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An intelligent controller based on a self-learning interval type-II fuzzy neural network is proposed to make the motion controller
of the industrial intelligent robot with good adaptability. This controller has a parallel structure and contains an interval type-II
fuzzy neural network and a conventional PD controller. For the design of the interval type-II fuzzy neural network, the interval
type-II fuzzy set is established using the slave design method. In the design process of the interval type-II fuzzy set of the front
piece, a dual sequence symmetric trapezoidal subordinate function arrangement method is proposed, which makes the self-
learning law and stability analysis of the system in an analytic form and facilitates the implementation of the algorithm in
hardware. In the design of the neural network self-learning law, a parametric self-learning algorithm based on sliding mode
control theory is established to adjust the structural parameters of the interval type-II fuzzy neural network online, and the
stability of the system is proved by using Lyapunov’s stability theorem. Three sets of validation simulation experiments are given in
conjunction with the trajectory tracking problem of the Delta parallel robot. The simulation results show that, in the presence of
system uncertainty, the intelligent controller based on interval self-learning interval type-II fuzzy neural network can significantly
improve the trajectory tracking accuracy and robustness of the system and make the control system highly adaptable to the
environment. Experiments of intelligent control system based on self-learning interval type-II fuzzy neural network and ex-
periments of reusable particle swarm optimal motion planning method are designed, and the effectiveness of the intelligent
control system and motion planning method is verified on the experimental platform. The experimental results show that the
intelligent control system based on the self-learning interval type-II fuzzy neural network can effectively improve the accuracy and
stability of robot trajectory tracking control, and the reusable particle swarm optimal motion planning method can quickly solve
the robot motion planning problem with complex constraints online.

1. Introduction

Artificial intelligence is both the background of the times
and a prerequisite for machines to have intelligence and
sociality. Existing studies on human-machine social inter-
action only consider the shallow expression of human-hu-
man social or human-machine interaction, without
considering the trends and design requirements of the
deeper changes in the human-machine relationship in the
upcoming Al era. In the past, machines were used as tools or
mediums for human-human interaction, but with the fur-
ther enhancement of machine intelligence, direct human-
machine interaction has gradually evolved [1]. Through the
increasingly  in-depth  human-machine interaction,

intelligent machines have functional, emotional, and social
effects on people, which leads to the new topic of human-
machine social interaction in the era of artificial intelligence
[2]. In the context of the new social environment and the
development of new human-machine social interaction, we
start from the background and the current situation of the
study, use literature review and typical example analysis in
the early stage of the study to understand the current re-
search process of artificial intelligence, social interaction,
and human-machine interaction, explore the part that can
be further developed based on the shortage of existing re-
search, and propose the purpose and significance of this
study. When IT2FNN is connected in parallel to both ends of
the PD controller, the self-learning process of IT2FNN’s
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structural parameters begins. After the learning time of
about 1.7 seconds is over, the output signal of IT2FNN
replaces the PD controller as the main output source of the
control signal. The result is the same. The above simulation
results clearly show the influence of the learning process of
SLIT2ENN on the output of the controller and the im-
provement of control accuracy after adopting the parallel
intelligent control structure in the second working cycle.
In practical applications, one of the most frequently
encountered situations for industrial intelligent robots is
trajectory tracking control [3]. If a satisfactory control effect
is to be obtained for an industrial robot, there are many
problems to be solved in the design of the control system,
such as the nonlinearity of the robot body structure, the
uncertainty of modeled and unmodeled dynamics, and the
diversity of operating conditions, in addition to its dynamics
optimization design. In the last decade, many related re-
search works have been done by scholars on the trajectory
tracking control problem of parallel robots. Some of them
are based on traditional control methods for trajectory
tracking control problems: some studies [4, 5] are based on
feedback linearization control methods; others [5, 6] are
based on adaptive theory, in addition to studies based on
variable structure control theory. However, most of the
controllers based on traditional control methods need to
provide an accurate mathematical model of the controlled
object to obtain satisfactory control results [7]. However,
obtaining a complete dynamical model of a parallel robot is
very difficult and sometimes impossible. Moreover, even if
accurate robot system parameters can be obtained experi-
mentally, it is equally difficult to derive a dynamic model of
the robot based on these parameters, especially for some
parallel robot systems with complex motion mechanisms.
Taking the Delta parallel robot as the object, the forward
and inverse kinematics models of the robot are established,
and the dynamics model of the robot is established by using
the virtual work principal method. On this basis, a robot
body mechanism parameter optimization method oriented
to the control task requirements is proposed. Firstly, the
mechanism parameter optimization algorithm considering
anisotropic dynamics characteristics is established, and the
optimization models are built with the full-domain drive
joint torque index and the full-domain drive joint torque
fluctuation index, respectively, and the optimization prob-
lems are solved to verify the effectiveness of the algorithm.
Then a multiobjective dynamics optimization model based
on the full-domain performance index is established, and the
multiobjective optimization problem is solved using a
multiobjective genetic algorithm, and the computational
efficiency and effectiveness of the algorithm are verified. The
above model and optimization algorithm of the Delta
parallel robot are established using the idea of building
blocks to make the robot system simulation platform uni-
versal. A parallel intelligent control system based on a self-
learning interval type-II fuzzy neural network is proposed
and used to solve the trajectory tracking control problem of
the Delta parallel robot. This controller is a parallel structure:
it contains an interval type-II fuzzy neural network and a
conventional PD controller. The IT2FS is designed using a
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subordinate design approach, based on which a dual se-
quence symmetric trapezoidal subordinate function ar-
rangement is proposed to give an analytic form to the
interval type-II subordinate function for designing the self-
learning law and stability analysis. In the design of the neural
network self-learning law, a parametric self-learning algo-
rithm based on the SMC theory is proposed to adjust the
structural parameters of the interval type-two fuzzy neural
network online. The stability of the proposed intelligent
control system is proved using Lyapunov’s stability theorem.
The performance of the established intelligent controller is
verified through simulation experiments.

2. Related Work

In terms of isotropic optimization problems in the full
working domain, Narayan et al. proposed a multiobjective
optimization method for the design of structural parameters
of a four-degree-of-freedom parallel robot for the robot
isotropic design problem with task requirements, using
robot sensitivity analysis and standardized workspace vol-
ume as objective functions [8]. Rao et al. studied the scale
synthesis problem of the Hexaslides robot and gave a
method to select the structural parameters of the Hexaslides
robot for the machining field [9]. Mirzaey et al. investigated
the kinematic optimization problem of a two-degree-of-
freedom parallel robot arm using a stepwise optimization
method. The number of design variables was reduced by
optimizing the parameter relations with an analytic form in
the first step [10]. The second step reduces the optimization
variables of the optimization problem to one utilizing the
given global optimization index and thus solves the kine-
matic optimization problem of a parallel robotic arm [11]. Li
et al. proposed a dynamic isotropic optimization method for
the full working domain of a parallel robot, giving a dynamic
optimization objective function based on the robot inertia
matrix, and demonstrated the validity of its objective
function through an optimal design problem of a three-
degree-of-freedom tandem robot and a parallel robot [12].

Since we need to obtain a controller with high nonlinear
characteristics and smoother control performance, the
IT2FLC obtained by the two-terminal fuzzy method is the
structure of the type 2 fuzzy logic controller that best meets
the expectations of our control system characteristics. Vision
servo is based on the visual information provided by the
camera to control the robot. Depending on the feedback
error used to calculate the control law, the vision servo is
divided into position-based, image-based, and motion-based
control systems [13]. In the position-based control system,
the feedback error is calculated in a three-dimensional
Cartesian coordinate space; in the image-based control
system, the feedback error is calculated only from the dif-
ferent pixel points of the current image and the reference
image; both systems are model based and require rigorous
calibration of the camera to determine the exact geometric
relationships between the camera and the robot’s end-ef-
fector and then use these geometric relationships to analyze
the feature points in the image [14]. These geometric rela-
tionships are then used to analyze the feature points in the
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image, which are usually selected by humans. In contrast,
motion-based control systems are model-free and can cal-
culate feedback errors without any a priori using of frame
difference methods, optical flow methods, etc. With the
development of technologies such as deep learning and the
advent of the era of artificial intelligence, the connection
between machines and people is getting closer and closer,
and artificial intelligence with human-machine dialogue
function is gradually social role-playing, and the human-
machine relationship is changing accordingly [15]. The re-
search finds that existing studies on social interaction only
consider human-human socialization and do not consider
the changes in the human-machine relationship in the
coming Al era [16]. To verify whether the motion mode of
the real machine is consistent with the motion gait based on
the Hop oscillation model proposed in this paper, the wake
gait motion of the robot dog can be obtained through the
video screenshots during the experiment. This study ex-
plores the changes in human-robot social relationships, the
deep-seated needs, and ultimate purpose of human-robot
social interaction and analyzes how evolving human-like
intelligent robots can meet the dynamic deep-seated emo-
tional needs of humans to adapt to human needs.

The communication between man and machine will rise
from mechanical external interaction to an emotional level.
All specific operational devices will be naturally integrated
into the overall information infrastructure. In their place,
there will be a wide variety of ubiquitous sensors. The in-
tegration of Al, cloud computing, and increasingly intelli-
gent machines will generate data for use in human-computer
interaction systems. The study of social interaction has the
value of studying and predicting future trends in the evo-
lution of human-machine relationships. Machines gradually
take on the attributes of social roles and, on the one hand,
have a social connection with people. From another per-
spective, the advancement of human-like intelligence such as
artificial intelligence, which is mainly driven technology, has
replaced some of the jobs originally performed by humans,
thus causing an identity crisis and technological anxiety in
human values. The development of artificial intelligence and
human-like emotions, which are mainly emotionally de-
pendent, will have a more profound impact on human
society, especially in terms of human identity and emotional
dependence in social relations.

3. Fuzzy Neural Network Motion System for
Robot with Artificial Intelligence

3.1. Robot Motion System Design. To realize the robot from
the virtual prototype model to the real model, the first step is
to draw the vector drawing for the real model and to mark
the drawing size on the vector drawing according to the size
of the virtual prototype; the common software to draw the
structure drawing is Autodesk Computer-Aided Design
(AutoCAD) and CorelDRAW. In this paper, we chose
AutoCAD as the drawing tool.

The body structure of the robot is three-dimensional. In
this paper, the length, width, and depth of each part need to
be marked in the drawing design so that the robot body can

be assembled by printing out the parts with a three-di-
mensional structure [17]. The body structure of the quad-
ruped robot was designed concerning the mortise and tenon
structure of ancient Chinese architecture, and the torso of
the robot was designed to be fixed without screws, but only
by inserting the mortise and tenon structure. After the
design of the drawing, the drawing was processed by laser
engraving, and then the dimensions of the drawing were
verified by assembling, and the unreasonable structural parts
were modified.

The robot’s control method is divided into two types:
external command control and automatic adjustment
control of the robot’s decision system [18]. In external
command control, the robot needs to have a signal receiver
that can communicate with the outside, and in decision
control, the robot needs to be able to sense the surrounding
road conditions, audio, and video signals, etc. After receiving
the signals, the robot’s brain needs to perform a series of
operations, such as data calculation and task scheduling, and
then control the leg servos to make corresponding move-
ments. The SLIT2FNN controller is in the environment
dynamics learning process. The neural network adjusts its
own structural parameter values through the parameter self-
learning algorithm. At this time, the control signal is mainly
provided by the PD controller in the parallel control
structure. After the neural network self-learning process is
over, IT2FENN replaced the traditional PD controller as the
main control signal output in the parallel control structure.
At the same time, it can be seen from the figure that the
tracking accuracy of the robot has been significantly im-
proved. Therefore, the hardware structure of a robot is like
the von Neumann architecture of a computer, which con-
sists of five major parts, each of which cooperates to realize
the robot’s functions. The robot hardware architecture is
shown in Figure 1, where the communication module, the
video perception module, and the pose perception module
are the input devices of the robot, the servo controlled by
PWM (pulse width modulation) signal is the output device
of the robot, and the middle part is the operator and
controller of the robot.

The robot system framework is a typical hierarchical
multiloop control structure, in which the robot system is
divided into different layers from top to bottom, and each
layer will have multiple tasks to be executed collaboratively.
The first three layers are embedded inside the robot, and the
last layer is the interaction layer between external users and
the robot.

The main function of the driver layer is to realize the
cooperation between the robot hardware and software. The
sensor interface is responsible for receiving digital signals
from the sensors installed on the robot body, such as re-
ceiving video stream signals from the camera, while the main
command of the actuator interface is to send commands to
the actuator, sending the system control signals to the ac-
tuator and controlling the robot’s servo to complete the
motion function [19]. Firstly, the mechanism parameter
optimization algorithm considering the anisotropic dynamic
characteristics is established, and the optimization model is
established with the global driving joint torque index and the
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FiGure 1: Hardware structure of the robot.

global driving joint torque fluctuation index, respectively,
and the optimization problem is solved to verify the ef-
fectiveness of the algorithm. The main command of the
actuator interface is to send commands to the actuator, send
the system control signals to the actuator, control the robot’s
servo to complete the motion function, and receive the
feedback signals from the actuator to sense whether the
actual motion of the robot is the same as the control
command. The second layer of the multitasking platform
layer mainly implements the fusion of sensor data, control of
multiple servos, image processing, and task scheduling
functions, and the platform layer requires the driver layer
and the algorithm layer together to complete the task. The
robot system needs to fuse these sensor data and then realize
the processing of different sensor data through the corre-
sponding algorithms in the upper algorithm layer. The servo
control interface mainly sends the control signal of the servo
to the actuator and realizes the control of a certain servo or
the parallel control of the whole-body servo according to the
task, and the image processing interface accepts the video
stream data sent by the camera sensor, and then the image
processing interface of the algorithm layer performs cal-
culations, as shown in Figure 2.

The specific manifestation of social relations is the hu-
man-computer relationship. Human-computer relations
place more emphasis on the individual characteristics of
people who influence each other, while social relations refer
to the common aspects it contains. Social relations refer to
the interpersonal relations formed by people in the process
of production and living together. Social relations are mainly

divided into blood relations, georelations, and karma rela-
tions. Blood relations are rooted in or kinship ties and are the
first social relations formed by human beings. They con-
stitute social groups such as families and households. Geo-
relationships are based on the spatial and geographical re-
lationships of people. Karmic relations are formed based on
the extensive social division of labor and promote social
development. Types of interpersonal relations refer to the
distinction of types of interpersonal relations. According to
Thibault’s view of interpersonal interdependence, he clas-
sifies interpersonal relationships as minimal interdepen-
dence, asymmetric interdependence, reactive
interdependence, and mutual interdependence. Minimal
interdependence means that the interacting parties act
according to their intentions. Asymmetric dependence
means that one party’s actions are based on the actions of the
other party, but with opposite intentions. Reactive inter-
dependence means that one party acts in full accordance
with the other party’s intentions. Mutual dependence is the
most equal and stable form of interaction; e.g., it can be
classified as emotional or instrumental interpersonal rela-
tionships according to needs.

In terms of the relationship and process of human-
computer interaction, the user (human) is constantly
changing during the use of the machine. Human behavior
and emotions are not stable; people are not stable; people are
rather a role that is constantly changing with the use of
intelligent machines. This calculation example only con-
siders the situation that there are 1 and 2 obstacles in the
workspace, each database contains 180 sets of data, and the
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F1GURE 2: Hierarchical circuit diagram of the robot system.

setting of the initial motion trajectory of the robot is the
same as the previous one. The dynamic performance of the
social role of the machine is that the process of social role
formation is affected by other factors, such as the degree of
the flow of human-computer interaction, the degree of
human involvement in the interaction, and so on. These
factors or conditions are flexible and uncontrollable. In
addition, the effect of the social role that can be achieved
varies depending on the degree of machine intelligence. The
social role properties of machines are not invariable; a
machine is a social role only when it interacts with and
influences people; in other words, active and interacting
machine intelligence is a machine social role. With the
support of big data and the progress of deep algorithms and
other technologies, human beings have entered the era of
artificial intelligence. Modern human-robot interaction is
based on machines running according to programs written
in advance by humans. In essence, human intentions re-
flected in the behavior of all robots. Intelligent machines take
certain actions based on preprogrammed instructions from
human programmers. Even intelligent robots make certain
decisions on their own, based on algorithmic judgment.
However, with machines having dialogue and behavioral
feedback systems that are highly close to humans, close to
real people’s natural language understanding and output and
behavioral feedback, human-robot social interaction arises
along with it. Intelligent robots are a completely new product
born in recent decades, and human-machine relationships
and human-machine interactions are also a completely new
subject. The construction and understanding of human-
machine social interactions are both to help robots integrate
into human and social systems and to build systems for good
human-machine interactions. Machines becoming social
actors is a prerequisite for human-robot social interaction.
Intelligent machines with dialogue and behavioral feedback
systems that are highly like those of humans and capable of
adaptive autonomous learning become social actors with

certain norms and dynamically changing behavior patterns
when they participate in human-robot social interaction as
subjects.

3.2. Fuzzy Neural Network Algorithm Design. Designing a
type-one fuzzy logic system involves making many choices
for each segment. We need to choose the type of fuzzifi-
cation, the form of the affiliation function, the parameters of
the affiliation function, synthesis, implication, and the type
of demulsified, etc. The different choices for each link
represent the different mathematical methods involved. For
example, the firing level of a rule R” can be written in the
following form if it is calculated using the minimum t-pa-
rametrization. Although the EFPF-PSO algorithm has a
chance to obtain an optimized trajectory with a smaller
fitness value, not every calculation will converge to the
minimum fitness value, and its standard deviation is rela-
tively large. However, the results obtained by the RPSOMP
method are more stable, the standard deviation is small, and
the convergence speed is faster.

Ugn (X) = argmax{‘uA;«(xiz)}. (1)

The output fuzzy set can be obtained by calculating the
ignition level and the fuzzy rule posterior fuzzy set using the
t-parametric operator. The final output fuzzy set B can be
obtained by combining all the output fuzzy sets by t-residual
van. To obtain the output clear value y, the output fuzzy set B
needs to be defuzzied using a fuzzifier, and if the center of
gravity fuzzifier is chosen, the output of the fuzzy logic
system can be expressed as

_ Vi1 Vibls ()’i)'
YiLibp (;Vi)z

The high computational effort and complex design
process of general type-two fuzzy logic systems constrain

(2)



their application in control systems. In recent years, re-
searchers in controller design have turned their attention to
interval type-two fuzzy logic systems. The interval type-two
fuzzy set A can be expressed as

When f, (4) = 1, then the sub-subordinate function is
an interval set, and if for both it holds, then the interval
type-2 affiliation function (IT2MF, Interval Type-2
Membership Function) is obtained. The interval type-2
sub-subordinate function reflects the consistent uncer-
tainty at the primary affiliation of x. Compared with the
general type-two fuzzy logic system, the interval type-two
fuzzy logic system greatly reduces the computational
effort. Since interval type-two fuzzy sets also belong to
type-two fuzzy sets, we can obtain

J ={u € [0, 1]|uy (x,u) = 1}. (4)

In this paper, the center of sets type reducer is used to
calculate the reduced type of the obtained ignition output
set. Since both the antecedent and the consequent parts
are interval type-two fuzzy sets, the obtained reduced
typeset is still an interval set. The procedure of degenerate
calculation: firstly, the output space Y is discretized into
an appropriate number of points, and the center of
gravity of the interval type-II fuzzy set of the posterior is
calculated by the following equation:

(x,u)
Cpr = n Iee]ﬂ fzuéjx nx - N2 (5
LY yis(vi) X us(v7)

To achieve the landing of the robot from the virtual
prototype model to the real machine model, the first step
that needs to be done is to draw a vector diagram for the
real machine model. According to the size of the virtual
prototype, the drawing size is marked on the vector di-
agram, and the commonly used drawing structure soft-
ware for the drawing includes AutoCAD (Autodesk
Computer-Aided Design) and CorelDRAW. In this ar-
ticle, we chose AutoCAD as the drawing tool. From
equation (5), the center of gravity of the posterior interval
type-II fuzzy set can be calculated in advance outside the
control loop, which can reduce a large amount of com-
putational burden for the control chip. The equation for
the center-drop type of the set is

L
cos T «wJ i i
5:1 7y

Therefore, to calculate the center of the interval set Y,
only its left endpoint y; and right endpoint y, need to be
calculated. The calculation of the left and right endpoints is
given by the following equation:

(6)
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The values of L and R in equations (7) and (8) are the
values of the transition points needed to calculate the
endpoint values, and the values of the left and right end-
points need to be calculated using the Karnik-Mendel (KM)
algorithm. The design goal of the controller is to apply it to
the trajectory tracking control of the Delta parallel robot and
to provide a basis for subsequent research. The trajectory
tracking control system of the Delta parallel robot uses three
identical fuzzy logic controllers to control each of the robot’s
three servo motors. The demanded trajectory of the TCP is
converted into the demanded angle of the drive joint by the
kinematic inverse solution calculation and input to the
demand trajectory of the TCP is converted into the demand
angle of the drive joint by the kinematic inverse solution and
input to the controller [20]. The input to the controller is the
difference between the demand angle of the drive joint and
the actual angle and its derivative. The T1FLC, which is the
benchmark for the IT2FLC design, uses a type-one fuzzy set
of trapezoidal affiliation functions as the antecedent and a
type-one fuzzy set of triangular affiliation functions as the
precedent.

The terms positive, negative, and zero used in the above
fuzzy rules are expressed in the form of a type-one fuzzy
affiliation function. The initial parameters of the type-one
fuzzy set in T1FLC are empirically given artificially and
adjusted to achieve a stable and continuous initial control
performance of the robot system. The initial design of the
input and output fuzzy sets applied to the trajectory tracking
control of drive joint 1 is shown in Figure 3. The initial
design structure of TIFLC for drive joint 2 and drive joint 3
is the same as that of drive joint 1.

Three types of IT2FLC are obtained using these three
fuzzification methods, and these three types of IT2FLC are
applied to the trajectory tracking control task of the Delta
robot so that the TCP of the robot moves along the trajectory
given by the following equation:

(8)

x =0.1 cos (0.57t + ) + 0.2,
y =0.1 sin(0.57t + ), 9)
z =0.2547.

The fuzzy degree a € [0, 1], which takes a value every 0.1,
can construct one IT2FLC for each fuzzy degree value, and
five trajectory tracking control simulations are performed
for each constructed IT2FLC to reduce the statistical error of
the simulation results. The root means square error (RMSE)
values of the three joints obtained from the simulation are
plotted as shown in Figure 4. It can be observed from the
figure that the RMSE value increases with the increase of
fuzziness, and the RMSE value obtained by the two-end
fuzzy method is larger than the other two methods. The
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reason for this phenomenon can be explained by Wu’s work,
when using the two-end fuzzy method, the FOU area
produced by the same fuzzy degree is larger, and the larger
FOU gives the fuzzy logic controller a larger damping
characteristic. Robot control methods are divided into ex-
ternal command control and robot decision-making system
automatic adjustment control. In the external command
control, the robot needs to have a signal receiver that can
communicate with the outside. The decision-making control
requires the robot to be able to perceive the surrounding
road conditions, audio, and video signal, etc. Increasing the
damping characteristics of the controller can lead to more
stable control performance, but it also causes a decrease in
control accuracy. Therefore, the RMSE values obtained by
using the two-terminal fuzzy method are larger than those
obtained by the other two methods. The solution to the
control accuracy degradation problem will be presented in
the next section. In summary, since we need to obtain a
controller with high nonlinear characteristics and smoother
control performance, the IT2FLC obtained by the two-end
fuzzy method is the structure of the type-two fuzzy logic
controller that best meets the expectations of our control
system characteristics.

The platform layer needs the driver layer and the al-
gorithm layer to work together to complete the task. First,
the platform layer receives the sensor signal of the driver
layer. The quadruped robot has Bluetooth sensors and
balance sensors on the body. The robot is always receiving
multiple sensors during its movement. Signal, the robot
system needs to fuse these sensor data and then realize the
processing of different sensor data through the corre-
sponding algorithm in the upper algorithm layer. The
steering gear control interface is mainly to send the steering
gear control signal to the actuator. This summary mainly
tests the static gait walk state, as well as the dynamic gait trot
state and backward motion and left-to-right turning motion
of the robot dog proposed in this paper. The test environ-
ment was carried out on a smooth road to verify whether the
motion pattern of the real machine and the motion gait
based on Hop’s oscillation model proposed in this paper are
consistent, and the wake gait motion of the robot dog can be
obtained through the video screenshots during the experi-
ment. The robot dog can achieve a smooth and straight line,
and the robot’s walk state motion period T'is 0.8 s, the step
length of one cycle is 0.12m, and the movement speed is
0.15m/s through the test.

4. Analysis of Results

4.1. System Performance Results. A stable and effective in-
terval type-II fuzzy logic control system can be designed
using the dependent design method. Three simulation ex-
amples are used to investigate the control performance of the
proposed SLIT2FNN controller. For comparative study, the
conventional controller and the SLIT2FNN controller are
connected separately to the Delta robot for trajectory
tracking simulation experiments. The control goal is to make
the TCP of the Delta parallel robot move along the given
trajectory with as low as possible position and velocity errors

and achieve high trajectory tracking accuracy regardless of
the internal and external uncertainties. The RMSE values of
the angles of the three drive joints and the positions of the
TCP in the workspace were recorded as the indexes for
evaluating the control performance after the TCP of the
robot ran along the trajectory given by equation (9) for one
working cycle (8 seconds). The trajectory tracking errors of
the drive joints and the TCP of the SLIT2ENN controller and
the conventional PD controller are shown in Figure 5.

As we can observe in Figure 5, at the beginning of the
simulation (about 1.7 s), the SLIT2FNN controller is in the
process of learning the environmental dynamics, and the
neural network adjusts its structural parameter values
through the parameter self-learning algorithm, while the
control signal is mainly provided by the PD controller in the
parallel control structure. At the end of the neural network
self-learning process, the IT2FNN replaces the conventional
PD controller as the main control signal output in the
parallel control structure, while the tracking accuracy of the
robot is significantly improved as can be seen in the figure.
The social interaction between man and machine will follow.
Intelligent robots are a completely new product born in
recent decades. Human-machine relationship and human-
computer interaction are also a brand-new subject. The
construction and understanding of human-computer social
interaction is to help robots integrate into human and social
systems.

A second simulation experiment is given to demonstrate
more intuitively the learning process of the SLIT2FNN
controller and the effect of parameter self-learning on the
control performance. In this simulation, the same robot
trajectory is used as in the first simulation, but the robot is
required to run along this trajectory for two consecutive
working cycles. In the first work cycle (8 seconds), only the
conventional PD controller is involved in controlling the
trajectory tracking of the robot. In the second work cycle,
IT2ENN is connected in parallel to both sides of the PD
controller to form a parallel control structure to complete
the remaining trajectory tracking process. Figure 6 gives the
output signals of IT2FNN and PD controller during this
simulation experiment. It can be observed that when the
IT2ENN is connected in parallel to both sides of the PD
controller, the structural parameters of the IT2FNN start the
self-learning process, and after the learning time of about 1.7
seconds, the output signal of the IT2FNN replaces the PD
controller as the main output source of the control signal,
which is the same as the result of Simulation 1. The above
simulation results demonstrate the effect of the learning
process of SLIT2FNN on the controller output and the
improvement of the control accuracy in the second oper-
ating cycle with the parallel intelligent control structure.

It is important to note that the SLIT2FNN controller
proposed in this chapter does not require any information
about the mathematical model of the controlled object. In
practice, there are a variety of intrinsic and extrinsic un-
certainty effects, and if the PD controller used by the robot is
tuned for one operating environment to achieve optimal
control, it does not mean that the same control quality can be
obtained in other operating environments. It is impractical
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FIGURE 4: Trapezoidal affiliation function fuzzification method.

to perform optimal adjustment of PD control parameters for
each case. Therefore, the parallel control system structure
with self-learning capability proposed in this paper is of
more practical value. This controller with parallel structure
can not only provide the control effect of the corresponding
PD controller when the neural network learns, but also make
the control accuracy and robustness improvements to a great
extent after the learning is completed and have higher en-
vironmental adaptability. At the same time, the parallel
control structure proposed in this paper makes it easy to be
applied to existing automation equipment and can greatly
save hardware upgrade costs.

4.2. Neural Network Motion Results Analysis. To verify the
optimized trajectory reuse algorithm, this section constructs
the optimized trajectory database generated by the EFPF-
PSO algorithm into a data index structure with two levels
and six-leaf nodes using a vocabulary tree. Due to the
limitation of the computer’s computing power and time
relationship, this algorithm only considers the case of 1 and 2
obstacles in the workspace, each database contains 180 sets
of data, and the initial motion trajectory of the robot is set
the same as before. This algorithm can generate corre-
sponding optimized trajectory databases for specific appli-
cation scenarios in practical applications and index the
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databases according to the actual situation by classification.
Firstly, the EFPFDB of the optimized trajectory is clustered
for the first time by K-mean clustering algorithm; consid-
ering the characteristics of the number of obstacles, here the
classification value K=2. The clustering centers of the first
feature layer of the database are C1 and C2, as shown in
Figure 7. The algorithm has obtained the relationship be-
tween the location features of obstacles by unsupervised
learning, and the EFPF values are classified.

The RPSOMP method consists of a PSO-based motion
trajectory optimization algorithm and an optimized
trajectory reuse method. The input is the trajectory to be
optimized, and its EFPF vector is calculated first, and the
optimized trajectory adjustment with the highest simi-
larity EFPF stored in the database is calculated by vo-
cabulary tree query. The preliminary optimized trajectory
after the query is obtained using equation (9), and if the
obtained trajectory is a feasible solution, the obtained
trajectory is directly used for motion planning as the
output result. This paper uses the center of sets type
reducer to reduce the type of the ignition output set
obtained. Since the antecedents and consequents used in
this paper are both interval type-two fuzzy sets, the re-
duced-type set obtained is still an interval set. If the
obtained optimized trajectory is not a feasible solution,
the optimized trajectory given by the algorithm is used to
initialize the PSO particles. The adjustment amount of the
query result trajectory is used as the mean value of the
particle initialization distribution, and the value calcu-
lated from the query result is used as the standard de-
viation to initialize the particle positions of the PSO and
perform the optimization calculation. Finally, the ad-
justment amount of the obtained optimized trajectory
and the EFPF of its initial trajectory are stored in the
corresponding database, and the optimized trajectory is

output. The method flowchart of the RPSOMP method is
shown in Figure 8.

From the analysis in Figure 8, RPSOMP converges
faster than EFPF-PSO, taking only 0.43 seconds on av-
erage, which fully satisfies the requirements for trajectory
optimization calculation in engineering applications.
Meanwhile, it should be emphasized that, in practical
applications, if the data volume of the optimization da-
tabase is large and the database is designed for a specific
problem, in most cases, the RPSOMP method does not
require repetitive optimization calculations but can di-
rectly use the retrieval results to generate optimization
trajectories. This can further improve the time to obtain
the optimized trajectory to about 0.001 seconds and meet
the demand of real-time trajectory optimization. Al-
though the EFPF-PSO algorithm has a chance to obtain
optimized trajectories with smaller fitness values, not
every calculation converges to the minimum fitness value,
and its standard deviation is relatively large. In contrast,
the results obtained using the RPSOMP method are more
stable, have smaller standard deviations, and converge
faster. For the robot online collision detection problem, a
simplified characterization method of robot and obstacle
in space is proposed. Based on this, the robot trajectory
optimization problem is investigated using the PSO-
based motion trajectory optimization algorithm. The
demand trajectory of TCP is converted into the demand
angle of driving joints and input into the controller
through the inverse kinematics calculation. The input of
the controller is the difference between the required angle
of the drive joint and the actual angle and its derivative.
As the IT2FLC design benchmark, TIFLC uses a type 1
fuzzy set of trapezoidal membership function as the
antecedent and a type 1 fuzzy set of triangular mem-
bership function as the subsequent piece.
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5. Conclusion

This method is based on the optimized T1FLC, and the fuzzy
degree is used to fuzzify the type-one fuzzy subordinate
function into the interval type-two fuzzy subordinate
function to obtain the IT2FLC. Three fuzzification methods
for the trapezoidal subordinate function are studied, and the
relationship between the fuzzy degree, the fuzzification
method, and the output control surface is given. OSEC is
used to ensure the control accuracy of IT2FLC after fuz-
zification, and the calculation and value of OSEC are given.
A SLIT2FNN with a seven-layer structure is established, and
a parallel intelligent controller based on SLIT2FNN is
proposed on this basis. The transient performance during
the learning process of the neural network can be com-
pensated by the parallel PD controller, which makes it easy
to upgrade the conventional controller. In the design of the
front piece set of SLIT2FNN, the dual sequence symmetric
trapezoidal affiliation function arrangement method is used
to make the system’s self-learning law and stability analysis
in analytic form. In the design of the neural network self-
learning law, a parameter self-learning algorithm based on
the SMC theory is established to adjust the structural pa-
rameters of IT2FNN online. An industrial intelligent robot
software system based on the robot operating system ar-
chitecture is established, and the kinematic and dynamic
models, mechanism parameter optimization algorithms,
SLIT2FNN-based intelligent controller, and RPSOMP
method are implemented based on this paper. Based on the
research in this paper, the intelligent task planning module is
further investigated to make the robot autonomous and
capable of operating in unstructured spaces and environ-
ments and completing nondeterministic tasks online in real
time.
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