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Abstract: Ischemia-reperfusion (I/R) injury is well-known to be associated with impaired cardiac
function, massive arrhythmias, marked alterations in cardiac metabolism and irreversible ultra-
structural changes in the heart. Two major mechanisms namely oxidative stress and intracellular
Ca2+-overload are considered to explain I/R-induced injury to the heart. However, it is becoming
apparent that oxidative stress is the most critical pathogenic factor because it produces myocar-
dial abnormalities directly or indirectly for the occurrence of cardiac damage. Furthermore, I/R
injury has been shown to generate oxidative stress by promoting the formation of different reactive
oxygen species due to defects in mitochondrial function and depressions in both endogenous an-
tioxidant levels as well as regulatory antioxidative defense systems. It has also been demonstrated
to adversely affect a wide variety of metabolic pathways and targets in cardiomyocytes, various
resident structures in myocardial interstitium, as well as circulating neutrophils and leukocytes.
These I/R-induced alterations in addition to myocardial inflammation may cause cell death, fibrosis,
inflammation, Ca2+-handling abnormalities, activation of proteases and phospholipases, as well as
subcellular remodeling and depletion of energy stores in the heart. Analysis of results from isolated
hearts perfused with or without some antioxidant treatments before subjecting to I/R injury has
indicated that cardiac dysfunction is associated with the development of oxidative stress, intracellular
Ca2+-overload and protease activation. In addition, changes in the sarcolemma and sarcoplas-
mic reticulum Ca2+-handling, mitochondrial oxidative phosphorylation as well as myofibrillar
Ca2+-ATPase activities in I/R hearts were attenuated by pretreatment with antioxidants. The
I/R-induced alterations in cardiac function were simulated upon perfusing the hearts with oxyradical
generating system or oxidant. These observations support the view that oxidative stress may be inti-
mately involved in inducing intracellular Ca2+-overload, protease activation, subcellular remodeling,
and cardiac dysfunction as a consequence of I/R injury to the heart.

Keywords: ischemia-reperfusion injury; oxyradicals and antioxidants; myocardial inflammation;
protease activation; intracellular Ca2+-overload; cardiac subcellular defects; Ca2+-handling abnormalities

1. Introduction

Although reperfusion of the ischemic myocardium is beneficial for the improvement
of cardiac function, delayed reperfusion is known to cause impaired recovery of contractile
activity, induce cardiac arrhythmias, enhance metabolic defects, and produce structural
damage to cardiomyocytes in the heart [1–7]. These abnormalities due to reperfusion of
the ischemic heart are termed as ischemia-reperfusion (I/R) injury, which is commonly
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associated with clinical procedures such as angioplasty, thrombolysis, coronary bypass
surgery, and cardiac transplantation. Extensive research over the past four decades has
shown that two major mechanisms, namely the development of oxidative stress and the oc-
currence of intracellular Ca2+-overload, as well as myocardial inflammation and alterations
in cardiac metabolism, are considered to explain I/R-induced injury to the heart [8–15]. It
should also be mentioned that I/R injury not only affects cardiomyocytes and subcellular
organelles but is also known to produce dramatic changes in non-cardiomyocyte structures
such as vascular smooth muscle, microvasculature, endothelium, fibroblasts, macrophages,
mast cells, adrenergic nerve endings, and endogenous renin-angiotensin system, which are
present in the myocardial interstitium [5,9,16–18]. Furthermore, I/R-induced injury under
in vivo conditions is also associated with the activation of neutrophils, leukocytes, platelets,
as well as some systemic and central neuro-endocrine systems [7,10,15,19–21]. Thus, it can
be appreciated that the pathogenesis of I/R-induced injury is of complex nature.

Since oxidative stress, intracellular Ca2+-overload, myocardial inflammation and
metabolic defects are inter-related mechanisms and affect each other, it is difficult to identify
any one of these to be responsible for the induction of I/R-induced injury. However, the
involvement of oxidative stress in inducing a wide variety of cardiac abnormalities directly
or indirectly during the development of I/R injury seems most prominent [1,5,10,22–24].
This view is based on the fact that oxidative stress has been demonstrated to cause Ca2+-
handling abnormalities, apoptosis, necrosis, fibrosis, autophagy, lipid peroxidation, protein
oxidation, irreversible cardiomyocyte damage and arrhythmias [5,21,25,26]. In addition,
oxidative stress has been shown to produce activation of different proteases, dramatic
changes in cardiac gene expression as well as defects in subcellular organelles such as
mitochondria, myofibrils, sarcolemma (SL), and sarcoplasmic reticulum (SR) for inducing
cardiac dysfunction due to I/R injury in the heart [5,21,27–29]. It is also noteworthy
that several antioxidants have been reported to exert beneficial effects in attenuating
I/R-induced alterations in cardiac function and other myocardial abnormalities [2,30–32].
Some of these I/R-induced changes involving oxidative stress, intracellular Ca2+-overload,
myocardial inflammation, and cardiac metabolism are depicted schematically in Figure 1.
Furthermore, in the present article, we have attempted to summarize the current knowledge
regarding the pathophysiology, cardioprotection, and pharmacotherapy of I/R-induced
injury to the heart with respect to highlighting its functional significance. Special emphasis
has been laid regarding the generation of oxidative stress as well as its implications for
inducing molecular and cellular abnormalities during the development of I/R injury
to the heart. Particularly, we have outlined the available evidence to show that I/R-
induced alterations in the activities of subcellular organelles are not only attenuated by
antioxidants but these changes are also simulated upon exposure of the heart to oxidative
stress-generating systems.
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chlorous acid (HOCl); their concentrations are markedly increased upon induction of I/R 
injury. On the other hand, the activities of various endogenous enzymes such as superox-
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Figure 1. Some myocardial and subcellular abnormalities due to the development of oxidative stress
and intracellular Ca2+-overload as a consequence of ischemia-reperfusion injury. SL, sarcolemma; SR,
sarcoplasmic reticulum; MT, mitochondria; MF, myofibrils.

2. I/R-Induced Generation of Oxidative Stress and Its Implication in Heart Disease

Since the status of oxidative stress in the heart is determined by a balance between the
formation of reactive oxygen species (ROS) as well as numerous endogenous oxidants and
the presence of various antioxidant systems [2,20,21,33,34], it is important to briefly discuss
several components of oxidative stress before indicating its involvement in inducing I/R-
linked abnormalities. It is pointed out that ROS mainly include superoxide radicals and
hydroxyl radicals as well as oxidants such as hydrogen peroxide (H2O2) and hypochlorous
acid (HOCl); their concentrations are markedly increased upon induction of I/R injury. On
the other hand, the activities of various endogenous enzymes such as superoxide dismutase,
catalase, and glutathione peroxidase, which serve as antioxidant defense mechanisms are
depressed in I/R-perfused hearts [35,36]. Furthermore, nuclear factor erythroid-2 related
factor 2 (Nrf2) and various microRNAs, which regulate different antioxidant systems, were
decreased due to I/R injury [21,37]. In addition, several antioxidants such as ascorbic
acid, glutathione, ubiquinol 9, and vitamin E were decreased upon subjecting the heart
to conditions of oxidative stress [2,38]. These observations are consistent with the view
that I/R injury to the heart is associated with the development of oxidative stress both
as a consequence of increased formation of ROS as well as depressions in the level of
antioxidant defense systems.

It is noteworthy that mitochondria are the major source of ROS because of the im-
paired electron transport chain and depressed oxidative phosphorylation activity in I/R
hearts [11,39,40]. Although several factors are considered to be responsible for I/R-induced
production of ROS in mitochondria, uncoupling of mitochondrial proteins as well as
metabolic overloading due to increased fatty acid flux and accumulation of succinate have
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been shown to be involved in proton leakage from mitochondria [41,42]. Furthermore,
increased formation of nitric oxide due to elevated levels of nitric oxide synthase in the
endothelium has been reported to result in the production of peroxynitrite and subsequent
nitrosative stress at initial stages of I/R injury [43]. It is pointed out that ROS production is
also increased due to the activation of several cellular and neuronal systems such as various
leukocytes (e.g., neutrophils), the sympathetic nervous system, and the renin-angiotensin
system during the development of I/R-induced injury to the heart [20,21]. In this regard,
myeloperoxidase released from leukocytes has been reported to play an important role
through the formation of microbicidal reactive oxidants [44] whereas the activation of
monoamine oxidase has been demonstrated to generate H2O2 upon oxidative deamination
of catecholamines released from the sympathetic nervous system during the development
of I/R-induced injury [45,46]. In addition, angiotensin II formed by the activation of
renin-angiotensin system due to I/R injury has been shown to promote the generation of
ROS as a consequence of the activation of NADPH oxidase (NOX), present in the plasma
membrane (NOX2) and intracellular organelles (NOX4) [21,47]. Thus, a wide variety of
enzymes as well as cellular and neuronal systems are involved during the development of
oxidative stress.

Generation of oxidative stress and nitrosative stress due to I/R injury are not only
known to cause cardiac dysfunction, these pathological factors have also been shown to be
involved in the formation of pro-inflammatory agents as well as disruption of different sig-
nal transduction pathways [20,21,48,49]. Particularly, these pathogenic factors are known
to induce myocardial cell damage, apoptosis, necrosis, and fibrosis as well as different
defects in cardiac gene expression and myocardial metabolism in hearts subjected to I/R
injury. There also occurs the activation and infiltration of polymorphonuclear leukocytes
which will promote the development of myocardial infarct and disorganization of several
adhesion molecules. Oxidative stress for a prolonged period also induces defects in the
endothelial function for the formation of nitric oxide (a vasodilator molecule) and subse-
quently reduce or block the blood flow to the myocardium. Prolonged oxidative stress in
the heart will produce Ca2+-handling abnormalities in cardiomyocytes and defects in the
SL, SR, mitochondria, and myofibrils mainly as a consequence of the activation of proteases
and phospholipases [5,12,20,21,26,50]. A schematic representation of some of the events
involved in the generation of oxidative stress in I/R heart and its implications in remodel-
ing of subcellular organelles and cardiac dysfunction are depicted in Figure 2. Depression
in SL Na+-K+ ATPase will produce marked changes in the concentration of Na+ and K+

in cardiomyocytes which may explain the development of cardiac arrhythmias associated
with I/R injury. Furthermore, alterations in SL Na+-Ca2+ exchange, Ca2+-channels and
Ca2+-gating mechanisms as well as SR Ca2+-release and Ca2+-pump ATPase due to oxida-
tive stress may account for Ca2+-handling abnormalities in cardiomyocytes, and changes in
contraction and relaxation processes in I/R hearts. Oxidative stress is also considered to
promote the occurrence of mitochondrial Ca2+-overload and induce defects in the process
of ATP production and release different cytotoxic agents including cytochrome C for the
development of I/R-induced injury to the heart. Some events associated with I/R-induced
development and consequence of intracellular Ca2+-transport systems indirectly through
oxidative stress are shown in Figure 3. In addition to inducing intracellular Ca2+-overload,
oxidative stress has been demonstrated to produce varying degrees of defects in myofib-
rillar proteins for the loss of Ca2+-sensitivity in myofibrils and subsequent depression in
cardiac dysfunction due to I/R injury. Thus, oxidative stress can be viewed as the most
prominent pathophysiologic factor for the induction of I/R injury to the heart.
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3. Pathophysiological Aspects of I/R-Induced Injury

The pathophysiology of I/R injury to the heart is of complex nature because it
involves the effects of reperfusion which are superimposed upon those of myocardial
ischemia [30,51–56]. The ischemic insult by occluding the coronary arteries is associated
with the lack of oxygen/hypoxia, inability of mitochondria to oxidize substrate, depression
of oxidative phosphorylation, and accumulation of hydrogen in cardiomyocytes. The initial
events due to myocardial ischemia result in the stimulation of SL Na+-H+ exchange and SL
Na+-Ca2+ exchange systems as well as elevation in the intracellular concentration of Ca2+,
depression in energy production, occurrence of some ultrastructural damage, and cessation
of contractile activity. These varying degrees of alterations in the heart are dependent upon
the duration of myocardial ischemia at early stages. However, if the reperfusion is carried
out after a certain period of myocardial ischemia, the changes in cardiac metabolism, Ca2+-
handling ultrastructure, and contractile function become irreversible and are commonly
called as lethal reperfusion injury of the heart. It should be emphasized that I/R injury is
not only limited to inducing marked abnormalities in cardiomyocytes but other structures
and cells in myocardial interstitium including endothelium and smooth muscle cells of
coronary vessels are adversely affected. In addition, I/R injury to the heart is known
to produce dramatic changes in macrophages, leukocytes, and platelets, as well as the
sympathetic nervous system and the renin-angiotensin system for promoting inflammation
and oxidative stress. Thus, I/R injury is considered to result in cellular death (formation of
infarct) of the ischemic myocardium by a wide variety of pathological mechanisms.

In addition to oxidative stress and intracellular Ca2+-overload, myocardial I/R injury
has been shown to release various inflammatory cytokines such as tumor-necrosis factor
α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) [57–61]. All these mechanisms
are interlinked and are considered to be closely involved in causing I/R-induced myocar-
dial cell damage, apoptosis, necrosis, and fibrosis as well as calcium overload, cardiac
arrhythmias, and heart dysfunction. Different regulatory noncoding RNAs including long
noncoding RNAs (lncRNA) and microRNAs (miRNAs) have also been reported to play a
critical role in the initiation and progression of I/R-induced injury through the expression of
target genes for oxidative stress and inflammation [62–64]. Thioredoxin-interacting protein
has been demonstrated not only to sensitize cardiomyocytes to oxidative stress-induced
apoptosis but has also been implicated in the regulation of inflammatory response and
glucose homeostasis during the development of I/R injury to the heart [65]. Recently,
different arachidonic acid metabolic pathways such as cyclooxygenase pathway, lipoxyge-
nase pathway, and cytochrome P450 monooxygenase pathway have been suggested to be
involved in the development of I/R injury [66].

It is noteworthy that I/R injury to the heart not only produces abnormalities in car-
diomyocytes for the induction of contractile dysfunction but has also been shown to cause
defect in the endothelium for inducing no-flow phenomenon in coronary circulation [67–69].
Such a defect in endothelial dysfunction is elicited by oxidative stress and inflammation
upon infiltration of leukocytes as well as activation of fibroblasts due to I/R injury [68,69].
Furthermore, upregulation of platelet surface receptors and release of immunomodulatory
mediators have been shown to be involved in the modification of endothelial function
during the development of myocardial I/R injury [70]. It should be noted that changes in
mitochondrial function due to I/R-induced injury not only participate in generating oxida-
tive stress but these organelles are also adversely affected by I/R injury to the heart [71,72].
Particularly there occurs mitochondrial Ca2+-overload, which will further depress the
energy-producing ability and impair the recovery of cardiac function as a consequence
of I/R injury. A combination of both Ca2+-overload and oxidative stress is considered to
open mitochondrial permeability transition pores involving the participation of both PKC-δ
and PKC-ε, and thus releases different proteins for the activation of apoptosis due to I/R
injury [73,74]. In addition, I/R-induced injury to the heart has been shown to produce
endoplasmic reticulum stress leading to the accumulation of unfolded proteins, and cause
Ca2+-handling abnormalities due to a marked release of Ca2+ as a consequence of SR ryan-
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odine receptor oxidation [75,76]. However, the individual contribution of oxidative stress,
inflammation and intracellular Ca2+-overload in the genesis of these different myocardial
alterations during the development of I/R injury remains to be investigated.

4. Cardioprotection in Hearts Subjected to I/R Injury

In order to attenuate the adverse effects of oxidative/nitrosative stress, inflammation
and intracellular Ca2+-overload in I/R hearts, different redox-based strategies involving
endogenous components have been attempted to prevent I/R-induced myocardial cell
damage and cardiac dysfunction [77–79]. Particularly, interventions such as ischemic pre-
conditioning, ischemic postconditioning, and remote conditioning have been demonstrated
to exert cardioprotective actions in improving cardiac performance as well as limiting
infarct size and preventing adverse cardiac remodeling due to I/R injury [80–82]. It is
pointed out that there are several other conditions such as hibernation of myocardium and
early stages of myocardial ischemia but their cardioprotective effects against I/R injury
have not been examined in details. Although the exact mechanisms for the beneficial
effects of these cardioprotective interventions are not fully understood, reductions in the
formation of ROS or reactive nitrogen species, levels of lipid peroxidation products and
oxidized DNA/RNA bases content as well as activators of redox-based signaling and
mitochondrial modulators have been implicated. Modulation of endogenous reducing
mechanisms such as thioredoxin and glutathione systems, which are known to scavenge
oxyradicals and reduce oxidized proteins through thiol disulfide exchange reactions, is
also considered to be involved in cardioprotection [83]. Heme oxygenase-1 protein, which
degrades the oxidant heme and generates the antioxidant bilirubin and anti-inflammatory
carbon monoxide, has been reported to participate in the intrinsic defense mechanisms
for protecting I/R injury [84]. Furthermore, peroxisome proliferator-activated receptor γ
(PPARγ), which regulates the gene expression of enzymes involved in glucose and lipid
metabolism, was observed as an excellent target for cardioprotection against I/R injury
because of its ability to attenuate oxidative stress and inhibit inflammatory response [85].
It is also noteworthy that different gaseous molecules such as nitric oxide, hydrogen sul-
fide, and hydrogen have been shown to prevent I/R injury to the heart because of their
antioxidative, anti-inflammatory, antiproteolytic, and antiapoptotic activities [86–88].

Several experimental studies have indicated that cardioprotection by ischemic pre-
conditioning is associated with increases in some enzymes as well as translational and
transcriptional factors, which are involved in the regulation of innate detoxifying and
antioxidant systems in I/R hearts [89–93]. In this regard, it is pointed out that the elevated
level of O-linked β-N-acetylglucosamine (O-GlcNAc), which modifies numerous biological
processes post-translationally, has been shown to be involved in reduction of intracellular
Ca2+-overload, attenuation of mitochondrial permeability transition pore opening, suppres-
sion of endoplasmic reticulum stress, and modification of inflammatory response [89]. The
ischemic preconditioning-induced activation of hypoxia-inducible factor-1α (HIF-1α), an
oxygen sensitive transcription factor, has been reported to improve mitochondrial function,
decrease oxidative stress, interact with non-coding RNAs, and activate cardioprotective
signaling pathway as well as downstream protective genes [90]. The activation of mitochon-
drial aldehyde dehydrogenase 2, which detoxify reactive aldehydes, has also been shown
to play a central role in cardioprotection because it inhibits opening of the mitochondrial
permeability transition pores, attenuates autophagy, and prevents I/R-induced arrhyth-
mias [91,92]. Furthermore, increased levels of redox-sensitive microRNAs, which regulate
some components of the cellular antioxidants, interact with proteasomes and modify DNA
repair system, have been implicated in cardioprotection of I/R hearts [93]. The activation
of Nrf2, a transcription factor that controls the expression of various antioxidant genes,
has also been demonstrated to play a pivotal role in enhancing endogenous antioxidant
defenses in hearts subjected to I/R injury or myocardial infarction [94–96]. It should be
mentioned that the induction of stem cells in I/R hearts, where these can differentiate into
target tissues and produce trophic paracrine signaling to suppress injury, has been claimed
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to be of potential therapeutic value [97]. However, it needs to be emphasized that in spite
of the wide variety strategies, which have been identified to explain the mechanisms of
cardioprotection, a great deal of future research work needs to be carried out to make any
meaningful conclusion.

5. Pharmacotherapy of I/R Injury to the Heart

In view of the complex pathophysiology of I/R injury involving oxidative stress,
inflammation, intracellular Ca2+-overload and metabolic defects, various types of pharma-
cological agents, acting on diverse molecular targets, have been shown to exert beneficial
effects in different experimental models of I/R injury [2,4,5,14,20,26,31]. Several antioxi-
dants, Ca2+-antagonists, β-adrenoceptor blockers, angiotensin II antagonists, and metabolic
modulators have been reported to improve cardiac function, prevent arrhythmias, and
attenuate cellular damage in hearts subjected to I/R injury [20,29,30,98,99]. Some phos-
phodiesterase inhibitors such as pentoxifylline have been shown to prevent I/R-induced
cardiac dysfunction by reducing the activation of NF-κB and TNF-α content [100], whereas
several TNF-α inhibitors including etanercept exert therapeutic effects by reducing myocar-
dial inflammation and oxidative stress [25,101]. Both leupeptin and compound MDL28170
(inhibitors of matrix metalloproteinases) were observed to prevent I/R injury by depressing
the activation of proteolytic enzymes in the heart [26,102,103]. Furthermore, various aldos-
terone receptor antagonists and sodium-glucose cotransporter 2 (SGLT2) inhibitors have
been observed to attenuate I/R injury as well as infarct size due to myocardial infarction by
multiple mechanisms including inflammation and oxidative stress [104,105]. Because of the
multifactorial basis of I/R injury, a wide variety of drugs such as cyclosporin, colchicine,
tocilizumab, glucagon-like peptide 1 antagonist and modulators of different protein ki-
nases (acting at different target sites) have been demonstrated to limit myocardial infarct
size as well as prevent cardiac arrhythmias, cellular necrosis, apoptosis, and metabolic
defects [99,106–108]. In addition, these agents have been shown to promote endothelial
and vascular functions, enhance flow, and improve cardiac function.

Since the antioxidant reserve is depressed in hearts exposed to I/R injury for a pro-
longed period, it is considered appropriate to enhance the endogenous antioxidant systems
(either by inducing increases in their activities or by supplementation with exogenous
antioxidant) if the adverse effects of I/R injury have to be reversed [29,30,109,110]. In
this regard, exercise-induced increases in endogenous antioxidants and nutritional supple-
ments with polyphenolic compounds from foods such as grapes, cocoa, and soy have been
reported to limit I/R-induced myocardial cell damage [110]. While several synthetic antiox-
idants, N-acetylcysteine and N-mercaptopropionylglycine, have been shown to attenuate
I/R injury in animal experimentation, clinical trials have not provided indisputable evi-
dence for favorable action by using these antioxidants in humans [31,32,111]. Untargeted
applications of insufficient doses and/or delayed administration following I/R injury may
explain the ineffectiveness of these antioxidants in clinical studies [34,112]. On the other
hand, a systematic approach for the use of antioxidant vitamins was proposed to offer a
novel opportunity to ameliorate the lethal I/R injury [108]. In fact, different studies have
revealed that dietary antioxidant vitamins such as vitamin A, C, E, and β-carotene are
effective in preventing major cardiovascular events associated with I/R injury [24,113,114].
Some other antioxidants including lazaroid U83836E and liproxstatin-1 have been reported
to exert protective effects against I/R injury by targeting protein kinase C and ferroptosis,
respectively [115,116]. A non-enzymatic antioxidant selenium, which is an essential com-
ponent of oxyradical scavengers such as glutathione peroxidase and thioredoxin reductase,
has been demonstrated to attenuate I/R injury by regulating the gene expression of these
selenoenzymes [117,118].

By virtue of their ability to function as the major source for generating oxidative stress
during the development of I/R injury, mitochondria are regarded as a main target of several
pharmacological agents for improving cardiac function [27,119–123]. Cardioprotection by
various therapeutic interventions is achieved by attenuating alterations in different mito-
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chondrial events such as oxidative phosphorylation, mitochondrial membrane potential,
Ca2+-overload, permeability transition pore formation, leakage of different apoptotic and
necrotic factors, mitochondrial cardiolipin content, as well as NAPDH oxidase 2 activity. Al-
teration of I/R-induced changes in the heart and the left ventricular function by gypenoside,
a herbal medicine, was associated with preservation of mitochondrial enzymatic activities
of complex 1, II, and IV in the respiratory chain as well as the activity of citrate synthase
for energy generation [124]. The beneficial effects of cyclosporine A in I/R injury were
found to be due to its action on desensitizing the mitochondrial permeability transition
pore opening in the myocardium [125,126]. Likewise, the antioxidant activity of melatonin
in reducing the adverse effects of I/R injury was also shown to be related to its inhibitory
action on the mitochondrial permeability transition pore opening as well as up-regulation
of cytochrome c oxidase activity [127,128]. In addition, nicorandil, a mitochondrial ATP-
sensitive potassium channel opener, has been demonstrated to prevent I/R-induced injury
to the myocardium, alleviate cardiomyocyte necrosis, attenuate endothelial dysfunction,
and improve blood flow as well as cardiac function [129]. These experimental observations
indicate that several cardiac alterations induced by I/R injury are prevented by treatment
with a wide variety of pharmacological agents including antioxidants; however, extensive
research work needs to be carried out to establish if these interventions are able to reverse
the I/R-induced myocardial abnormalities. It is desirable to include all doses and adminis-
tration routes of these drugs for indicating their cardioprotective effects against I/R injury,
but these issues require detailed description and thus are not considered within the scope
of this article.

6. Evidence for the Role of Oxidative Stress in I/R-Induced Cardiac Dysfunction and
Subcellular Defects

Although several experimental studies have revealed that oxidative stress generated
during the development of I/R injury is associated with cardiac dysfunction, occurrence
of intracellular Ca2+-overload, metabolic abnormalities, and subcellular defects for Ca2+-
handling, the cause-and-effect relationships among these alterations are not fully under-
stood. Accordingly, we have analyzed some of the existing information to provide evidence
for the role of oxidative stress in inducing cardiac dysfunction and subcellular defects as a
consequence of I/R injury upon perfusing the isolated hearts in the absence and presence
of an oxyradical scavenging mixture or antioxidants [130–138]. Furthermore, data were
also analyzed to examine if I/R-induced adverse effects in the heart are simulated upon
perfusing with an oxyradical generating systems or H2O2, a well-known oxidant. For the
purpose of inducing I/R injury, isolated perfused rat hearts were subjected to 30 min of
global ischemia followed by different periods of reperfusion whereas the effects of oxida-
tive stress were examined by perfusing the hearts with an oxyradical generating mixture
(xanthine plus xanthine oxidase) or H2O2 for 30 min. The data in Table 1 show that various
parameters of the left ventricular (LV) function such as developed pressure, end-diastolic
pressure, +dP/dt and -dP/dt were markedly depressed by I/R injury whereas the LV
end-diastolic pressure, as well as H2O2, malondialdehyde and total Ca2+ content were
increased. These alterations in I/R-induced cardiac function, oxidative stress parameters,
and Ca2+ content were greatly attenuated by the presence of superoxide dismutase plus
catalase in the perfusion medium (Table 1). The data in Table 2 indicate that depressions in
both LV-developed pressure and SL Na+-K+ ATPase activity by I/R injury were associated
with increases in the activity of both calpain and matrix metalloproteinase enzymes; these
effects of I/R on cardiac function, Na+-K+ ATPase and proteolytic enzyme activities were
markedly attenuated by the presence of antioxidants such as N-acetylcysteine and mercap-
topropionylglycine. Furthermore, the adverse effects of I/R injury on all these parameters
were simulated upon perfusing the heart with xanthine plus xanthine oxidase mixture
or H2O2 (Table 2). It may also be noted that the activities of SL Na+-Ca2+ exchange and
ATP-dependent Ca2+-uptake as well as SL Ca2+-stimulated ATPase were depressed upon
subjecting the heart to I/R injury and these alterations were prevented by the presence of
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superoxide dismutase plus catalase mixture (Table 3). It may also be seen from Table 3 that
SL Na+-Ca2+ exchange and Ca2+-pump activities were depressed upon perfusing the heart
with xanthine plus xanthine oxidase and these changes were prevented by the presence of
superoxide dismutase plus catalase mixture in the perfusion medium.

Table 1. Influence of ischemia-reperfusion (I/R) with or without oxyradical scavenger mixture (SOD
plus CAT) on cardiac function and myocardial markers for oxidative stress as well as Ca2+-content in
isolated perfused hearts.

Parameters Control I/R I/R + SOD Plus CAT

A. Cardiac function:
LV DP (mmHg) 98 ± 3.6 40 ± 2.9 * 72 ± 4.2 †

LV EDP (mmHg) 6.2 ± 0.4 64 ± 4.1 * 36 ± 3.1 †
LV + dP/dt (%) 100 ± 4.2 44 ± 3.1 * 80 ± 3.6 †
LV – dP/dt (%) 100 ± 3.6 35 ± 2.4 * 74 ± 3.0 †

B. Oxidative stress markers:
H2O2 content

(nmol/g wet wt) 8.4 ± 1.2 38.6 ± 3.9 * 12.3 ± 1.5 †

MDA content
(nmol/mg tissue lipids) 3.8 ± 0.6 17.5 ± 3.1 * 5.6 ± 0.8 †

C. Myocardial Ca2+:
Ca2+ content

(µmol/g dry wt)
8.4 ± 1.2 22.6 ± 2.9 * 9.8 ± 1.6 †

Hearts were subjected to 30 min global ischemia followed by 60 min reperfusion (I/R) in the absence or presence
of 80 µg/mL superoxide dismutase (SOD) plus 10 µg/mL catalase (CAT). Control hearts in each experiment
were perfused with normal medium for appropriate time. The data are based on the analysis of information
in our paper Dhalla et al. [130]. LV—left ventricle; DP—developed pressure; EDP—end diastolic pressure;
MDA—malondialdehyde, *—p < 0.05 vs. respective control value, †—p < 0.05 vs. respective I/R value.

Table 2. Influence of ischemia-reperfusion (I/R) with or without some antioxidants as well as
perfusion with xanthine plus xanthine oxidase (X + XO) or H2O2 on cardiac function, sarcolemmal
Na+-K+ ATPase activity and protease activities in isolated perfused hearts.

Parameters
Left Ventricle

Developed Pressure
(mmHg)

Na+-K+ ATPase
Activity ((µmol)

Pi/mg/h)

Protease Activities
(Relative Fluorescence Units)

MMP Activity Calpain Activity

A. I/R injury/antioxidants:
Control 119 ± 5.7 28.7 ± 3.8 50 ± 4.3 36 ± 3.1

I/R 44 ± 9.8 * 10.9 ± 3.6 * 525 ± 26.9 * 592 ± 25.9 *
I/R + NAC 114 ± 11.6 † 32.5 ± 3.5 † 163 ± 8.3 † 215 ± 16.5 †
I/R + MGP 121 ± 13.2 † 33.2 ± 4.1 † 152 ± 9.6 † 240 ± 23.7 †

B. Oxidative stress:
Control 94 ± 7.9 26.9 ± 4.1 56 ± 3.9 40 ± 4.2
X + XO 40 ± 4.2 * 7.6 ± 3.6 * 608 ± 23.8 * 600 ± 15.9 *
H2O2 55 ± 6.1 * 6.8 ± 2.7 * 450 ± 15.6 * 665 ± 22.7 *

Hearts were subjected to 30 min global ischemia followed by 30 min reperfusion (I/R) in the absence and presence
of 100 µM N-acetylcysteine (NAC) or 300 µM mercaptopropionylglycine (MGP). Hearts were also perfused for
30 min with 2 mM xanthine (X) plus 60 mU/mL xanthine oxidase (XO) mixture or 100 mM H2O2 followed by
30 min reperfusion. Control hearts in each experiment were perfused with normal medium for 60 min. The
data are based on the analysis of information in our paper Singh et al. [131]. MMP—matrix metalloproteinase,
*—p < 0.05 vs. respective control value, †—p < 0.05 vs. respective I/R value.
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Table 3. Influence of ischemia-reperfusion (I/R) with or without oxyradical scavenger (SOD plus
CAT) as well as perfusion with xanthine plus xanthine oxidase (X + XO) or H2O2 on sarcolemmal
Na+-Ca2+ exchange, Ca2+-uptake and Ca2+-stimulated ATPase activities in isolated perfused hearts.

Parameters Na+-Ca2+ Exchange
(nmol Ca2+/mg/2 s)

ATP-Dependent
Ca2+-Uptake

(nmol Ca2+/mg/5 min)

Ca2+-Stimulated ATPase
Activity (µmol Pi/mg/h)

A. I/R injury/oxyradical scavenger:
Control 5.2 ± 0.31 23.4 ± 1.2 11.2 ± 0.7

I/R 3.1 ± 0.29 * 9.7 ± 0.7 * 4.4 ± 0.7 *
I/R + SOD plus CAT 4.7 ± 0.21 † 20.8 ± 1.1 † 9.8 ± 0.6 †

B. Oxidative stress:
Control 3.8 ± 0.15 24.4 ± 1.0 11.7 ± 1.0
X + XO 1.4 ± 0.20 * 3.6 ± 1.2 * 4.1 ± 0.9 *

X + XO + SOD plus CAT 3.0 ± 0.33 † 22.1 ± 1.4 † 9.2 ± 1.2 †

Hearts were subjected to 30 min global ischemia followed by 5 min reperfusion (I/R) in the absence or presence
of 50 U/mL superoxide dismutase (SOD) plus 50 U/mL catalase (CAT). Hearts were also perfused with 2 mM
xanthine (X) plus 100 mU/mL xanthine oxidase for 20 min in the absence or presence of SOD plus CAT. Control
hearts in each experiment were perfused with normal medium for appropriate period. The data are based on
the analysis of information in our papers Dixon et al. [132], Matsubara and Dhalla [133] and Matsubara and
Dhalla [134]. *—p < 0.05 vs. respective control, †—p < 0.05 vs. respective I/R or X + XO group.

The data in Table 4 show that depression of the LV-developed pressure was also asso-
ciated with decreases in different SR activities such as Ca2+-uptake, Ca2+-pump ATPase,
Ca2+-release, and ryanodine binding upon subjecting the heart to I/R injury or perfusion
with xanthine with xanthine plus xanthine oxidase as well as H2O2. It may also be seen
from Table 4 that I/R-induced depressions in SR Ca2+-pump and Ca2+-release activities
were prevented by the presence of superoxide dismutase plus catalase in the perfusion
medium. Furthermore, data in Table 5 indicate that depressions in both LV-developed
pressure and LV end-diastolic pressure by I/R-injury and perfusion with xanthine plus
xanthine oxidase or H2O2 were associated with depressed mitochondrial state 3 respiration
and oxidative phosphorylation. These adverse effects of I/R on cardiac function and mito-
chondrial function were markedly attenuated by the presence of superoxide dismutase plus
catalase mixture in the perfusion medium (Table 5). Subjecting the hearts to I/R injury as
well as perfusion with xanthine plus xanthine oxidase or H2O2 also showed depression in
LV-developed pressure and myofibrillar Ca2+-stimulated ATPase activity (Table 6). These
effects of I/R injury were prevented by the presence of an oxyradical scavenger (superoxide
dismutase plus catalase mixture) as well as by an antioxidant (N-acetylcysteine). Although
I/R injury did not affect myofibrillar Mg2+-ATPase, the activity of this enzyme was in-
creased upon perfusion with xanthine plus xanthine oxidase as well as H2O2 (Table 6); the
exact reason for the activation of myofibrillar Mg2+-ATPase by oxyradical generating sys-
tem or oxidant is not clear at present. Nonetheless, the overall information described here
indicates that there is a linear association between the depression in cardiac performance
and changes in subcellular functions related to cation homeostasis, Ca2+-handling, energy
production and generation of contractile activity during the development of I/R injury. It is
noteworthy that I/R-induced alterations in cardiac function and subcellular activities were
not only attenuated by oxyradical scavengers or antioxidants but these changes were also
simulated upon perfusing the heart with oxyradical generating system or oxidant. These
observations provide a compelling evidence that oxidative stress plays a critical role in the
pathophysiology of I/R injury.
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Table 4. Influence of ischemia-reperfusion (I/R) with or without oxyradical scavenger (SOD plus
CAT) as well as perfusion with xanthine plus xanthine oxidase (X + XO) or H2O2 on cardiac function
and sarcoplasmic reticular Ca2+-uptake and Ca2+-release activities in isolated perfused hearts.

Parameters
Left Ventricular

Developed Pressure
(mm Hg)

Ca2+-Uptake
Activity

(nmol/mg/min)

Ca2+-Stimulated
ATPase Content
(% of Control)

Ca2+-Release
Activity

(nmol/mg/15 s)

Ryanodine
Binding

(pmol/mg)

A. I/R injury/oxyradical
scavenger:

Control 100 ± 5.2 24.7 ± 1.9 100 9.6 ± 1.5 2.4 ± 0.11
I/R 27 ± 2.8 * 12.5 ± 1.3 * 25 ± 1.9 * 2.8 ± 0.3 * 0.8 ± 0.02 *

I/R + SOD plus CAT 86 ± 4.2 † 22.4 ± 2.8 † 20 ± 2.1 5.3 ± 0.6 † 1.8 ± 0.09 †
B. Oxidative stress:

Control 100 ± 2.9 28.1 ± 0.7 100 10.1± 1.9 2.3 ± 0.10
X + XO 16 ± 1.8 * 9.3 ± 0.8 * 31 ± 1.4 * 1.5 ± 0.1 * 1.0 ± 0.05 *
H2O2 27 ± 0.9 * 13.9 ± 1.4 * 58 ± 3.8 * 2.3 ± 0.1 * 0.9 ± 0.04 *

Hearts were subjected to 30 min global ischemia followed by 60 min reperfusion (I/R) in the absence or presence
of 50 U/mL superoxide dismutase (SOD) and 75 U/mL catalase. Hearts were also perfused for 20 min with 2 mM
xanthine (X) plus 0.03 U/mL xanthine oxidase or 300 µM H2O2. Control hearts in each experiment were perfused
with normal medium for appropriate time period. The data are based on the analysis of information in our paper
Temsah et al. [135]. *—p < 0.05 vs. respective control value, †—p < 0.05 vs. respective I/R value.

Table 5. Influence of ischemia-reperfusion (I/R) in the absence or presence of oxyradical scavenger
mixture (SOD plus CAT) as well as perfusion with oxyradical generating mixture (X plus XO) or
H2O2 on cardiac function and mitochondrial function in isolated perfused hearts.

Parameters Left Ventricular Developed
Pressure (mm Hg)

Left Ventricular end
Diastolic Pressure (mm Hg)

State 3 Respiration (ng
Atoms O/mg/min)

ADP to O Ratio (nmol
ADP/ng atom O)

A. I/R injury/oxyradical
scavenger:

Control 95 ± 7 8.6 ± 0.6 402 ± 12 2.94 ± 0.06
I/R 24 ± 2 * 87 ± 5 * 303 ± 15 * 2.58 ± 0.05 *

I/R + SOD plus CAT 60 ± 2 † 40 ± 4 † 403 ± 21 † 2.80 ± 0.06 †
B. Oxidative stress:

Control 115 ± 11 10.5 ± 0.7 483 ± 11 2.79 ± 0.07
X + XO 14.6 ± 4.6 * 128 ± 8 * 264 ± 12 * 2.48 ± 0.03 *
H2O2 28.2 ± 2.3 * 35.7 ± 3.5 * 403 ± 5 * 2.50 ± 0.08 *

Hearts were subjected to 30 min global ischemia followed by 30 min reperfusion (I/R) in the absence or presence
of 50 U/mL superoxide dismutase plus 75 U/mL catalase. Hearts were also perfused for 30 min with 2 mM
xanthine (X) plus 60 mU/mL oxidase or 100 µM H2O2. Control hearts in each experiment were perfused
with normal medium for appropriate time. The data are based on the analysis of information in our paper
Makazan et al. [136]. *—p < 0.05 vs. respective control value, †—p < 0.05 vs. respective I/R value.

Table 6. Influence of ischemia-reperfusion (I/R) with or without oxyradical scavenger and antioxidant
as well as perfusion with xanthine plus xanthine oxidase (X + XO) or H2O2 on cardiac functions and
myofibrillar ATPase activities in isolated perfused hearts.

Parameters
Left Ventricular Developed

Pressure (mm Hg)
Myofibrillar ATPase Activities (µmol Pi/mg/h)

Mg2+-ATPase Ca2+-Stimulated

A. I/R injury/oxyradical
scavenger/antioxidant:

Control 105 ± 20.3 3.5 ± 0.5 13.3 ± 0.3
I/R 36.4 ± 12.1 * 4.0 ± 0.2 10.7 ± 0.4 *

I/R + SOD plus CAT 71.5 ± 9.5 † 3.1 ± 0.3 12.9 ± 0.2 †
I/R + NAC 117 ± 14.4 † 3.1 ± 0.1 13.9 ± 0.1 †

B. Oxidative stress:
Control 115 ± 10.1 3.6 ± 0.1 12.7 ± 0.1
X + XO 31 ± 2.8 * 10.7 ± 0.2 * 6.9 ± 0.2 *
H2O2 ——– 5.5 ± 0.2 * 10.9 ± 0.4 *

Hearts were subjected to 30 min global ischemia followed by 30 min reperfusion (I/R) in the absence and presence
of 80 µg/mL superoxide dismutase (SOD) plus 10 µg/mL catalase (CAT) or 100 µM N-acetylcysteine (NAC).
Hearts were also perfused for 30 min with 2 mM xanthine (X) plus 60 mU/mL xanthine oxidase or 100 µM H2O2
followed by 30 min reperfusion. Control hearts in each experiment were perfused with normal medium for
appropriate period. The data are based on the analysis of information in our papers Maddika et al. [137] and
Suzuki et al. [138]. *—p < 0.05 vs. respective control value, †—p < 0.05 vs. respective I/R value.
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7. Concluding Remarks

From the foregoing discussion, it is evident that there occurs a lack of oxygen, accumu-
lation of intracellular H+ due to the inability of mitochondria to oxidize substrates, increase
in the concentration of intracellular Ca2+ due to the activation of SL Na+-H+ exchange and
Na+-Ca2+ exchange systems, as well as loss of contractile activity in the ischemic heart. All
these alterations are reversible if the reperfusion is carried out during early periods of the
ischemic insult but delayed reperfusion has been shown to produce irreversible changes in
inflammation and depletion of energy stores in the myocardium. Mitochondrial defects in
respiratory chain as well as changes in different enzymes such as NADPH oxidase, nitric ox-
ide synthase, and monoamine oxidase are the major sources of oxyradicals and oxidants in
I/R hearts. Excessive formation of reactive oxygen/nitrogen species and depression in the
different antioxidant defense systems result in oxidative/nitrosative stress during the devel-
opment of I/R injury. Furthermore, the occurrence of intracellular Ca2+-overload appears to
be due to increased membrane permeability as well as changes in SL and SR Ca2+-handling
systems. On the other hand, I/R-induced myocardial inflammation is a consequence of
the release of inflammatory cytokines including TNF-α from macrophages in the cardiac
interstitium as well as peripheral neutrophils which enter the injured myocardium. It is dif-
ficult to clearly indicate the cause-and-effect of oxidative stress, myocardial inflammation,
or intracellular Ca2+-overload with I/R injury because adverse effects of these pathological
factors are inter-related. In this regard, it is pointed out that both oxidative stress and
myocardial inflammation are known to cause subcellular Ca2+-handling abnormalities,
mitochondrial Ca2+-overload, and depression in energy production. Ca2+-abnormalities in
SL and SR membranes as well as loss of myofibrillar Ca2+-sensitivity have also been shown
to occur due to the activation of different proteases and modification of cardiac gene ex-
pression by both intracellular Ca2+-overload and oxidative stress. Furthermore, opening of
mitochondrial permeability transition pore and leakage of various mitochondrial cytotoxic
components as well as different apoptotic and necrotic factors in the cytoplasm have been
reported to occur by oxidative stress in combination with mitochondrial Ca2+-overload.
Taken together, these observations and other information in the literature suggest that
oxidative stress plays a pivotal role in the development of I/R-induced cardiac dysfunction
and myocardial cell damage. Some salient events involving oxidative stress, intracellular
Ca2+-overload, as well as SL, SR, myofibrillar, and mitochondrial defects for the occurrence
of cardiac dysfunction due to I/R-induced injury are depicted in Figure 4.

Several pathophysiological studies in different experimental models of I/R injury have
identified various major targets in the myocardium for the development of cardioprotective
strategies. Some of these entities include metabolic defects, Ca2+-handling abnormalities,
lipid peroxidation, protease activation, signal transduction for apoptosis and necrosis, tran-
scriptional factors for maintaining redox homeostasis, and mitochondrial K+-ATP channels.
Although numerous pharmacological agents, including Ca2+-antagonists, β-adrenoceptor
blockers, angiotensin II antagonists, metabolic modulators, cyclosporin A, and nicorandil
have shown to exert beneficial effects in attenuating I/R injury in animal studies, their
results in human clinical trials are not conclusive. On the other hand, strategies such as
ischemic preconditioning and ischemic postconditioning, which enhance antioxidant levels,
have shown a great promise for cardioprotection in both animals and clinical investiga-
tions. Likewise, antioxidant vitamins (vitamin A, C, E, and β-carotene), unlike synthetic
antioxidants, have been demonstrated to improve cardiac function and reduce myocardial
damage. Such observations support the concept that oxidative stress may be intimately
involved in the pathophysiology of I/R-induced injury to the heart. This view is further
attested by the observations that I/R-induced alterations in cardiac contractile activity,
oxidative stress markers, Ca2+-handling by SL and SR as well as myofibrillar proteins and
mitochondrial function were attenuated by oxyradical scavenging mixture. Furthermore,
all these I/R-induced adverse effects in the heart were simulated upon perfusion with an
oxyradical generating system or an oxidant. Thus, there is great challenge for directing
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the future research activities for developing appropriate antioxidant interventions for the
prevention and/or therapy of I/R injury to the heart.
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