a uniform distribution between 0 and 1. The sum 828 

of the weights was normalized to unity magnitude. The dynamics of each granule unit are 829 

described by a set of continuous-time differential equations: 830 

𝒙𝒏̇(𝑡) = [
𝛼 1

−𝑘2 −2𝑘
] 𝒙𝒏(𝑡)+ [

0
𝑘2] (𝑢𝑛(𝑡) − 𝑏𝑛) 

𝑟𝑛(𝑡) = [[0 1]𝒙𝒏(𝑡)]
+

 

 (4) 

Equation 4 represents a generalization of a differentiating dynamical system with two states, 𝒙𝒏. 831 

The input to the system is the weighted mossy fiber inputs from Equation 3, 𝑢𝑛, less a unit 832 

specific bias, 𝑏𝑛. Each unit’s bias was uniformly distributed in the range [50, 100] spikes/s. The 833 

relatively large bias serves to sparsify the granule unit responses; alternative distributions for the 834 

bias parameter do not impact qualitatively our findings. The primary free parameter is k, which 835 

controls the speed of differentiation. Large values of k result in rapid differentiation while small 836 

values of k result in slower and thus smoother differentiation. We chose k to be uniformly 837 

distributed in the range [0, 50]. The final parameter, α, controls the amount of low-pass 838 

information retained in the output, where increasingly positive values of α result in incomplete 839 

differentiation. We chose α from a uniform distribution with range [0, 0.1].  The output of the 840 

system, 𝑟𝑛 (corresponding to the second state, 𝑥2) is constrained to be greater than zero (half-841 

wave rectification), indicated by ]+. Thus, the dynamical system described in Equation 4 is a 842 

tunable differentiator whose output is half-wave rectified. We emphasize that the functional 843 

properties of the temporal basis set documented in Figures 4E and F are the crucial components 844 

of the granule layer - multiple model formulations would yield comparable results. Indeed, our 845 

proposed generative model represents a specific implementation of a spectral timing model for 846 

granule cell activity, a framework that has been suggested in various forms for eyelid 847 

conditioning64,65. For all simulations, we converted the continuous state representation in 848 

Equation 4 to its discrete-time equivalent using the forward Euler method. 849 

Cerebellar circuit model for predicting downstream neural responses 850 

Using the generative model of granule cell rate responses (Equations 3-4), we asked whether the 851 

resulting granule unit population could be used to replicate the measured firing rate responses of 852 

neural units downstream of granule cells: molecular layer interneurons and Purkinje cells. We 853 

constructed a population of 1,000 simulated granule units using the procedures outlined in 854 

Equations 3-4. For each of the granule units, we computed the predicted firing rate responses to 855 

pursuit of 20 deg/s in the cardinal directions. We started by modeling the responses of molecular 856 

layer interneurons. Across all directions simultaneously, we found a set of weights that 857 

minimized the cost function detailed in Equation 5. 858 

𝐽𝑛 = (𝒚𝒏
𝑴𝑳𝑰 − 𝑅𝑇𝒘𝒏)𝑇(𝒚𝒏

𝑴𝑳𝑰 − 𝑅𝑇𝒘𝒏) + 𝜆𝒘𝒏
𝑻diag [

1

σ2(𝑅)
] 𝒘𝒏  

 

 (5) 

In Equation 5, 𝒚𝒏
𝑴𝑳𝑰 is a vector of the n-th molecular layer interneuron responses across the 859 

cardinal directions (e.g., length Nt*D), R is a 1,001 x (Nt*D) design matrix of mean-subtracted 860 

simulated granule cell responses across the same directions augmented with a row of ones. As 861 
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our population of molecular layer interneurons was relatively small, we augmented our measured 862 

population by randomly averaging sets of 5 recorded molecular layer interneurons, with 863 

replacement. The cost function in Equation 5 is minimized to find the unknown weights of the 864 

granule cell responses, 𝒘𝒏 for each molecular layer interneuron. As the granule cell inputs to 865 

molecular layer interneurons are exclusively excitatory, we subjected Equation 5 to the 866 

constraint ∀𝒘𝒏 ≥ 0. The parameter 𝜆 is a regularization parameter (e.g., Tokhonov or ridge 867 

regression parameter) which penalizes large weights. The ridge penalty term is standardized by 868 

the standard deviation of each regression parameter in the design matrix (rows in R), with the 869 

diagonal values of non-varying regressors in R set to zero. We found the optimal value of 𝜆 using 870 

cross-validation by leaving out 50% of the data across time and direction and evaluating the 871 

ability of the model to generalize to the withheld data. We evaluated the fits to the molecular 872 

layer interneurons using Pearson’s correlation coefficients. 873 

After fitting the augmented molecular layer interneuron population, we evaluated the ability to fit 874 

our measured Purkinje cell responses across directions. We used the same form of the cost 875 

function in Equation 5 except that the design matrix included rows corresponding to the granule 876 

units as well as our fitted and baseline-subtracted molecular layer interneuron responses. The 877 

rows in the design matrix corresponding to fitted molecular layer interneuron responses were 878 

multiplied by -1.0 and directionally permuted so that interneuron preferred directions were 879 

opposite Purkinje cell preferred directions. Thus, our goal was to find a set of non-negative 880 

weights that described Purkinje cell firing across our population of measured Purkinje cells given 881 

upstream firing of granule cells and inhibition by molecular layer interneurons. Just as our 882 

procedure to fit the molecular layer interneuron population, we scaled the ridge parameter by the 883 

standard deviation of each regressor and found the optimal value of 𝜆 using cross-validation. 884 

Evaluation of emergent properties of the cerebellar circuit model 885 

We tested whether our simplified model of cerebellar function could account for previous pursuit 886 

learning results. Previous results suggest that short-term pursuit learning is driven by complex-887 

spike mediated plasticity of the parallel fiber to Purkinje cell synapse. A complex spike on a 888 

single learning trial is linked to a well-timed depression of Purkinje cell simple-spike firing on 889 

the next trial46,47,73,75,122. To simulate single-trial depression in our cerebellar circuit model, we 890 

modified components of the previously found weights between granule cells and Purkinje cells 891 

computed in Equation 5. The change in each granule cell’s weight, Δ𝐰𝒏, is: 892 

Δ𝒘𝒏 = −𝑘
𝒓𝒏(Instr.+75ms)

max [𝒓𝒏(Instr.+75ms)]
 

 

 (6) 

In Equation 6, 𝒓𝒏 is a 1,000-element vector of granule cell activity, relative to baseline, measured 893 

at the time of the instruction with an assumed 75 ms visual latency. The scalar k is an arbitrary 894 

constant that scales the magnitude of Purkinje cell learning. We assayed learning by measuring 895 

the simulated change in Purkinje cell simple spikes for the original (𝑅𝑇𝐰𝒏) versus the modified 896 

weight vector (𝑅𝑇[𝐰𝒏 + Δ𝐰𝒏]). In one set of simulations, we tested generalization of learning by 897 

changing the statistics of the mossy fiber inputs on the test trial after each learning trial, thereby 898 

assessing learning for a range of pursuit speeds in the test trial. In a second set of simulations, we 899 

changed the timing of the instructive stimulus relative to the onset of pursuit and asked how that 900 

altered the Purkinje cell firing on the subsequent test trial.  901 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 22, 2025. ; https://doi.org/10.1101/2025.02.21.639459doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.21.639459
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 30 

Statistical analysis 902 

We used the Julia package HypothesisTests for common statistical calculations, including t-tests 903 

for correlation and independent samples t-tests. All statistical tests were two-sided and we report 904 

exact p-values where possible. To perform permutation tests, we randomly sampled with 905 

replacement from two comparison populations under the null hypothesis. We performed 10,000 906 

random permutations for each test unless otherwise noted. 907 

Data availability 908 

All data analyzed for this study have been deposited into the Open Science Framework database. 909 

Reasonable requests for additional data or analyses can be made to the corresponding author.  910 
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