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Abstract

Background: Hydroxy fatty acids (HFAs) are valuable chemicals for a broad variety of applications. However,
commercial production of HFAs has not been established so far due to the lack of low cost routes for their
synthesis. Although the microbial transformation pathway of HFAs was extensively studied decades ago, these
attempts mainly focused on converting fatty acids or vegetable oils to their hydroxyl counterparts. The use of a
wider range of feedstocks to produce HFAs would reduce the dependence on oil crops and be expected to cut
down the manufacturing cost.

Results: In this study, the industrially important microorganism Escherichia coli was engineered to produce HFAs
directly from glucose. Through the coexpression of the acetyl-CoA carboxylase (ACCase) and the leadless acyl-CoA
thioesterase (‘TesA), and knockout of the endogenous acyl-CoA synthetase (FadD), an engineered E. coli strain was
constructed to efficiently synthesize free fatty acids (FFAs). Under shake-flask conditions, 244.8 mg/L of FFAs were
obtained by a 12 h induced culture. Then the fatty acid hydroxylase (CYP102A1) from Bacillus megaterium was
introduced into this strain and high-level production of HFAs was achieved. The finally engineered strain BL21ΔfadD/
pE-A1’tesA&pA-acc accumulated up to 58.7 mg/L of HFAs in the culture broth. About 24 % of the FFAs generated by
the thioesterase were converted to HFAs. Fatty acid composition analysis showed that the HFAs mainly consisted of
9-hydroxydecanoic acid (9-OH-C10), 11-hydroxydodecanoic acid (11-OH-C12), 10-hydroxyhexadecanoic acid (10-OH-
C16) and 12-hydroxyoctadecanoic acid (12-OH-C18). Fed-batch fermentation of this strain further increased the final
titer of HFAs to 548 mg/L.

Conclusions: A robust HFA-producing strain was successfully constructed using glucose as the feedstock, which
demonstrated a novel strategy for bioproduction of HFAs. The results of this work suggest that metabolically
engineered E. coli has the potential to be a microbial cell factory for large-scale production of HFAs.

Keywords: Hydroxy fatty acid, Escherichia coli, Fatty acid hydroxylase, Acetyl-CoA carboxylase, Acyl-CoA thioesterase,
Acyl-CoA synthetase

Background
The depletion of the earth’s fossil energy resources and
global climate change have stimulated us to develop en-
vironmentally friendly processes to produce fuels and
chemicals. Hydroxy fatty acids (HFAs) are important fine
chemicals which have a hydroxyl group in the carbon
chain of fatty acids. Due to their unique attributes, HFAs

have wide applications in different fields such as surfac-
tants, lubricants, cosmetics or antimicrobials [1, 2]. They
are also used as the intermediates for the production of
a variety of value-added products [3]. More importantly,
HFAs could serve as the precursors for the preparation
of the next generation plastics, polyhydroxyalkanoates
(PHAs) [4]. PHAs are completely biodegradable and
possess good thermoplastic or elastomeric properties.
Therefore, PHA bioplastics offer an alternative to con-
ventional petrochemical-derived plastics [5].
Now, HFAs are commercially unavailable due to the

lack of low cost routes for their synthesis. Chemical
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catalysts for specific hydroxylation reactions on the se-
lective carbon atom of the fatty acyl chain are limited
[6]. On the other hand, HFAs make up an interesting
group of natural compounds among plants, bacteria,
yeasts and fungi. A number of microorganisms capable
of producing HFAs from fatty acids or vegetable oils
have been isolated. For example, Bacillus pumilus could
hydroxylate oleic acid on the 1, 2, and 3 carbon atoms
to produce hydroxy oleic acids [7]. Candida tropicalis
also excretes HFAs as by-products when cultured on n-
alkanes or fatty acids as the carbon source [8]. Enzymes
catalyzing the bioconversion of fatty acids to HFAs have
been identified as the cytochrome P450 monooxygenases
(CYPs). CYPs responsible for the hydroxylation of fatty
acids have been cloned from several Bacillus species in-
cluding B. megaterium [9], B. subtilis [10], B. anthracis
[11] and B. cereus [12]. The CYP102A1 from B. megater-
ium is the most thoroughly studied member of these en-
zymes. Heterologous expression of this enzyme in E. coli
indicated that the whole-cell biocatalyst showed the
maximum activity to pentadecanoic acid and the result-
ing products were only 1, 2 and 3 HFAs [13]. This bio-
conversion has been demonstrated at the 2 L scale
fermentor level under oxygen limitation, showing that
12-, 13-, and 14-hydroxypentadecanoic acids can be pro-
duced in the g/L range [14]. Recombinant E. coli cells
harboring another fatty acid hydroxylase P450foxy from
the fungus Fusarium oxysporum [15] could also convert
saturated fatty acids with a chain length of 7–16 carbon
atoms to their 1, 2 and 3 hydroxyl derivatives [16].
The above studies used fatty acids or their derivatives

as the feedstocks for production of HFAs. Compared
with the plant oil resources, renewable sugars from bio-
mass are more easily available. In our previous study, we
constructed an engineered E. coli strain for the direct
production of HFAs from glucose through producing
free fatty acids (FFAs) by a thioesterase and further con-
verting FFAs to HFAs using a fatty acid hydroxylase
[17]. However, production of HFAs of this strain was still

too low. Here, the E. coli strain was further improved to
enhance production of HFAs. The native E. coli acetyl-
CoA carboxylase (ACCase) and a leadless thioesterase
‘TesA were overexpressed to boost the host cell to pro-
duce FFAs. The fatty acid degradation pathway was
blocked by disrupting the endogenous acyl-CoA synthe-
tase (FadD). And the FFAs were then converted to HFAs
by the fatty acid hydroxylase CYP102A1 (Fig. 1). The fi-
nally engineered strain was evaluated under fed-batch
conditions and showed a promising perspective for
large-scale production of HFAs.

Results and discussion
Expression of the recombinant enzymes in E. coli
With the aim to express the ACCase, ‘TesA and
CYP102A1 enzymes, we cloned the coding regions of
the corresponding genes into plasmids pACYCDuet-1
pET28a, or pET30a under the control of T7 promoter.
To verify the expression levels of the recombinant pro-
teins, E. coli BL21(DE3) was transformed by the expres-
sion vectors pE-‘tesA, pA-acc, pE-A1, pE-A1’tesA or a
combination of these vectors. The resulting recombinant
strains were grown in liquid LB medium followed by
IPTG induction. The bacterial cells were collected and
subjected to ultrasonication, and the lysates were then
analyzed by SDS-PAGE. Figure 2 showed the gel electro-
phoresis patterns of samples from different recombinant
strains. We noted distinct bands of the expected sizes
from protein extracts of the recombinant strains com-
pared with the control strain harboring pET28a.
SDS-PAGE analysis of the recombinant strain carrying
pE-‘tesA revealed the band of the molecular weight
20.5 kDa (lane 2), which corresponded to the size of the
leadless ‘TesA [18]. Strain BL21/pA-acc gave all the
bands of the four subunits of ACCase (lane 3). The re-
combinant strain expressing both ‘tesA and ACCase dis-
played the protein bands for the two genes (lane 4).
Strain BL21/pE-A1 showed a band corresponding to the
molecular weight of CYP102A1 (119 kDa, lane 5) [19].

Fig. 1 Metabolic pathway from glucose to HFAs in engineered E. coli. Glucose is degraded into acetyl-CoA through glycolysis. Acetyl-CoA
carboxylase (ACCase) catalyzes the irreversible carboxylation of acetyl-CoA to produce malonyl-CoA. The discrete, monofunctional type II fatty acid
synthases (FAS) act on malonyl-CoA to synthesize fatty acyl-ACPs. Then thioesterase hydrolyzes the acyl-ACPs bond to form FFAs. At last, fatty acid
hydroxylase transforms FFAs to HFAs. Acyl-CoA synthetase responsible for fatty acid degradation is knocked out to block fatty acids and
HFAs degradation
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Unlike the membrane-bound CYPs in eukaryotic sys-
tems, the bacterial CYPs usually exist in a soluble form
[20]. Therefore, the CYP102A1 enzyme could function
properly in the cytoplasm of the recombinant cells. The
finally engineered strain BL21/pE-A1’tesA&pA-acc gave
all the bands of the recombinant proteins (lane 6).

Production of FFAs by engineered E. coli
CYP102A1 catalyzes the hydroxylation of FFAs to form
HFAs. Therefore, the first step to produce HFAs from
glucose is to create an intracellular FFAs pool. Many
studies have been performed to synthesize FFAs using E.
coli [21]. In this research, we constructed a recombinant
E. coli strain efficiently producing FFAs mainly from
three aspects. To increase the cellular FFAs level of E.
coli, the leadless native thioesterase ‘TesA was overex-
pressed in strain BL21 star(DE3). About 108.5 mg/L of

FFAs were produced after being induced for 12 h, which
is similar to previous studies [22]. To enhance the pre-
cursor supply for fatty acids biosynthesis, the ACCase,
which catalyzes the irreversible carboxylation of acetyl-
CoA [23], was further coexpressed with ‘TesA. Shake-
flask fermentation of strain BL21/pE-‘tesA&pA-acc ac-
cumulated up to 188.6 mg/L of FFAs in the culture. To
eliminate fatty acid degradation, the acyl-CoA synthetase
(FadD) participating in the β-oxidation pathway [24] was
knocked out, resulting in strain BL21ΔfadD. Then the
recombinant plasmids pE-‘tesA and pA-acc were co-
transformed into this strain. The engineered strain
BL21ΔfadD/pE-‘tesA&pA-acc was evaluated for produc-
tion of FFAs and 244.8 mg/L of FFAs were synthesized,
about 2.3-fold increase when compared with strain
BL21/pE-‘tesA. Gas chromatography - mass spectrom-
etry (GC-MS) analysis (Additional file 1) showed that
FFAs in these strains mainly consisted of C8:0, C10:0,
C12:1, C12:0, C14:1, C14:0, C16:1, C16:0, and C18:1 fatty
acids, with C14, C16 and C18 fatty acids as the domin-
ant constitutes (Table 1).

Identification of HFAs from the CYP102A1 expressing
strain
As shown above, FFAs of different chain length and sat-
uration were efficiently produced by the recombinant
strains. In order to convert these FFAs to their hydroxyl
counterparts, the fatty acid hydroxylase CYP102A1 was
further coexpressed in these FFA overproducing strains.
To identify the HFAs produced by CYP102A1, the ex-
tracts from the culture broth of strain BL21/pE-A1’tesA
coexpressing ‘tesA and CYP102A1 were derivatized to
their methyl esters and then analyzed by GC-MS. The
mass spectrums of the hydroxy fatty acid methyl esters
(HFAMEs) prepared from a 12 h - induced culture were
shown in Additional file 1. Qualitative analysis was per-
formed using a National Institute of Standards and
Technology (NIST) - library search program. Four types
of HFAs, 9-hydroxydecanoic acid methyl ester (9-OH-
C10), 11-hydroxydodecanoic acid (11-OH-C12), 10-
hydroxyhexadecanoic acid (10-OH-C16) and 12-
hydroxyoctadecanoic acid (12-OH-C18), were detected
in this strain. It has been reported that the fatty acid hy-
droxylase CYP102A1 has a broad substrate specificity

Fig. 2 Expression of the recombinant enzymes in engineered E. coli.
Lane M, prestained protein ladder; lane 1, strain BL21 star(DE3)
harboring pET28a; lane 2, strain BL21 star(DE3) harboring pE-‘tesA;
lane 3, strain BL21 star(DE3) harboring pA-acc; lane 4, strain BL21
star(DE3) harboring both pE-‘tesA and pA-acc; lane 5, strain BL21
star(DE3) harboring pE-A1; lane 6, strain BL21 star(DE3) harboring
both pE-A1’tesA and pA-acc. The positions corresponding to the
overexpressed proteins are indicated by an arrow

Table 1 FFAs composition produced by different engineered strains

Strains C8:0 C10:0 C12:0 C12:1 C14:0 C14:1 C16:0 C16:1 C18:1 Total

BL21/pE-‘tesA 1.36
(1.3 %)

1.65
(1.5 %)

8.44
(7.8 %)

5.47
(5.0 %)

10.64
(9.8 %)

5.88
(5.4 %)

42.0
(38.7 %)

12.4
(11.4 %)

20.7
(19.1 %)

108.5

BL21/pE-‘tesA&pA-acc 2.15
(1.2 %)

2.86
(1.5 %)

15.1
(8.1 %)

9.6
(5.1 %)

18.9
(10.1 %)

10.2
(5.5 %)

71.3
(38.2 %)

21.3
(11.4 %)

35.2
(18.9 %)

186.6

BL21ΔfadD/pE-‘tesA&pA-acc 3.64
(1.5 %)

3.89
(1.6 %)

20.4
(8.3 %)

13.1
(5.3 %)

25.2
(10.3 %)

13.2
(5.4 %)

90.3
(36.9 %)

28.3
(11.6 %)

46.8
(19.1 %)

244.8

The unit value for the fatty acids was mg/L
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[20]. This enzyme could catalyze the hydroxylation of
saturated or unsaturated fatty acids with a chain length
of 12–22 carbons [25]. The hydroxylation always oc-
curred in the subterminal position while the terminal
methyl group of these substrates was never hydroxyl-
ated. The hydroxyl position could also be altered by ra-
tional mutagenesis of specific amino acid sites [26]. Here
we further identify 10-OH-C16 and 12-OH-C18 from
the mixture of hydroxylated products in addition to the
subterminal ω-HFAs. It seems that CYP102A1 could
oxidate the double bonds of the two kinds of unsatur-
ated fatty acid, palmitoleic acid (C16:1Δ9) and cis-
vaccenic acid (C18:1Δ11), and generate 10-OH-C16 and
12-OH-C18 HFAs. C16 or C18 HFAs at the subterminal
positions were not identified in our engineered strain.
Although these FFAs made up the major portion in the
total fatty acid profiles, the catalytic activity of
CYP102A1 towards them was much lower. This result
was in accordance with many previous studies.
CYP102A1 was more efficient toward medium-chain
fatty acids and the catalytic activity of this enzyme de-
creased when the fatty acid chain length was greater
than 15 [13, 17]. Therefore, we cannot detect any C16 or
C18 HFAs at the subterminal positions from the
CYP102A1 overexpressing strain.
Unlike the fungal fatty acid hydroxylases [27], the bac-

terial CYP102A1 does not act on the terminal position
of the fatty acid chain. Therefore, the hydroxyl products
of this enzyme could not be degraded by the host’s en-
dogenous enzymes, such as the fatty alcohol oxidase
[28]. These HFAs were stable in the fermentation broth
and could accumulate without deleting the ω-HFAs deg-
radation enzymes. In addition, CYP102A1 is a self-
sufficient fatty acid hydroxylase [29]. It consists of a
heme-binding domain and a FMN/FAD-containing do-
main, and catalyzes the electron transfer from NADPH,
via FAD, FMN, and heme, to O2, resulting in the forma-
tion of a hydroxyl group on carbon atoms without the
help of other enzymes [30]. This is different from many
fatty acid hydroxylases which require the ferredoxin
(Fdx) reductase domain to obtain reducing equivalents
from NADPH [31]. Thus, the CYP102A1-based HFA-
producing system would be much easier to be operated.

Evaluation of HFAs producing ability of different strains
under shake-flasks conditions
To investigate the supply of FFAs on HFAs production,
different E. coli strains including BL21/pE-A1’tesA, BL21/
pE-A1’tesA&pA-acc and BL21ΔfadD/pE-A1’tesA&pA-acc
were cultivated under shake-flask conditions. Fatty acids
produced by these strains were extracted, derivatized and
analyzed by GC-MS. The quantities of FFAs and HFAs
were determined by comparison of the chromatographic
peak areas with the internal standard (C20 or 12-OH-

C12). Cell density, FFAs and HFAs accumulated in the fer-
mentation broth of different recombinant strains were cal-
culated and shown in Fig. 3. It could be seen that all the
three recombinant strains grew to a similar OD600 after
12 h induction (about 3.0-3.5). Strain BL21/pE-A1’tesA
produced 77.5 mg/L of FFAs and 36.5 mg/L of HFAs.
When ACCase was overexpressed, the final titer of FFAs
and HFAs reached 143.4 mg/L and 40.3 mg/L, respect-
ively. Production of FFAs was greatly improved in this
strain, but there was only a slight increase in production
of HFAs. The FFAs accumulated seemed not to be effi-
ciently converted to HFAs by the fatty acid hydroxylase.
When E. coli native fadD gene was knocked out, the fi-
nally engineered strain BL21ΔfadD/pE-A1’tesA&pA-acc
showed an enhanced ability to produce HFAs. The titer
of HFAs reached 58.7 mg/L, which is 1.6-fold to the
original strain. Compositions of HFAs in these strains
were shown in Table 2. 11-Hydroxydodecanoic acid and
12-hydroxyoctadecanoic acid made up the major HFAs
constituents. The deletion of fadD could block both
fatty acids and degradation of HFAs [13]. Thus,
production of FFAs and HFAs was increased in this
strain. The productivity of HFAs per cell dry weight
(CDW) of strain BL21ΔfadD/pE-A1’tesA&pA-acc reached
44.3 mg/gCDW (1 OD600 = 0.43 gCDW). The enhance-
ment of production of FFAs was much greater than pro-
duction of HFAs along with the introduction of ACCase
and knockout of fadD. Only 24 % of the FFAs were con-
verted to HFAs in this finally engineered strain. These re-
sults indicated that the rate-limiting step for HFAs
production was the fatty acid hydroxylase CYP102A1 [32].

Fig. 3 Comparison of HFAs production of several different strains
under shake-flask conditions. Data were obtained after each
strain was induced for 12 h in liquid LB medium supplemented
with 20 g/L glucose. BL21/pE-A1’tesA, strain BL21 star(DE3)
expressing B. megaterium CYP102A1 and native E. coli ‘tesA;
BL21/pE-A1’tesA&pA-acc, further overexpressing native E. coli
ACCase; BL21ΔfadD/pE-A1’tesA&pA-acc, knockout of native fadD
gene while coexpressing the three enzymes
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We can expect to achieve a higher titer of HFAs by im-
proving the efficiency of this enzyme.

HFAs production at the fermentor scale
Microbial production of HFAs is currently achieved
using the bacteria Pseudomonas sp. [33] or nonconven-
tional yeasts Candida sp. [34] that produce selective
CYPs as the hosts. Compared with these strains, E. coli
has many advantages such as a clear genetic background,
high convenience to be genetically modified, and good
growth properties with low nutrient requirements [35].
Here, we tested our recombinant E. coli strain using
high-density fermentation strategy. Based on the results
obtained by the shake-flask cultivations, the finally engi-
neered E. coli strain BL21ΔfadD/pE-A1’tesA&pA-acc
was cultured in a 5 L-scale laboratory fermentor. Cell

density, residual glucose concentration and products ac-
cumulation were monitored over the course of fed-batch
fermentation. Figure 4 shows the time profiles of cell
density and production of HFAs during 24 h fed-batch
fermentation. The bacteria grew very fast at the first
12 h post-induction to an OD600 of approximate 70.
FFAs and HFAs also accumulated rapidly in the culture
broth. The highest production of FFAs and HFAs were
obtained after 12 h induction, that is, 2.81 g/L and
548 mg/L. The volumetric productivities of FFAs and
HFAs were 234 mg/(L · h) and 45.7 mg/(L · h), respect-
ively. Both of the titers of FFAs and HFAs decreased to
some extent in the following fermentation processes.
Compared with the HFA-producing process using fatty

acids as the feedstock [1, 36–38], the current production
and yield obtained by this engineered E. coli strain is still

Table 2 HFAs composition produced by different engineered strains

Strains 9-OH-C10 10-OH-C16 11-OH-C12 12-OH-C18 Total

BL21/pE-A1’tesA 4.17 (11.4 %) 3.31 (9.1 %) 18.7 (51.1 %) 10.4 (28.4 %) 36.5

BL21/pE-A1’tesA&pA-acc 4.80 (11.9 %) 3.91 (9.7 %) 20.2 (50.1 %) 11.4 (28.3 %) 40.3

BL21ΔfadD/pE-A1’tesA&pA-acc 7.16 (12.2 %) 5.87 (10.0 %) 29.3 (49.8 %) 16.4 (28.0 %) 58.7

The unit value for the HFAs was mg/L

Fig. 4 Time courses of cell density (OD600), FFAs and HFAs production during fed-batch culture of the finally engineered strain BL21ΔfadD/pE-
A1’tesA&pA-acc. Cultivation was conducted in a 5 L fermentor with an initial volume of 2 L of rich growth medium
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too low. This might be due to that these processes used
quite different mechanisms to synthesize HFAs. The
double bond hydratases were employed in previous work
directly acting on unsaturated fatty acids to generate
HFAs. The catalytic activity of the hydratases was more
efficient than the P450 monooxygenase used in this
study, leading to much higher productivity and yield.
However, the use of fatty acids or plant oils increases the
raw material cost since they are more expensive than
glucose and other sugars. These carbohydrates have the
potential to be manufactured from the easily available
lignocellulosic biomass resources. The biotransformation
of fatty acids also needed to first grow the cells with glu-
cose or other carbon sources. The yield was overesti-
mated for neglecting the consumption of the carbon
sources. In addition, the yeast-based HFAs-producing
strains always take several days to reach the maximum
titer, while the whole fermentation process only requires
less than 24 h for this engineered strain.
The production and yield of HFAs in the present study

could be enhanced from several aspects. Biosynthesis of
FFAs is the first rate-limiting step in our HFA-producing
system. Fatty acid biosynthesis from glucose requires
carbon fluxes through glycolysis to generate pyruvate
which is further dehydrogenated to acetyl-CoA. Acetyl-
CoA is then carboxylated to form malonyl-CoA, the pre-
cursor of the bacterial type II fatty acid synthases [39].
Fatty acyl-ACPs of different chain-length were finally
cleaved by thioesterases into FFAs. Numerous effects
have been conducted to improve the ability of E. coli to
synthesize FFAs, but the highest titer of FFAs achieved
up to now was roughly 9 g/L [40]. To obtain an even
higher production of HFAs, the FFAs pool must be fur-
ther increased. Fatty acid hydroxylase is another key en-
zyme for production of HFAs. Although the CYP102A1
enzyme has many excellent attributes, its catalytic
activity is much lower than many other hydroxylases,
e.g., lipoxygenase, hydratase and diol synthase [41].

Therefore, the use of more efficient fatty acid hydroxy-
lases in our producing system would be helpful to im-
prove production of HFAs.

Conclusions
In this study, a robust HFA-producing E. coli strain was
successfully constructed. Four distinct genetic alterations
targeted at the HFA metabolic pathways were intro-
duced into the host strain BL21 star(DE3), including
knockout of the endogenous fadD gene, which encodes
the acyl-CoA synthetase, to block fatty acid β-oxidation;
overexpression of native E. coli ACCase to enhance the
supply of malonyl-CoA, the precursor for fatty acid bio-
synthesis; overexpression of a leadless thioesterase ‘TesA
to render the host releasing FFAs; and further introdu-
cing a hydroxylase CYP102A1 to hydroxylate the FFAs
into HFAs. Under fed-batch conditions, up to 548 mg/L
of HFAs were produced by the finally engineered strain
BL21ΔfadD/pE-A1’tesA&pA-acc. The volumetric prod-
uctivity of HFAs reached 45.7 mg/(L · h). Although the
current production of this work is far from industrial ap-
plication, it opens the door to employing the enormous
power of metabolic engineering in this experimentally
friendly organism for HFAs biosynthesis. This engi-
neered E. coli would give some implication to industrial-
scale production of HFAs in the future.

Methods
Bacterial strains and plasmids construction
A list of bacterial strains and recombinant plasmids was
presented in Table 3. E. coli DH5α was used for gene
cloning and E. coli BL21 star(DE3) was used as the host
for the expression of the recombinant proteins. The
chromosomal fadD gene of strain BL21 star(DE3) re-
sponsible for fatty acid degradation was knocked out
using the Red recombination strategy in a previous
study, resulting strain BL21ΔfadD [42].

Table 3 Strains and plasmids used in this study

Strains or plasmids Genotype/Description Sources

Strains

E. coli BL21 star(DE3) F− ompT hsdSB (rB
− mB

−) gal dcm rne131 (DE3) Invitrogen

E. coli BL21 star(DE3) ΔfadD Knockout of fadD encoding acyl-CoA synthetase [42]

Plasmids

pET28a(+) Kanr oripBR322 lacIq T7p Novagen

pET30a(+) Kanr oripBR322 lacIq T7p Novagen

pACYCDuet-1 Cmr oriP15A lacIq T7p Novagen

pE-‘tesA pET30a(+) harboring E. coli ‘tesA This study

pE-A1 pET28a(+) harboring B. megaterium CYP102A1 This study

pE-A1’tesA pET28a(+) harboring both E. coli ‘tesA and B. megaterium CYP102A1 This study

pA-acc pACYCDuet-1 harboring E. coli ACCase [43]
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Primers used for plasmids construction was pro-
vided in Table 4. The four subunits of native E. coli
acetyl-CoA carboxylase were cloned into a single ex-
pression vector pACYCDuet-1, resulting pA-acc in
another study [43]. The CYP102A1 gene [GenBank:
J04832] was PCR amplified from B. megaterium
ATCC 14581 genomic DNA and cloned into the re-
striction sites NcoI/EcoRI of vector pET28a, resulting
pE-A1. The ‘tesA gene [GenBank: EG11542] (encoding
a leadless version of native E. coli thioesterase I with-
out the N-terminal 26 amino acids) was amplified
from E. coli K12 genome and cloned into the restric-
tion sites NdeI/BglII of vector pET30a, resulting pE-
‘tesA. Then PCR reaction was performed using pE-
‘tesA as the template and a primer pair that allowed
the amplification of the T7 promoter sequence along
with the ‘tesA structural gene. The PCR product
T7’tesA was then cloned into pE-A1 between EocRI
and XhoI sites to create pE-A1‘tesA, which was used
for the coexpression of the two genes. Successful gene
cloning was verified by colony PCR, restriction map-
ping and direct nucleotide sequencing.

Media and culture conditions
Luria-Bertani (LB) medium (10 g/L tryptone, 5 g/L yeast
extract, 10 g/L NaCl) was used for DNA manipulation,
protein expression and shake-flasks cultivation. Rich
growth medium (20 g/L tryptone, 10 g/L yeast extract,
5 g/L NaCl and 5 g/L K2HPO4 · 3H2O) was used for
fermentor-scale cultivation. MgSO4 (0.12 g/L) and trace
elements (1 ml per liter, 3.7 g/L (NH4)6Mo7O24 · 4H2O,
2.9 g/L ZnSO4 · 7H2O, 24.7 g/L H3BO3, 2.5 g/L CuSO4 ·
5H2O, 15.8 g/L MnCl2 · 4H2O) were autoclaved or filter-
sterilized separately and added prior to initiation of the
fermentation. 50 mg/L of kanamycin or 34 mg/L of
chloramphenicol were supplemented when necessary.
Under shake-flask conditions, the bacterial cultures were
first grown at 37 °C and 180 rpm. 0.5 mM of isopropyl-
β-D-thiogalactopyranoside (IPTG) was added at an
OD600 of about 0.6 to induce the expression of recom-
binant proteins and production of HFAs. Then the cul-
ture temperature was shifted to 30 °C after adding the
inducer.

Protein expression and SDS-PAGE analysis
Recombinant E. coli strains harboring pE-A1, pE-‘tesA,
pE-A1’tesA, pA-acc or the combination of these plas-
mids were induced for 4 h to express the recombinant
proteins. Then cells were collected from 1.5 ml of bac-
terial cultures by centrifugation and resuspended in
50 mM of Tris–HCl buffer (pH 8.0). Cell pellets were
disrupted using a probe-type sonicator (VCX130, Sonics,
USA) at 4 °C. The resulting crude extracts were centri-
fuged and the supernatants with the soluble proteins
were recovered, mixed with equal volume of 2× sodium
dodecyl sulfate (SDS) sample buffer, heated at 100 °C for
10 min and then analyzed by SDS-polyacrylamide gel
electrophoresis (PAGE) according to a standard proced-
ure. Protein bands were visualized with Coomassie Bril-
liant Blue staining.

Fed-batch fermentation
For large-scale production of HFAs, fed-batch cultures
were carried out in a Biostat B plus MO5L fermentor
(Sartorius Stedim Biotech GmbH, Germany) containing
2 L of rich growth medium. 50 ml of inoculum was pre-
pared by incubating the culture in shake flasks at 37 °C
overnight. After inoculation, the fermentation was first
operated in a batch mode and the control settings were:
37 °C, pH 7.0, airflow at 2 L/min and stirring speed at
400 rpm. The dissolved oxygen (DO) was kept above
20 % by associating with the stirring speed. After the ini-
tial glucose was nearly exhausted, fed-batch mode was
commenced by feeding a concentrated glucose solution
(65 %) at appropriate rates to maintain the residual glu-
cose at a low level. When OD600 reached about 12,
0.5 mM of IPTG was used to induce recombinant pro-
teins expression and production of HFAs. Then the cul-
ture temperature was switched to 30 °C. Samples of
fermentation broth were taken at appropriate intervals
to determine cell density, residual glucose, production of
FFAs and HFAs.

Fatty acids and HFAs extraction and the corresponding
methyl esters preparation
To extract the FFAs and HFAs from the fermentation
broth, the culture broth was acidified with 6 M hydro-
chloric acid to pH < 2. Eicosanoic acid (C20), 10-
hydroxydecanoic acid methyl ester (10-OH-C10) or 12-
hydroxydodecanoic acid (12-OH-C12) from a 50 mg/mL
stock solution in ethyl acetate were added to the culture
broth before extraction to serve as the internal stan-
dards. The acidic materials were extracted with equal
volume of ethyl acetate. The collected organic layer was
evaporated with nitrogen and then the extracts were ex-
posed to sulfuric acid/methanol (1:99, by volume) at 70 °C
for 1 h to generate fatty acids or HFAs methyl esters

Table 4 PCR primers designed for plasmids construction

Oligonucleotide
primers

Sequences

‘tesA_ F_NdeI GGAATTCCATATGGCGGACACGTTATTGATTCTGGG

‘tesA_R_BglII GAAGATCTTATGAGTCATGATTTACTAAAGGC

A1_ F_NcoI CATGCCATGGGCATGACAATTAAAGAAATGCCTCAG

A1_ R_EcoRI CCGGAATTCTTACCCAGCCCACACGTCTTTTG

T7'tesA_F_EcoRI CCGGAATTCTAATACGACTCACTATAGGGG

T7′tesA_R_XhoI CCGCTCGAGTTATGAGTCATGATTTACTAAAGGC
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(FAMEs or HFAMEs). The FAMEs and HFAMEs were
then extracted with n-hexane.

Analytical methods
Cell growth of the E. coli culture in shake-flasks or fer-
mentors was monitored by determining the optical dens-
ity at 600 nm (OD600) of appropriate dilutions using an
UV–vis Spectrophotometer (Cary 50, Varian, USA).
The concentration of residual glucose was quantified

by a glucose oxidase-peroxidase assay using an SBA-
40D Biological Sensing Analyzer (Biology Institute of
Shandong Academy of Sciences, China).
The resulting FAMEs and HFAMEs were analyzed an

Agilent Trace GC 7890A system coupled to a quadrupole
detector (5975C). The GC was equipped with a 30 m HP-
5 ms column (internal diameter 0.25 mm, film thickness
0.25 μm), an ion source temperature of 220 °C and EI
ionization at 70 eV. The method used a 10:1 split ratio and
nitrogen as carrier gas with a linear velocity of 1 ml/min.
The temperature program was an initial hold at 100 °C for
2 min, ramping at 10 °C per min to 200 °C followed by a
temperature gradient of 5 °C per min to 280 °C and a final
hold at 280 °C for 5 min. Since authentic standards for the
HFAMEs were not available, these compounds were identi-
fied by searching the NIST Mass Spectral Library [44].
Quantification of FFAs and HFAs were performed by com-
parison to the internal standard.

Availability of data and materials
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