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Abstract: Optical tweezers, formed by a highly focused laser beam, have intriguing applications in
biology and physics. Inspired by molecular rotors, numerous optical beams and artificial particles
have been proposed to build optical tweezers trapping microparticles, and extensive experiences
have been learned towards constructing precise, stable, flexible and controllable micromachines.
The mechanism of interaction between particles and localized light fields is quite different for different
types of particles, such as metal particles, dielectric particles and Janus particles. In this article, we
present a comprehensive overview of the latest development on the fundamental and application of
optical trapping. The emphasis is placed on controllable mechanical motions of particles, including
rotation, translation and their mutual coupling under the optical forces and torques created by a
wide variety of optical tweezers operating on different particles. Finally, we conclude by proposing
promising directions for future research.
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1. Introduction

Light can drive the mechanical motions of micro- and nano-objects because light carries both
energy and momentum that can exchange with these objects. However, this is not an intuitive and
obvious concept because the force is extremely weak in usual situations. Thus, in our daily life, optical
forces are invisible. Despite this, the light pressure had been hypothesized in the explanation of the
nature of comet tails by Kepler (1696). In fact, the electromagnetic theory developed by Maxwell has
proposed the optical force, which was described by the term “radiation pressure”. Until the 1960s, the
advent of lasers greatly broadened the knowledge on light and made it possible to clearly demonstrate
the concept of optical force. In 1986, Ashkin, the pioneer of optical tweezers, creatively used a highly
focused laser beam to implement three-dimensional (3D) trapping of dielectric particles around the
focus spot [1], as shown in Figure 1a. To understand the principle of this trap (see Figure 1b), the
total optical force acting on a particle can be decomposed into two contributions: (1) the radiation
pressure, known as the scattering force, which is proportional to the Poynting vector of optical field
and points along the direction of the incident beam, tends to destabilize the trap; and (2) the gradient
force, which is proportional to the gradient of the light intensity and points toward the tarp focus,
confines the particle near the focal spot. The gradient force represents the attraction of particles to the
highest intensity region. Thus, the condition for 3D optical trapping is that the gradient force is larger
than the sum of the scattering force and stochastic force due to Brownian motion.
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Figure 1. (a) A sketch of optical tweezers generated by a strongly focused laser beam to trap objects; 
and (b) a schematic illustration of optical forces exerted on a colloidal particle around the focus spot. 
(Reprinted with permission from Springer Nature [2].) 

Since then, research on optical tweezers has begun to spread out and expand. Essentially, the 
basic principle of optical tweezers is the interaction between light and matter, through momentum 
and energy transfer and exchange, to achieve manipulation of objects. As is well known, optical 
tweezers can limit objects bound by optical potential well in a small space range. It can trap various 
objects as small as nanometer-size particles and can exert optical forces with controllable amount at 
the femtonewton resolution, which is the ideal range for the study of molecule mechanical property. 
Therefore, optical tweezers have become a promising tool to investigate the mechanical properties of 
biological specimens, and examples include the force measurements of DNA- and RNA-based motors 
[3–6]. This tool has been widely applied to investigate cell cytometry, artificial fertilization of 
mammalian cells, and even micro-surgery [7,8]. 

In the early years, the technique of optical tweezers were successfully applied to capture and 
manipulate micrometer particles [9], even atoms [10]. However, optical forces on the captured objects 
depend crucially on the interaction between the laser field and the objects themselves. Therefore, 
multiple degrees and freedoms of control over optical force can be greatly aroused by shaping either 
the beam or the particles. To achieve various motions of trapped micro-objects, two typical schemes 
have been successfully adopted in an optical tweezers system. One scheme is to modulate laser beams, 
for instance using optical vortex beams [11], Bessel beams [12], Laguerre–Gaussian beams (LG beam) 
[13], and novel beams [14], to build optical tweezers. The other scheme makes use of the special 
properties of particles, for instance introducing precisely fabricated asymmetric micro-objects [15] 
rather than usual homogeneous spherical particles, such as micro-turbines or gammadion shaped 
micro-rotors, birefringent particles [16,17] and Janus particles [18] into an optical tweezers system. 
These asymmetric particles, when embedded within usual Gaussian or other special optical traps, 
will exhibit interesting mechanical motion behaviors. Applications have been explored in the fields 
of Janus motors [19,20], switchable devices [21], and optical probes [22]. Henceforward, optical 
tweezers have opened research on micro-objects dynamic processes with the aid of high-resolution 
microscope and laser technologies. 

Inspired by the complex organization of biological organisms, the design of artificial 
micromachines that exhibit controlled mechanical motion and perform sophisticated tasks is an 
ultimate pursuit of micro-scale engineering. A micromachine allows flexible control of both the 
direction and speed of motion. At the same time, expanding the scope of their utility in practice has 
led to the large-scale production of micromachines. Along with the optical tweezers, substantial 
research on the controlled motion of artificial particles has been undertaken. In the microscopic world, 

Figure 1. (a) A sketch of optical tweezers generated by a strongly focused laser beam to trap objects;
and (b) a schematic illustration of optical forces exerted on a colloidal particle around the focus spot.
(Reprinted with permission from Springer Nature [2].)

Since then, research on optical tweezers has begun to spread out and expand. Essentially, the
basic principle of optical tweezers is the interaction between light and matter, through momentum
and energy transfer and exchange, to achieve manipulation of objects. As is well known, optical
tweezers can limit objects bound by optical potential well in a small space range. It can trap various
objects as small as nanometer-size particles and can exert optical forces with controllable amount at
the femtonewton resolution, which is the ideal range for the study of molecule mechanical property.
Therefore, optical tweezers have become a promising tool to investigate the mechanical properties
of biological specimens, and examples include the force measurements of DNA- and RNA-based
motors [3–6]. This tool has been widely applied to investigate cell cytometry, artificial fertilization of
mammalian cells, and even micro-surgery [7,8].

In the early years, the technique of optical tweezers were successfully applied to capture and
manipulate micrometer particles [9], even atoms [10]. However, optical forces on the captured objects
depend crucially on the interaction between the laser field and the objects themselves. Therefore,
multiple degrees and freedoms of control over optical force can be greatly aroused by shaping either
the beam or the particles. To achieve various motions of trapped micro-objects, two typical schemes
have been successfully adopted in an optical tweezers system. One scheme is to modulate laser
beams, for instance using optical vortex beams [11], Bessel beams [12], Laguerre–Gaussian beams (LG
beam) [13], and novel beams [14], to build optical tweezers. The other scheme makes use of the special
properties of particles, for instance introducing precisely fabricated asymmetric micro-objects [15]
rather than usual homogeneous spherical particles, such as micro-turbines or gammadion shaped
micro-rotors, birefringent particles [16,17] and Janus particles [18] into an optical tweezers system.
These asymmetric particles, when embedded within usual Gaussian or other special optical traps, will
exhibit interesting mechanical motion behaviors. Applications have been explored in the fields of
Janus motors [19,20], switchable devices [21], and optical probes [22]. Henceforward, optical tweezers
have opened research on micro-objects dynamic processes with the aid of high-resolution microscope
and laser technologies.

Inspired by the complex organization of biological organisms, the design of artificial
micromachines that exhibit controlled mechanical motion and perform sophisticated tasks is an
ultimate pursuit of micro-scale engineering. A micromachine allows flexible control of both the
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direction and speed of motion. At the same time, expanding the scope of their utility in practice
has led to the large-scale production of micromachines. Along with the optical tweezers, substantial
research on the controlled motion of artificial particles has been undertaken. In the microscopic world,
microparticles motions can be strongly modified by external fields and their solution surroundings,
such as the temperature distribution and viscosity of the embedded solution (usually water).
In addition, due to the random bombardment of the water molecules, the Brownian motions of particles
become increasingly significant with the decreasing size of particles. The accurate and comprehensive
mathematical description of these forces requires using the rigorous electromagnetic theory to model
the interaction between an incident light beam and trapped particles and precisely considering
the background medium complex property of particles. However, this can be a daunting task.
To calculate the force and torque of trapped particles and their mechanical motion in optical traps,
it is crucial to build an appropriate theoretical approach with balance in numerical precision and
computational efficiency.

In this article, we discuss how to control the mechanical motions of various particles in optical
tweezers under complicated actuation of optical forces and torques by tightly focused laser beams.
The rest of this article is organized as follows. In Section 2, we start with description and discussion of
the fundamentals of optical forces and different theoretical models and methods, including geometrical
optics method, Rayleigh scattering theory and electromagnetic scattering theory used to calculate
optical forces. Then, in Sections 3 and 4, we give a detailed introduction about the development of
laser tweezers techniques that have been employed to drive dielectric/metal particles in solution.
In Section 5, we focus on a selected topic as optical manipulation of Janus particles, and discuss its
potential aspect as micromachines. In Section 6, we continue with a brief summary of optical tweezers
in application to the area of biology and physics. Finally, in Section 7, we summarize the state-of-the-art
open issues and future directions in optical manipulation of nanostructures.

2. Physics and Theory for Optical Forces on Microparticles

Optical forces on particles originate from the interaction of light fields with particles. As the
material properties and geometric structures of particles can strongly affect the interaction behaviors,
they will also influence both the magnitude and direction of optical forces. To illustrate the basic
physics about the optical forces, we take a homogeneous dielectric sphere as an example to discuss how
optical forces arise and how they depend on the properties of light–matter interaction. For this special
geometry, rigorous analytical solution of light–particle interaction can be obtained from Mie’s theory
and its generalized formulation in the framework of classical electromagnetics and electrodynamics.
Although the theory and solution are rigorous and reliable, they are quite tedious and troublesome in
many situations, and thus some simplification is highly desirable. According to the size of particle
in reference to the wavelength of incident laser, solution of optical forces exerted on particle can be
categorized into the following three cases: Case (1), the size of particle is far less than laser wavelength;
Case (2), the size of particle is much larger than laser wavelength; and Case (3), the size of particle is
comparable to laser wavelength. The corresponding methods of optical force calculation are introduced
and discussed in details as follows.

(1) Small Particles and Rayleigh Scattering Theory

If the particle is much smaller in size than the laser wavelength (radius less than λ/10), one can
assume that the external electric field does not vary within the particle. With the decreasing particle
size, the wave optical effects gradually come into playing a crucial role. In the optical electromagnetic
field with a wavelength far larger than the size of small particles, these particles are often regarded as
electric dipoles to account for their optical and mechanical response [23–25]. The optical force that acts
on a dipole is composed of scattering force and gradient force, which is given by

→
F =

→
F scat +

→
F grad (1)
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The induced electric dipole will oscillate synchronously with the time-harmonic electric field and
emit secondary scattering waves. This process will cause the change of energy flux and amplitude of
the incident laser beam, and then results in momentum transfer between light and dipole. Hence, the
scattering force acting on small particles can be calculated as,

→
F scat =

n1

c
Cscat

〈→
S
〉

(2)

Here, n1 is the refractive index of surrounding,
〈→

S
〉

is the Poynting vector, and Cscat is the

scattering cross section of the particle. The scattering cross section is related with R (radii of particle)
and m (m = n2/n1) by the following formula,

Cscat = 8/3πkR6((m2 − 1)/(m2 + 2))2 (3)

where k = 2πn1/λ is the wave number of light.
The gradient force exerted on a small particle is proportional to the gradient of the optical field

intensity and can be calculated as
→
F grad =

1
4

ε0α∇
→
E

2
(4)

where α is the polarizability of the particle, and it can be written as α = 4πn1
2R3((m2 − 1)/(m2 + 2))2.

This simple theoretical model can help to understand the basic principle of an optical tweezers.
Notice that common optical tweezers are made from a highly focused laser beam (a Gaussian laser
beam passing through a high NA microscopic objective and tightly focused) with the focus spot being
the center of optical trap. The optical intensity is highest at the focus spot and decays with the distance
away this point. Obviously, there is a 3D optical intensity gradient (and thus an optical gradient force)
pointing to the focus spot so that a particle will be attracted to the focus spot under this gradient force.
Although there also exists a scattering force that tends to push the particle away from the focus spot,
this scattering force is much smaller than the gradient force and will not degrade the optical trapping
of the particle. Another point is that the gradient force is proportional to the intensity at the focus spot,
thus a higher power of laser beam and a smaller focus spot (higher NA of objective lens) would be
beneficial for reaching a larger gradient force and stronger optical trapping.

(2) Large Particles and Geometrical Optics Method

For particle diameters larger than 10λ (λ is the laser wavelength), the geometrical optics method is
suitable and widely applied for calculating the optical forces [26,27]. In the geometrical optics regime,
the incident light beam is decomposed into several individual rays, each with appropriate intensity,
direction, and state of polarization. Each ray can change direction, intensity, and polarization when
it reflects and refracts at dielectric interfaces according to the Fresnel formulas. Moreover, reflection
and refraction can happen for many times before the intensity of these rays eventually decays to zero.
At each reflection and refraction, exchange of momentum between light and particle takes place, and
this creates optical force according to Newton’s law of mechanics. The total force on the particle is
the sum of all individual forces at each account of interface reflection and refraction for all the rays
comprising the incident laser beam.

To illustrate this method clearly, the ray-optics model for calculation is shown in Figure 2a.
The center of the sphere, point “O”, is set as the coordinate origin. The laser beam is focused by a high
NA objective lens to a focal point located at f = [f x, f y, f z]. The total light beam is decomposed into a

lot of individual rays, and the initial propagation directions of these rays are denoted by
→
k 1,
→
k 2,
→
k 3,

. . . ,
→
k n, . . . , before they interact with the sphere. To describe momentum exchange process in the

regime of ray optics, a diagram of the mechanical analysis is illustrated in Figure 2b in detail for clarity.
First, consider the force due to a single ray of a power P hitting the sphere at the propagation direction
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→
k 1 with an incident momentum Pn1/c per second, where n1 is the refractive index of the aqueous
solution, and c is the speed of light in vacuum. Note that the incident ray will be subject to multiple
reflection and refraction events within the sphere, and each time there will be momentum transfer
and exchange between light and sphere, generating optical force and torque. Then, the overall force
→
F =

[
Fx, Fy, Fz

]
can be given by

→
F =

→
Q · Pn1/c, where

→
Q =

[
Qx, Qy, Qz

]
is a dimensionless factor that

describes the momentum exchange coefficient of each ray interacting with sphere and is associated

with the overall reflection of light beam. The factor
→
Q is the sum of the reflected ray with directional

strength
→
k 1rR1 and the infinite number of emergent refracted rays of directional strength

→
k 2tT1T2,

→
k 3tT1R2T2, . . . ,

→
k ntT1Tn(R2 · R3 · Rn−1), . . . . The quantities Tn and Rn represent the Fresnel reflection

and transmission coefficients at the nth intersection event of the transport ray with the particle surface.
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Figure 2. (a) The schematic diagram of a Gaussian laser beam tightly focused by a high-NA lens and
illuminating the sphere for optical trapping and manipulation. In the ray-optics model, the laser beam

is decomposed into a large amount of rays of light denoted by their directional unit vectors
→
k 1,
→
k 2,

. . . ,
→
k n, . . . . (b) Schematic diagram of the ray tracking for a specific ray

→
k 1 within the sphere, where a

multiple events of ray reflection and refraction take place.

Hence, the overall force contributed by this ray can be calculated via the principle of the exchange
of momentum as

→
F k1 =

Pn1

c

(
→
k 1 −

→
k 1rR1 −

→
k 2tT1T2 −

∞

∑
n=3

→
k ntT1Tn(R2 · R3 . . . Rn−1)

)
=

Pn1

c

→
Qk1

(5)

The total force imposed upon the sphere by the focused laser beam is simply the vector sum over
the force of all rays of light,

→
F =

N

∑
i=1

Wki

→
F ki

=
Pn1

c

N

∑
i=1

Wki

→
Qki

(6)

Here, Wki
is the weight of contribution parameter of the ki ray of light, which is proportional to

the intensity profile of the incident laser beam in the entrance pupil of the high-NA lens, and N is the
total number of rays considered in the calculation.

The above geometrical optics approach clearly illustrates the exchange of energy and momentum
between light and particle as the physical origin of optical forces. This method intuitively gives a
very simple while quantitative description of optical forces exerted on spheres. More importantly, this
method can make theoretical prediction which fits well with experimental data in many studies, for
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example, optical forces acting on cells [28], deformation of micro-bubbles [29], and Kramers transitions
between two optical traps [30].

(3) Mesoscopic particles and electromagnetic scattering theory

For mesoscopic particles with diameters equivalent to or comparable with the laser wavelength,
no simple solution of electromagnetic field and optical forces are available, and complicated
numerical simulations must be used. Of course, for a spherical paicle, Mie’s theory can be used
to yield an analytical solution, albeit still very troublesome. The principle is to calculate the
electromagnetic field, construct the Maxwell electromagnetic tensor, use the electromagnetic energy
and momentum conservation law, and calculate the optical forces. However, this turns out to be a
cumbersome procedure. At present, various numerical algorithms have been developed to handle
Maxwell’s equations, such as finite difference time domain method (FDTD) [31], discrete dipole
approximation method (DDA) [32], T-matrix method [33] and so on. By using the above methods to
obtain the scattering optical field, the optical force exerted on particles can be calculated by

→
F =

∮
S

→
T(r, t)dS (7)

where S represents the closed surface surround the particles, and
→
T is the Maxwell

electromagnetic tensor. Physically,
→
T accounts for the connection between optical forces and mechanical

momentum exchange [34] through the following formula,

→
T =

1
4π

[
ε
→
E
→
E +

→
H
→
H − 1

2

(
ε
→
E

2
+
→
H

2)→
I
]

(8)

The above briefly discuss the theoretical approaches to understand and calculate the optical forces
of various microscopic particles and objects in optical tweezers. This knowledge becomes the physical
basis and crucial point for studying the mechanical mechanism of the controlled motion of mesoscopic
particles in optical tweezers. Generally speaking, in physics, optical forces not only depend on the
optical field but also the particles geometry and physical properties. For simple structures, such as
spherical particles and nano-wires, optical forces in practical experiments are basically in accordance
with numerical calculation results from the above theories. However, for particles with abnormal
geometric shape or material properties, quantitative analysis of the mechanical parameters (position,
velocity, force, etc.) has a valuable reference for understanding the experimental observation of various
mechanical motions, analyzing the underlying physical mechanism, and constructing the law and
methodologies for controlling the complicated motion of trapped particles. On this basis, it is in
urgent need to advance and develop optical tweezers theory to a high level that can handle the static
and dynamic motion of various particles in diversified optical tweezers with high precision, light
computation burden, and deep insights.

3. Manipulation of Dielectric Particles

Light carries energy and momentum. The light–matter interaction is actually a process of energy
and momentum exchange. If energy exchange can enormously affect the chemical or physical property
of materials, or exert significant optical force and torque, this process will create a new area of
engineering science. Nowadays, light is an ideal means to control the motion of objects remotely
and wirelessly. Optical tweezers and related optical trapping techniques have been extensively studied
and developed as tools for manipulation of particles and for quantitative measurements of forces,
torques, and positions in a broad range of multidisciplinary sciences ranging from atomic physics to
cell biology [34,35].

On the other hand, considering that the material properties of particles greatly influent optical
forces, the trapped particles can be categorized into three types, dielectric particles, metal particles
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and dielectric-metal particles (namely, Janus particles). In the following sections, we make a brief
introduction of the multiple manipulation methods of these particles.

As early as the 1970s, accelerating and trapping microparticles with the force of radiation pressure
generated from a continuous laser was achieved [9]. Up to 1986, optical tweezers exploiting a focused
laser beam were used to implement 3D trapping of particles [1]. In recent years, inspired by machine
miniaturization, there is a widely held and unmet goal to control the diverse motions of nano- and
micro-sized particles in a fluidic environment. In the convectional optical tweezers configuration, the
optical isotropic microspheres are tightly captured in the symmetrical focused Gaussian laser beam.
To break this balance and give these microscopic particles designated complicated motions, the laser
beam shaping has been employed to construct various types of optical tweezers and realize fruitful
freedoms of mechanical motions of particles.

3.1. Novel-Beam Optical Tweezers

Laser beam shaping, the art of controlling the amplitude, phase and polarization profile of a laser’s
output, is an extremely useful means to enrich optical tweezers technologies. The first prominent
example is illustrated in Figure 3a, where an asymmetric intensity distribution of light field can also
generate an asymmetric gradient force [36] to drive particles along a specific direction. Polystyrene
microspheres can be trapped and orderly move along the longitudinal optical axis of the line optical
tweezers (LOT), like a travellator [37]. Through tilting a cylindrical lens in an off-axis manner, the
intensity distribution of LOT is from high to low along the longitudinal direction. Hence, the optical
gradient force can propel particles towards the other end of LOT. The second example is illustrated
in Figure 3b. Aroused by transporting particles via optical force, the “Y” shape configuration of
dual-channel LOTs exhibits the capability of optical transport and sorting different-sizes particles [38].
The magnitude of optical force depends on the particle size and the power of optical field. By adjusting
the relative power of two LOTs, optical forces exerted on large-size particles and small-size particles
are different from each other. With the assistance of stokes force offered by the stream, the large and
small particles will be separated by optical forces.
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Figure 3. (a) Experiments shows herding of polystyrene microspheres using a single optical travellator
and two optical travellators. (Reprinted with permission from Springer-Verlag [37].) (b) Description
of optical sorting different-sizes particles by dual-channel line optical tweezers. (Reprinted with
permission form OSA [38].)

Typical controllable methods of particles motions via using optical tweezers are to scan a point-like
optical trap with rotating mirrors [39–41], galvanometer-driven mirrors [42–44], acousto-optical
deflectors (AOM) [45–47], and spatial light modulator (SLM) [48–50]. Due to the optical gradient forces,
particles will follow closely with the moving beams. With the advantage of high spatial resolution
of positioning, an AOM utilizes the acouso-optic effect to shift the angle of laser beam sent into the
objective lens, its focus spot and thus the trap position rapidly, which is well suited for measurements
of translation and rotation of biological molecular rotors [47,51]. It is noteworthy that the advent of
holographic optical tweezers technology marks the formal entry of 3D multiparticle manipulation
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into the stage of optical tweezers technology. Various iterative optimization algorithms [52–54] have
been developed to create specific holography patterns that can modify the amplitude or phase of an
input single laser beam to separate equally into a number of laser beams in different directions
and form multiple focus spots and optical traps when they pass through the objective lens [2],
as shown in Figure 4a. Moreover, it was demonstrated that quasi-statically fast temporal control
of computer-generated hologram [55–57], together with spatial light modulators, could achieve
controlling various motions of multiple particles. In Figure 4b, multiple optical traps can also be
applied to organize particles [58] into ordered nanostructures in 3D space, even for atoms [59] as
presented in Figure 4c. This technology promotes applications in 3D cellular constructs [60], assembly
of structures [61] and individual particle control [62–64].
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Figure 4. (a) Creation of a large number of optical tweezers using computer-generated holograms.
(Reprinted with permission from Nature Springer [2].) (b) Twenty-two silica spheres are arranged into a
crystalline lattice with holographic optical tweezers. (Reprinted with permission form OSA [58].) (c) An
example of loaded single atoms in a tweezer array. The parenthesis denotes the loading probability
and lifetime. (Reprinted with permission from Nature Springer [59].)
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The optical field in usual optical tweezers is basically a low-order fundamental mode Gaussian
beam, which is easy to perform but greatly limited in the range and depth of particle capture. With the
advent of various laser beams, such as the optical vortex beams, Laguerre–Gaussian (LG) beams,
Bessel beams, self-bending beams, and self-accelerating beams [49,65–67], plenty of methods to achieve
complex manipulations have been proposed. In particular, “non-diffracting” Bessel beams have been
exploited to trap atoms and microscopic particles in multiple planes, and construct conveyor belts for
them [68]. Because of its non-diffracting effect, the center spot size and shape can remain unchanged
in the propagation process. Hence, Bessel beams are widely used to guide the particles along the
direction of transmission.

In addition to relying on the linear momentum exchange of light with particles for 3D
manipulation of particles, researchers also use the angular momentum of light as a new freedom to
capture and even drive particles in different ways. The angular momentum of light has two forms,
spin angular momentum (SAM) and orbital angular momentum (OAM). Both SAM and OAM of light
can be conveyed to particles through absorption and scattering, and result in torque that rotates the
objects in addition to the usual trapping operation [69–72]. As shown in Figure 5a, the transfer of
SAM from circularly polarized light to nearly perfectly spherical vaterite crystals, which has similar
birefringence properties to calcite [16], can cause this crystal to rotate in a speed up to 1000 Hz [73].
Figure 5b describes that a quasi-perfect optical vortex beam, generated by a spatial light modulator,
transfers OAM of light to support the rotation of particles [74].
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Figure 5. (a) Rotation of a vaterite crystal through the transfer of optical spin angular momentum
of circularly polarized light. (Reproduced with permission from APS [73].) The left panel shows the
scanning electron microscope (SEM) of a vaterite crystal, and the right panel shows the signal recorded
by the linear polarization measurement apparatus during rotation of the vaterite crystal. (b) Rotation
of low-refractive-index hollow glass spheres via the transfer of optical orbital angular momentum of an
optical vortex. The left panel represents generation of quasi-perfect optical vertex, and the right panel
shows the simulated focal-plane intensity distribution and the forces experienced by the microparticle.
(Reproduced with permission from OSA [74].)

A significant progress is the discovery that both intensity gradient and phase gradient of light can
be utilized to drive objects. To deal with various future specified tasks, the objects should be controlled
to follow well-designed complicated trajectory of mechanical motion. Therefore, both intensity and
phase gradient forces are crucial for the construction of complicated 3D optical traps. Specifically, the
focused Gaussian vortex beam is of this kind. The intensity gradient force of this beam allows for
3D trapping, while the phase gradient force created by the vortex beam propels the particle to rotate
around the ring [75]. With the development of holographic technique for 3D beam shaping, a lot of
freestyle optical traps that satisfy the above mentioned gradients can stably trap particles and propel
them to move [76]. Figure 6 displays the optically induced particle motion in a 3D toroidal-spiral laser
trap, with the distance up to 25 µm deep from the highest to the lowest. Note that these laser traps
have various types, including, but not limited to ring, triangle, square and 3D curves [77].
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Figure 6. The optically induced particle motion in a 3D toroidal-spiral laser trap. The time-lapse image
shows the particle flow revealing a starfish shape, which is corresponding to the shape of the trapping
beam in right panel. Top and bottom corners of the 3D toroidal-spiral curve are plotted in red and blue,
respectively. (Reproduced with permission from OSA [77].)

3.2. Near-Field Optical Tweezers

As conventional optical tweezers work based on the far-field technique with optical lens or
microscope objectives used to focus an incoming laser beam into a tiny spot, the spatial confinement
of these far-field optical tweezers is inevitably limited by the diffraction effect of light, namely, the
Rayleigh diffraction limit of microscope resolution. In addition, the gradient force is proportional to
the third power of the particle radius, and this intrinsically limits the ability to capture and position
nanoscale objects because in these situations the optical trapping force is not sufficiently large to
overcome the escape force imposed by the random Brownian motion of water environment. It is
worthwhile to mention that optical manipulation of metal nanoparticles have been achieved due to its
high absorption effect [78–80]. However, the characteristics of most biomolecules, such as proteins
and carbohydrates, are closer to dielectric particles. As a result, it is not feasible to use conventional
microscope optical tweezers to trap these macromolecules. Alternative route must be explored to solve
this problem.

In 1997, Lukas Novotny proposed a method to irradiate the metal tip with laser and achieve
significant enhancement of evanescent field [81]. Unlike propagating fields used in conventional
optical tweezers, the energy of evanescent field is spatially concentrated in the vicinity of the light
source and extends from the interface up to several hundred nanometers away in distance. As the
intensity distribution of light decays rapidly with a length far smaller than half the wavelength (the
scale of conventional optical trap) this generates a very strong gradient force enabling to capture
nano-scale particles [82–84]. As shown in Figure 7a, a well-designed subwavelength waveguide slot
illuminated by laser beam can excite a strongly localized field at its center. This localized field can
capture 75 nm dielectric particles and λ-DNA, and simultaneously utilize the scattering and absorption
forces to transport particles along the light propagation direction [85]. However, such evanescent fields
are difficult to capture metal particles, as this structure strongly scatters and absorbs light.

With the development of nanofabrication technology, plasmon nano-tweezers, which depends on
the surface plasmon polaritons (SPPs) of a metal-dielectric interface, is particularly efficient in confining
and localizing light down to the nanometer scale [86]. Plasmonic nanostructures can be engineered
to couple with propagating light and concentrate it into tightly localized optical fields. Figure 7b
shows bowtie apertures designed and fabricated to trap 30 nm insulated QDs, yielding a system with
stable single particle trapping [87]. To enhance the interaction between the microscopic particle and
electromagnetic waves, it was demonstrated that the SPP of wrapping dielectric particles with black
phosphorene (BP) layers excited by the LG beam can be applied to achieve tunable optical force [88].
The combination of plasmon optics and optical manipulation has opened up new opportunities for
optical trapping at the nanometer scale.
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Figure 7. (a) Schematic of the slot waveguide used to transport small particles via evanescent field.
(Reproduced with permission from Springer Nature [85].) (b) Schematic of the bowtie apertures used
to trap small particles via plasmons. The left panel represents the transmission electron microscope
(TEM) image of the silica-coated quantum dots used in trapping. (Reprinted with permission from [87].
Copyright 2016 American Chemical Society.)

4. Manipulation of Metal Particles

Dielectric particles such as polystyrene or silica particles are often used as carriers or handles to
measure the mechanical properties of bio-molecules. By contrast, trapping metal particles still faces
intractable problems, due to strong scattering force and severe optical heating effect [89], especially
when the laser wavelength is close to the surface plasmon resonance (SPR) of the particle. When the
size of metal particle is close to or larger than the wavelength of light, scattering force increases with
particle size much faster than the gradient force. Therefore, these mesoscopic metal particles trend to
escape from the optical trap, and only the small metal particles with sizes well below the Rayleigh
diffraction limit can be stably trapped.

Among metal particles, due to wonderful stability and excellent compatibility to biological
molecules, gold nanoparticles are widely used in the areas of data storage, bio-sensor, and surface
Raman scattering enhancement. For example, gold particles as local heat sources can cause
hybridization of DNA [90], as “plugs” connecting enzymes to electrical nano-circuits [91]. For optical
tweezers system, it is crucial to trap particles more easily and quantify optical forces exerted on
trapped particles. Thanks to the advancement in optical engineering, methods to generate optical
fields with inhomogeneous spatial distribution have been developed [71,83,92–95]. For example, Bessel
beams [96,97] enable trapping metal nanoparticles [98], even under the SPR condition, by tailoring the
spatial distribution of the vectorial optical field [99].

In addition, it was demonstrated that gold nanoparticles could absorb spin angular momentum
from circularly polarized light to rotate at high frequencies of several kHz [70] (see Figure 8). For gold
nanorods, the speed could even reach a very high rotation frequency up to 42 kHz in water [79], much
faster than previously reported results of optical spinning. This ultrafast rotation of particles is highly
dependent on the surrounding environment, so it could be useful for probing localized viscosity and
temperature [100], as shown in Figure 8. In comparison to trapping in water, the manipulation of
metallic nanoparticles in air has been reported [101]. However, this faces more challenges due to faster
Brownian motion of aerosols and higher heat dissipation. Thus, it will be quite interesting to further
explore many exciting fields such as heat transfer at solid–gas interface at the nanoscale and irradiation
of metallic particles in air or vacuum.
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As metal nanoparticles support SPR [103,104], this characteristic has profound influence on their 
interaction with light, including strongly enhance light absorption and light scattering. For example, 
plasmon excitation induces strongly amplified optical near-fields near the metal surface, so that the 
trapped nanoparticles can be used as antennas to effectively couple light with molecules or other 
objects. Moreover, the SPR properties of metal nanoparticles, including the resonance wavelength, 
charge displacement feature, near-field enhancement, and plasmon damping characteristics, can be 

Figure 8. (a) Ultrafast spinning of gold nano-particles in circularly polarized optical tweezers, and
the right panel displays the intensity autocorrelation functions for a particle subject to circularly (blue
squares) and linearly polarized laser light (red triangles). The rotation frequency f can be obtained
by fitting the experimental data. (Reprinted with permission from [70]. Copyright 2013 American
Chemical Society.) (b) Gold nanorod motors for localized environment sensing: (b1) the rotation
frequency of god nanorod motors versus solution viscosity relative to water; and (b2) the rotation
frequency of the gold nanorod with attached molecules decreases when time goes by. (Reprinted with
permission from [100].)

Besides investigating the simpler case of spherical metal particles, metal nanorods and metal
nanowires, many recent papers have begun to consider metal particles with complex structures in an
optical trap. Shaping gold nanoparticles into nano-prisms can result in an increase in the trap stiffness
by an order of magnitude as the destabilizing scattering force is reduced. Optical tweezers also support
the study of the dynamics of two or multiple interacting particles. In Figure 9, two 150 nm in diameter
Ag nanoparticles with small separations are combined into an electrodynamically bound nanoparticle
dimer structure (EBD structure) [102]. The EBD rotates clockwise and counterclockwise under the
right-handed and left-handed circularly polarized light, respectively. Through dynamics simulations
and experiments, the results demonstrate that negative torque could create new opportunities to
control the orientation of dimer structures by interparticle separation.
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Figure 9. Rotation of an electrodynamically bound nanoparticle dimers (EBD). (a) Schematic and
coordinate system of an EBD. (b) Calculated torque on the EBD as a function of the center to center
separation of the two 150 nm diameter Ag nanoparticles. The solid blue curve shows the torque
calculated by assuming that the incident source is a plane wave, the dashed red curve is for a source
with a Gaussian intensity envelope, and the dotted black curve is the torque calculated under the
quasi-static approximation for an incident plane wave. (c) Series of experimental dark-field images
(ordered from top to bottom in time) of an optical dimer composed of two 150 nm diameter Ag
nanoparticles rotating clockwise and counterclockwise for right-handed and left-handed circularly
polarized light, respectively. Arrows designate the direction of rotation of the EBD. (Reprinted with
permission from [102]. Copyright 2017 American Chemical Society.)

As metal nanoparticles support SPR [103,104], this characteristic has profound influence on their
interaction with light, including strongly enhance light absorption and light scattering. For example,
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plasmon excitation induces strongly amplified optical near-fields near the metal surface, so that the
trapped nanoparticles can be used as antennas to effectively couple light with molecules or other objects.
Moreover, the SPR properties of metal nanoparticles, including the resonance wavelength, charge
displacement feature, near-field enhancement, and plasmon damping characteristics, can be precisely
tuned via particle properties design, in particular, by selecting the particle shape, size and composition.

Plasmonic tweezers, which work based on SPPs excited in metallic nanostructures, have exhibited
an enhanced attractive force for particles [31]. SPPs are the collective oscillatory behaviors of free
electrons that occur when the electromagnetic waves propagate on a metal-dielectric interface so that
the free electrons and incident photons of the metal surface are strongly coupled with each other.
This kind of behavior can limit the light field to the deep subwavelength scale and thus break down the
optical diffraction limit. The local evanescent field intensity induced by the SPPs is greatly enhanced
compared with the incident light. Moreover, intensity enhancement factor can reach 103 orders
of magnitude. In 2013, Yuan et al. [105] utilized the SPPs excited on the gold film by an incident
objective lens focused radially polarized beam to implement the manipulation of mesoscopic metal
spheres (about 0.55–2 µm in diameter), as shown in Figure 10.
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5. Manipulation of Janus particles 

The above sections have clearly shown that both dielectric microsphere and metal nanospheres 
can be firmly captured in the conventional optical tweezers and become rest eventually right at the 
focus spot or more precisely the minimum position of optical potential despite of their initial position 
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Figure 10. Experimentally setup and trapping results of microscale metallic particles: (a) schematic of
trapping metallic particles by a SPP virtual probe; (b) experimental set-up of the focused plasmonic
trapping system; (c) successive images of gold particles (diameter of 2.2 ± 0.1 µm) trapped by the
focused plasmonic tweezers with a time interval of 0.5 s; and (d) patterns for the letter “N” constructed
by gold particles (diameter of 1 ± 0.1 µm) in the focused plasmonic tweezers. (Reprinted with
permission from Springer Nature [105].)
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5. Manipulation of Janus particles

The above sections have clearly shown that both dielectric microsphere and metal nanospheres
can be firmly captured in the conventional optical tweezers and become rest eventually right at
the focus spot or more precisely the minimum position of optical potential despite of their initial
position and velocity. Thus, it is difficult to observe self-propelled mechanical motions of nano- and
microparticles in microscopic world via optical tweezers. However, a special kind of particles, called
Janus particles involve both dielectric and metal materials, naturally provide a route to break down
the structure symmetry. In this section, we will give a detailed introduction about the diversified and
fruitful mechanical motions of dielectric-metal Janus particles in various optical traps.

5.1. Mechanical Motions of Janus Particles in Optical Fields

As Janus particles involve multi-functional materials simultaneously within an individual
micro-object, the interactions between Janus particles and optical fields are complicated, and even
can bring incredible novel effects. In 2015, Spas Nedev et al. observed an upward/downward
jump of Au/SiO2 Janus particle (1.3 µm-diameter SiO2 sphere half-coated with a 5 nm Au film) in a
weak focused optical trap with gradually increasing/decreasing laser power [106], as presented in
Figure 11. Given that the gold film is up to 5 nm in thickness, it exhibits not only optical effect but also
thermal effect. When the laser power increases, optical gradient force immediately becomes larger,
and the thermophoretic force does not respond immediately due to the delayed thermal accumulation
and temperature increase response, so during this period the Janus particles are immediately pulled
towards a higher stable position by the optical gradient force. During this process, the thermal
accumulation continues and temperature still increases to a certain value. When the laser power
decreases, optical gradient force decreases, but thermophoretic force still maintains as it is. As a result,
the particles are pushed to a lower position. Afterwards, this team used Janus particle as a handle
and achieved complete extension of the DNA tether by tuning the laser power instead of moving
particles [107].
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Figure 11. An upward/downward jump of Au/SiO2 Janus particle in a weak focused optical trap
with gradually increasing/decreasing laser power. (a) Schematic of the Janus particle in a trap. Axial
displacement as a function of (b) increasing and (c) decreasing trapping laser power. (Reprinted with
permission from [106]. Copyright 2015 American Chemical Society.)

More intuitively, Ilic devised a hamburger-type Janus particle, as shown in Figure 12. The particles
use a dielectric material sphere as the substrate, one end coated with a gold film and the other end
coated with a titanium nitride film. Since these two faces (gold and titanium-nitride) are designed to
preferentially absorb light of different wavelength, regardless of the particles orientation, it allows for
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bidirectional motion. By simply turn on and off these two beam separately, one could achieve to drive
a gold/titanium-nitride Janus particle to any position in 3D space [108].Micromachines 2018, 9, x FOR PEER REVIEW  15 of 28 
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Figure 13. (a) Fabrication of Janus particle via magnetron sputtering methods; (b,d) the micrographs 
of dried polystyrene particles at high and low concentrations on a glass substrate; and (c,e) SEM 
images of Janus particles with patterned dividing line and flat dividing line. (Reprinted with 
permission from [110]. Copyright 2015 American Chemical Society.) 

Figure 12. Transport a gold/titanium-nitride Janus particle by switching the two wavelength of
light. (a) 3D view of an asymmetric particle consisting of a uniform dielectric core and two opposing
caps. (b) The cross-section of a polystyrene particle with a titanium-nitride (A) and gold (B) cap.
(c) Example of a composite asymmetric particle transported along the target A-B-C route, by switching
the wavelength of the actuating light: 800 nm (red circles) and 500 nm (green circles). (Reprinted with
permission from [108]. Copyright 2016 American Chemical Society.)

5.2. Rotation and Translation in the Point and Line Optical Tweezers

Different to pure metal or pure dielectric particles, Janus particles constitute a rich model system
for investigating the optical and mechanical interactions between matter and light. More interestingly,
David G. Grier’s group found that rather than wandering randomly, a Janus particle circulates back and
forth through a diverging laser beam [109]. In 2015, we achieved the controlled stable rotation of a Janus
particle in linearly polarized point optical tweezers by introducing patterned metal coating [98,110].
The fabrication of Au-PS Janus particles by half coating polystyrene spheres (several micrometers in
diameter) with a gold thin film (several nanometers in thickness) via magnetron sputtering technique,
is illustrated in Figure 13a. In experiments, we had obtained two kinds of Janus particles by controlling
the concentrations of polystyrene spheres. They are Janus particle with patterned dividing line and
with flat dividing line, as shown in Figure 13b–d. When illuminated by a focused laser, the patterned
Janus particles in water can stably rotate around the optical axis. A series of snapshots of clockwise
and counterclockwise rotation of a Janus particle are displayed in Figure 14. The brighter part of
the sphere corresponds to the uncoated hemisphere of the polystyrene. The Au-coated hemisphere
appears darker in the images, as it transmits less light. Both the rate and the direction of Janus particles
can be flexibly controlled by adjusting the position or intensity of the focused laser beam. On the other
hand, when capture a Janus particle with flat dividing lines, does not show any sustained directional
rotation, only randomly vibrates near the trap center.
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Figure 13. (a) Fabrication of Janus particle via magnetron sputtering methods; (b,d) the micrographs of
dried polystyrene particles at high and low concentrations on a glass substrate; and (c,e) SEM images
of Janus particles with patterned dividing line and flat dividing line. (Reprinted with permission
from [110]. Copyright 2015 American Chemical Society.)
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Figure 14. The bi-stable rotation of patterned Janus particles in point optical tweezers: (a) the clockwise
rotation, laser power I = 57 mW, objective NA = 0.7; and (b) the counterclockwise rotation, laser power
I = 28.5 mW, objective NA = 0.7. (Reprinted with permission from [110]. Copyright 2015 American
Chemical Society.)

To better understand the underlying physics and for deeper insight toward exploring novel
ways to manipulate the mechanical motion of microscopic objects, theoretical and numerical analyses
are necessary. Considering the huge computation caused by the complicated structure of Janus
particles, we proposed a theoretical method based on a ray-optics model to calculate the optical force
and torque in a Janus particles in optical tweezers [27], as illustrated in Figure 15a. Numerical analyses
show that spontaneous symmetry breaking induced by the pattern of metal coatings on particles plays
a critical role to bi-stable rotation of Janus particles, as shown in Figure 15b. Thus, instead of relying
on precise fabrication of device, the inevitable fabrication of Janus particles brings potential prospects
in producing the millions of controllable microdevices.
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Nowadays, it is highly desirable to entitle these microscopic particles with designated rectilinear
and rotational motions as complicated and general as possible by using as simple as possible
static optical field. However, the mentioned rotations of Janus particles are relatively simple
and intuitive. Full potential of strong coupling in rotational and translational motion is the core value
of Janus particles. Figure 16 displays the self-propelled cyclic roundtrip motion of a metallo-dielectric
Janus particle in a static line optical tweezers (LOT) [18]. This complicate mechanical motion can be
decomposed into the translation process and the rotation process. In translation process, the Janus
particle moved along the straight line, and its Au-coated surface was on the opposite side to the
movement, just like a propeller. In rotation process, when it arrived at the target point, it rotated
about a semicircle around the optical axis slowly but automatically, just like a rotator. The key to
achieve this motion lies in the collective and fine action of the linear and angular momentum exchange
between the particle and the LOT field. At this time, the roles of Janus particles are not only the moving
particles, but also self-adaptive-optics microdevices. As no external perturbation and manipulation
is inputted, the whole self-adaptation is smart enough to allow for formation of such a complicated
cyclic round-trip motion with non-contact technique in microscopic world.
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Figure 15. (a) Ray-optics model for optical force and torque on a spherical metal-coated Janus particle.
(Reprinted with permission from OSA [27]). (b) The schematic shows that Janus rotor with patterned
metal coatings can be controlled to rotate in optical tweezers. (Reprinted with permission from [110].
Copyright 2015 American Chemical Society.)



Micromachines 2018, 9, 232 18 of 28

Micromachines 2018, 9, x FOR PEER REVIEW  17 of 28 

 

 
(a) 

 
(b) 

Figure 15. (a) Ray-optics model for optical force and torque on a spherical metal-coated Janus particle. 
(Reprinted with permission from OSA [27]). (b) The schematic shows that Janus rotor with patterned 
metal coatings can be controlled to rotate in optical tweezers. (Reprinted with permission from [110]. 
Copyright 2015 American Chemical Society.) 

 
Figure 16. The self-propelled cyclic round-trip motion of a metallo-dielectric Janus particle in static 
line optical tweezers. (a) A 3D stereogram of the Janus particle made from a PS bead half-coated with 
thin gold film. The Au–PS separation plane of the particle can rotate around the axis of the laser beam 
(z-axis). (b) A schematic illustration of the roundtrip motion of a Janus particle in LOT. (c) The 
experimental translational process of a Janus particle moving from Point A to Point B, and from Point 
B to Point A. (d) The experimental rotation process pf a Janus particle rotating around the light 
propagation direction at Point A and at Point B. (Reproduced from [18] with permission from The 
Royal Society of Chemistry.) 

Figure 16. The self-propelled cyclic round-trip motion of a metallo-dielectric Janus particle in static
line optical tweezers. (a) A 3D stereogram of the Janus particle made from a PS bead half-coated
with thin gold film. The Au–PS separation plane of the particle can rotate around the axis of the
laser beam (z-axis). (b) A schematic illustration of the roundtrip motion of a Janus particle in LOT.
(c) The experimental translational process of a Janus particle moving from Point A to Point B, and from
Point B to Point A. (d) The experimental rotation process pf a Janus particle rotating around the light
propagation direction at Point A and at Point B. (Reproduced from [18] with permission from The
Royal Society of Chemistry.)

With the development of micro- and nanofabrication technology, the compound Janus particles
promote magnificent prospects in biomedical fields. Zhao et al. investigated that PH-responsive
polymeric synthesized Janus containers for controlled drug delivery process [111]. The Janus containers
can selectively load oil-soluble materials into their hydrophobic cavities and release them by adjusting
the PH environment. Zhang Jian et al. used semi-wrapped gold film Janus particles as a reflection
contrast agent injected into optically transparent zebrafish, and found that the OCT signal of zebrafish
was significantly enhanced [62]. Similar to spherical mirrors, Janus particles have the ability to reflect
light, which can more effectively participate in the optical imaging process than pure metal particles or
dielectric particles [112].

6. Applications

Optical tweezers have become a powerful tool for manipulating nanometer-sized and
micrometer-sized objects including biological cells and particles [35,113]. Recently, with the aid
of modern position analysis apparatuses, optical tweezer technology has proven to be an ideal tool
to trap a variety of objects wirelessly and control them to serve as a highly sensitive force transducer.
An optically trapped sphere is an elegant example of a microscopic harmonic oscillator, which is capable
of measuring femtonewton-scale forces [114]. Besides capturing particles as a handle for molecule
force measurement, optical tweezers can assist accurately to locate or detect surface morphology.
For example, fabrication of needle-like particles has been illustrated as a scanning probe to image
nanoscale structure surface topography wirelessly with the lateral resolution of 200 nm and the depth
resolution of ~10 nm, as can be seen in Figure 17 [115]. Mechanical analysis of this structure shows
that optical force is linear with its trapped position. The properties of optical force density show
the potential to obtain qualitative insights into the behavior of shaped dielectric particles in optical



Micromachines 2018, 9, 232 19 of 28

fields [116]. Inspired by complex organization of biological machines, researchers have developed
similar artificial micromotors, driven by light field, to achieve self-driven motions. Because of the
small size and strong loading capacity, micromotors have emerged and advanced quickly in the fields
of drug delivery [117], biomedicine [118] and chemical analysis [119]. However, the optical torque
is not as easy to control as optical force exerted on particles. In early days, it was found that optical
torques could exert on a particle whose symmetry was lowered either by shape modification [120–124]
or by refractive index anisotropy [16,51]. Due to high accuracy and simple operation of 3D laser direct
writing technology, fabricating complex microstructures has become popular. A series of well-designed
micromachines have been proposed in recent years. The common light-driven structure is Archimedes
screw, which has been used for micropumps [125]. However, due to the light diffraction limit, a range
of primary interest for nanotechnology have not been widely exploited.
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used as a scanning probe to image surface topography. (Reprinted with permission from Springer 
Nature [115].) 

  

Figure 17. (Left) Experimentally measured force-displacement profiles for a particle with a convex
taper; (Middle) SEM image and optical image of probes, respectively; and (Right) a shaped particle
used as a scanning probe to image surface topography. (Reprinted with permission from Springer
Nature [115].)

Accurate measurement and determination of various critical mechanical quantities, such as
position, velocity, force, power, energy of microscopic biological systems in cells, such as DNA, RNA,
enzymes, proteins and other macromolecules, larger cell organelles such as mitochondria, chloroplast,
chromosome, and so on, and macroscopic cell infrastructures such as nucleus, cytomembrane, and
others, are extremely useful and important to understand the connections among energy, information,
and life in cells. Fortunately, optical tweezers have advantageous features including position sensitive
detector with nanometer accuracy, high-precision force transducer (ranging from 0.1 pN to 100 pN),
and compatibility with liquid medium environments, which make it highly suitable for application
in biological studies. In the present, optical tweezers has been assumed as an important tool for
studying the kinetics of single molecules and motor proteins [126]. Enormous progress has been made,
for instance, it was found that a force of 1000 pN is sufficient to break down the covalent bond and
enough to separate two mammalian cells; a force of 30 pN will stop DNA helicase and polymerase
form working and is enough to overcome the thrust of bacterial flagella; a force of 10 pN can stop
myosin and drive movement of proteins and dynein [127]. One of the most remarkable achievements
is that Wang et al. used optical tweezers to measure the elastic modulus of DNA with high
accuracy [128]. On the other hand, many scientists have used similar techniques to study RNAP, siRNA,
DNA polymerase [129–132], microtubule, toroidal T7 helicase, the ribosome, nucleosomes [133–136],
overstretching B-DNA, reversible unfolding RNA and bacteriophage φ29 [137–139]. As illustrated in
Figure 18, Mihardja et al. [140] studied the interaction between nucleosome-armed DNA strands and
histones with optical tweezers. It is a pity that all the mechanical processes of measurements are in the
non-physiological state. Nowadays, the measurements of biomolecular mechanical properties under
physiological conditions have been recognized as a magnificent goal in the academic research.
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Figure 18. (a) The antidigoxigenin-coated polystyrene bead was held in the optical trap, whereas
the streptavidin-coated polystyrene bead was held onto a micropipette via suction. (b) Schematic of
stretching nucleosome-armed DNA strands with optical tweezers. (c) Representative force-extension
curves of the mononucleosome. Black and green indicate when the fiber was being pulled; orange
and blue indicate when the fiber was being relaxed. (d) Probability of the first wrap unraveling as a
function of force was obtained by summing a normalized histogram of the first wrap opened vs. force.
(Reprinted with permission from [140], Copyright 2006 National Academy of Sciences.)

In addition to accurately measuring the mechanical properties of biological macromolecules,
optical tweezers have earned their spurs in manipulating organelles in cells. In the past, biological
application with optical tweezers was limited to single molecule and single cell research in vitro.
However, the life performance of living beings always hides in the environment between cells
and solvent. For example, how cells generate, migrate, or interact between cells and proteins in living
animals remains to be a critical problem in life science. Therefore, it is in urgent need to explore and
figure out how various biological cells work systematically together. Based on the current microscope
technology, with the extremely complicated system in vivo, it is very difficult to manipulate living cells.
Thus far, the research of biological cell technology in vivo is one of hot spots in optical tweezers.

In 2013, Li’s research group demonstrated that they achieved optical capture of cells in living
animals [141] with optical tweezers technology, as displayed in Figure 19. Red blood cells in vivo
were captured and manipulated for the first time. In this experiment, the laser penetrates the dermis
of the mouse ear and reach the capillaries with a depth of 50 microns. In addition, they utilize the
optical traps to gather red blood cells and artificially create clogged blood vessels. Inversely, they
used optical tweezers to manipulate aggregated cell clusters in blood vessels by dragging one of cells
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to restore normal blood flow. This achievement for the first time implements non-contact vascular
dredging operation in vivo. This work pioneers to study a new field of living animals with optical
tweezers and provides a completely new technical method for living research and clinical diagnosis.
Subsequently, in 2016, Koster et al. achieved manipulating nanoparticles and cells in live zebrafish
via optical tweezers, analyzed the adhesion properties of endothelial cells and macrophages, and
probed the characteristic of membrane deformation [142]. These results show great potential of optical
tweezers in studying life science in vivo.
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Figure 19. Optical trapping of red blood cells within living mice. (a) The optical tweezers setup.
The inset shows the ear of the mouse at the sample stage. (b) Optical tweezers trap the red blood cells,
which have blocked the capillary, and remove them from the capillary. (Reprinted with permission
from Springer Nature [141].)

7. Conclusions and Perspectives

As a rapidly developing research field, optical tweezers create exciting possibilities for
nanometer-position-sensitive detection, piconewton-scale force measurements, and even self-propelled
micromachines. In this paper, we briefly introduce the development and principle of optical tweezers.
Essentially, optical tweezers are a manifestation of optical force that originates from the energy and
momentum exchange between light and particles. Based on the size of particle in reference to the
wavelength of laser beam, the theoretical methods of the optical force exerted on trapped particles in
optical tweezers have been categorized into the following three cases: (1) small particle and Rayleigh
scattering theory; (2) large particles and geometrical optics method; and (3) mesoscopic particles and
electromagnetic scattering theory. Then, we show that the diversified developments of optical tweezers,
such as novel optical beam optical tweezers and near-field optical tweezers have been made in addition
to the usual Gaussian beam optical tweezers, and greatly broadened the power of optical trapping
technology in application to different situations. These various optical tweezers have been employed to
manipulate and even drive dielectric particles, metal particles, and Janus particles in solution with high
spatial resolution and accuracy by modulating the laser beam or shaping the geometrical and physical
properties of particles. In particular, we show that Janus particles with different optical properties can
exhibit the full potential of strong coupling in rotational and translational motions. The controllability
and flexibility of Janus particles make them ideal candidates for general applications in nano- and
microdevices, such as micropumps, microvalves, or micromotors that provide power to other devices.
Finally, we discuss that in addition to measure the mechanical properties of biological macromolecules,
the advancement of optical tweezers has been extended to investigate biological processes in vivo.
Although the measurement and operation of these living organisms in vivo have faced great challenge
and difficulty, optical tweezers can no doubt provide the opportunity for characterizing the dynamics
of these life systems.
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In the past thirty years, the science and technology of optical tweezers have made big progress,
yet, with the input of knowledge from other research fields such as physics, optics, nanophotonics,
nanoscience and nanotechnology, optical tweezers are still energetic and have continuously shown
the power to break one by one physical limitations to this technology. These breakthroughs include
manipulating nanometers dielectric particles and micrometers metal particles, capturing particles
in both static and dynamical ways, and achieving complicate coupling motions. Moreover, when
in combination with optical imaging and holographic technique, it becomes an excellent tool for
directly probing various hydrodynamic and optomechanic properties of complex micro-objects in
an aqueous environment. With the recent abundant advances, optical tweezers have generated a
variety of applications, such as particles sorting, force transducer, morphology probe, and the embryo
of micromachines. Meanwhile, novel beams have emerged by carefully constructing the properties of
electromagnetic field and are introduced to enrich the means of optical tweezers. Furthermore, more
and more functional materials and composite materials have been introduced to combine with the
technology of optical trapping to explore fruitful mechanical interaction properties of these materials.
Many novel optical phenomena have emerged and they had greatly help to reveal new frontiers of
light–matter interactions and arouse vast application prospects. Such a technology is bound to pave
the way for diverse promising applications in biosciences, physics, and material engineering fields.

Nevertheless, these studies are just the tip of iceberg. Note that futuristic applications of optical
tweezers are mainly in biology field. There still exists a critical problem that in the microscopic world
the Reynolds number of fluid is very small, much less than 1, and then the fluid will exhibit Stokes
flow, namely laminar flow, where the viscous forces of fluid dominate inertial forces. However, laminar
flow is a flow regime characterized by high momentum diffusion and low momentum convection.
At the same time, taking the influence of external factors into account, such as Brownian motion of
particles, thermal effect, and interference of other particles, it will be a hard task to comprehensively
analyze the light–particle interaction in optical tweezers. In addition, as potential light-driven devices,
trapped particles have the ability of energy conversion and mechanical output, and can achieve specific
mechanical properties, such as directional transport, controllable rotation and so on. Therefore, it is
an important scientific issue to investigate how to achieve high efficiency energy conversion (from
electromagnetic energy to mechanical energy) and high mechanical output.

Furthermore, the improvement of spatial and temporal resolution with optical tweezers
can greatly promote our capability to monitor various physical parameters, giving the precise
space-time configuration and evolution of particles in focused optical field. Finally, the general,
accurate, and efficient theoretical and numerical calculations [25,143,144] of optical forces and
torques should be carried out, and this requires development of novel more powerful theoretical
and numerical approaches. The calculated torque and force will be helpful for understanding
the underlying physical mechanism of light–particle interactions, laying foundation for flourishing
applications in controllable motions of micromachines.
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