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ABSTRACT Culture-independent studies have revealed that chronic lung infections
in persons with cystic fibrosis (pwCF) are rarely limited to one microbial species.
Interactions among bacterial members of these polymicrobial communities in the
airways of pwCF have been reported to modulate clinically relevant phenotypes.
Furthermore, it is clear that a single polymicrobial community in the context of CF
airway infections cannot explain the diversity of clinical outcomes. While large 16S
rRNA gene-based studies have allowed us to gain insight into the microbial com-
position and predicted functional capacities of communities found in the CF lung,
here we argue that in silico approaches can help build clinically relevant in vitro mod-
els of polymicrobial communities that can in turn be used to experimentally test and
validate computationally generated hypotheses. Furthermore, we posit that combining
computational and experimental approaches will enhance our understanding of mech-
anisms that drive microbial community function and identify new therapeutics to tar-
get polymicrobial infections.
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Cystic fibrosis (CF) lung disease results from a cascade of events that begin with
mutations in a single gene coding for an ion channel, CFTR, leading to defective

chloride secretion and reduced airway surface liquid hydration (1). Loss of CF trans-
membrane conductance regulator (CFTR) function impairs mucociliary clearance, creat-
ing an ideal environment for pathogens, leading to chronic infection, inflammation,
lung damage, and increased rates of mortality (2). As described below, emerging evi-
dence from in vitro coculture systems and animal models is beginning to identify how
the polymicrobial nature of chronic airway infections affects health outcomes of per-
sons with CF (pwCF).

Multiple reports highlight that prevalent and abundant bacteria found in the CF
lung, including Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus spp.,
and anaerobic species, are capable of engaging in multiple interactions impacting clin-
ically relevant features such as virulence, persistent colonization of the airways, and
antimicrobial recalcitrance (3–8). More specifically, P. aeruginosa and S. aureus, two of
the most studied CF lung pathogens, have been shown to (i) negatively affect respira-
tory function of pwCF when they cocolonize the airways compared to when they are
present alone (9–11) and (ii) shift antimicrobial efficacy (including the front-line CF
drug vancomycin) through metabolic interactions (12–15). Other groups have used co-
culture and mouse models to understand underlying mechanisms of how microbial
interactions can affect clinical outcomes for pwCF (16–18).

While these above-mentioned studies support the concept that the relationship
between microbial interactions and clinical outcomes is complex, the pathogenesis of
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infections observed in CF lung disease is still poorly understood. However, is it possible
to define a community (or communities) that would explain the consequences of poly-
microbial interactions in the context of the CF airway, as well as the impact of commu-
nity interactions on antibiotic responsiveness and disease outcomes? Having such
model communities could provide tremendous benefits in terms of (i) focusing efforts
of the research community on understanding mechanisms of microbial interactions, (ii)
exploring how such interactions drive persistence, antibiotic recalcitrance, and viru-
lence, and (iii) serving as a platform to discover novel antimicrobials that are effective
against such complex communities. However, one of the major hurdles in defining
such a community is the existing interpatient heterogeneity in microbial community
composition. For example, in one of the earliest culture-independent CF studies exam-
ining microbial communities in the lungs of pwCF, Rogers and colleagues observed
that the 16S rRNA gene-based detection of key CF pathogens, such as P. aeruginosa,
Staphylococcus, Burkholderia cepacia complex, and Streptococcus spp., varied from per-
son to person (19). Subsequent 16S rRNA gene-based studies converge to the same
conclusion: the microbial composition of the CF lung environment is highly variable
between individuals (20–25). Similarly, in one of the first studies describing the meta-
genome of microbial communities from five pwCF, Lim and colleagues observed that
the microbiome of each person was unique (26). They reported situations where P. aer-
uginosa was the most abundant microbial species in one person, but Rothia mucilagi-
nosa and Streptococcus spp. were the most abundant species in another individual
(26). Furthermore, while a long-term decrease in community microbial diversity over
time observed in pwCF has been linked to worsened lung function (22), the impact of
short-term changes in community composition in the CF airway is still a matter of
debate. Some groups have reported that community structure in pwCF can shift upon
drug treatment or during an exacerbation event, but those changes are transient and
the communities generally remain stable over time in an individual (22, 27, 28).
However, other studies have identified shifts in microbial community structure at the
onset of exacerbation events (29, 30). Thus, we posit that reliable recording of and
careful attention to these short- and long-term changes in the infection communities
will be critical when assessing sputum samples from pwCF in cross-sectional analyses.
Unless these community features are rigorously defined, associated with sputum sam-
ples, and taken into account in any investigation, the resulting analyses will likely be of
limited value.

How then, can one identify and select a model community to study in the context
of polymicrobial infections existing in the CF airway? With the multiple lines of evi-
dence pointing at the heterogeneous microbial communities existing between pwCF,
we would argue that this is the wrong question to ask. Instead, one should ask: are
there a limited number of communities that would encompass most of the microbial
diversity encountered in the CF airway? In an attempt to address this open question,
we present two different analyses below.

First, previous work from our team addressed this question using 16S rRNA gene
data from a small number of pwCF. We analyzed sputum samples from 35 pwCF, either
undergoing a clinical flaring of disease (i.e., an exacerbation) that required hospitaliza-
tion (Fig. 1A, inpatients [INPT]) or pwCF who were clinically stable and attending a reg-
ular clinical visit (Fig. 1A, outpatients [OUTPT]). At first look, it is difficult to discern any
patterns from the relative abundance data determined by 16S rRNA gene sequencing.

We then clustered these data based on the abundance of the four major taxa that
comprised 86% of the 16S rRNA gene reads. Interestingly, clustering these data
revealed four groups: Pseudomonas-dominated (Fig. 1B, group 1) and Streptococcus-
dominated (Fig. 1B, group 3) communities, plus a group wherein Pseudomonas and
Streptococcus were in relatively equal levels (Fig. 1B, group 2) and a group where either
Prevotella and Fusobacterium were dominant (Fig. 1B, group 4), but these latter two
clusters showed relatively even distribution of taxa (Fig. 1B, groups 2 and 4). Thus,
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three communities could explain much of the data from these 35 pwCF: Pseudomonas-
dominated, Streptococcus-dominated, and evenly mixed.

Second, while 16S rRNA gene-based and metagenomic studies can allow one to
determine “who is there” and probe the predicted functional capacities of the com-
munities, these approaches are not sufficient to systematically identify and quantita-
tively predict the metabolic interactions existing between species observed in such
communities (31). Thus, we hypothesized that by leveraging the large number of read-
ily available published 16S rRNA gene sequence data sets in conjunction with meta-
bolic modeling, one could also identify a small set of polymicrobial communities (we
will refer to these here as “metabolotypes”) that encompass most of the airway com-
munities for these pwCF. Metabolic modeling assembles metabolic pathway informa-
tion from genome-scale reconstructions of bacterial metabolism in multiple taxonomic
groups in a given community, creating a metabolotype based on predicted metabolic
interactions among taxa, typically at the genus level (32). That is, beginning with
genomic information, a list of produced and consumed metabolites is generated based
on the predicted environment—for example, artificial sputum medium (33–35) can be
used as the starting condition. An interaction map of predicted shared metabolites
can then be generated to interrogate predicted metabolic interaction among com-
munity members (Fig. 2); such information is not available in 16S rRNA gene data
sets. Furthermore, given that multiple genera can play the same metabolic role, it is
predicted that different microbial communities have similar metabolic capabilities,
thereby allowing one to collapse multiple 16S rRNA gene-predicted communities
into relatively few community types.

Henson and colleagues leveraged 16S rRNA gene data from 75 sputum samples
obtained from 46 pwCF to develop a community metabolic model that incorporated

FIG 1 Characterization of the polymicrobial communities of sputum samples from cystic fibrosis
inpatients and outpatients. (A) Fraction of 454 pyrosequencing reads assigned to each of the top 10
genera detected in the sample set as a whole is shown for sputum samples analyzed from inpatients
(INPT; n= 13) and outpatients (OUTPT; n= 22) from a cross-sectional study. The legend on the right
indicates the color assigned to each indicated genus. (B) Heat map of samples from pwCF based on
Pearson hierarchical clustering of relative bacterial abundance using the data in panel A for the most
prevalent four genera, which account for ;86% of the total pyrosequencing reads. The legend at the
bottom indicates the four clusters or “groups” assigned by hierarchical clustering, as reported (20).
The airway infection communities from pwCF can be described by one of three profiles: (i) high
Pseudomonas (group 1), (ii) high Streptococcus (group 3), and (iii) mixed communities with a relatively
even distribution of taxa (groups 2 and 4). Modified from reference 20.
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the 17 most abundant bacterial taxa in these samples (36). They showed that sample-
by-sample heterogeneity both within patients and across patients could be captured
through random variation of the simulated metabolic environment. For example, the
model predicted high abundances of the “rare” pathogens Enterobacteriaceae, Burkholderia,
and Achromobacter in three patients whose polymicrobial infections were dominated by
one of these pathogens. Furthermore, this model was capable of predicting that for 43/
46 pwCF analyzed, the CF sputum communities would be dominated by Pseudomonas
(Fig. 2A), Streptococcus (Fig. 2B), or communities with a more even distribution of taxa
(i.e., the mixed communities mentioned above), thereby providing a predictive meta-
bolic basis for the three clusters identified from abundance data (Fig. 1). Importantly, the
model yielded insights into the metabolic interactions that could support the observed
metabolotypes which could not be deduced from the 16S rRNA gene data only. Model
predictions indicated that the three metabolotypes were distinguished in part by the dif-
ferential capacity of these organisms to metabolize amino acids, organic acids, and
metabolites cross-fed by other members of the community such as Prevotella and
Staphylococcus, the latter of which are found in lower abundances (36).

Thus, we suggest that metabolic modeling may be a useful approach to both col-
lapse multiple “16S rRNA gene community types” into a smaller number of metabolo-
types, and furthermore, to generate testable hypotheses regarding which specific path-
ways might impact community structure and function, virulence potential, and antibiotic
tolerance, and ultimately, represent potential drug targets. Also, using this in silico

FIG 2 Predicted metabolite cross-feeding relationships between the four most abundant genera. One
thousand model simulations were performed and split into 500 cases with relatively high Pseudomonas
abundances and 500 cases with relatively low Pseudomonas abundances. The arrow thickness represents
the magnitude of the metabolic exchange rate between the microbial species of the consortia. The color
of the arrows is defined by the species producing and cross-feeding the metabolite(s) as follows: black
arrow, Staphylococcus; red arrow, Streptococcus; blue arrow, Pseudomonas; green arrow, Prevotella. (A)
Schematic representation of predicted metabolite exchange for Pseudomonas-dominated communities. (B)
Schematic representation of predicted metabolite exchange for Streptococcus-dominated communities.
Modified from reference 36.
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approach, one has the capacity to computationally inactivate specific metabolic functions
to interrogate how these pathways might impact a community (37); such flexibility in pre-
dictions will be key to understand how clinical isolates, strain variants, or mutant strains
detected in pwCF might contribute to community metabolic activities in the CF lung.

Having identified community types, the next step would be to validate them experi-
mentally by cocultivating the microbial species found in predicted metabolotypes.
Validated metabolotypes would provide a small set of experimental systems one could
use to understand the microbial interactions that govern clinically relevant community
behavior, including antibiotic recalcitrance, ultimately generating insights that could
lead to better treatments for polymicrobial infections in CF and other diseases.
Although increasing model complexity can improve accuracy, we posit that modeling
in vitro systems composed of four, five, or six of the most abundant microbes identified
in metabolotypes would explain most of the interactions within a community, and
therefore recapitulate most clinically relevant phenotypes. Indeed, though many
groups have focused on characterizing how interactions between two bacterial species
can influence various phenotypes, such as the modulation of antimicrobial efficacy or
virulence, few have attempted to model community systems composed of three or
more microbes (38, 39). One of the most compelling of such studies, by Vandeplassche
and colleagues (40), modeled a CF-relevant community composed of six microbial spe-
cies that are frequently coisolated together in the context of CF lung disease. These
investigators sought to understand how antimicrobials commonly used to treat P. aer-
uginosa infections for pwCF (ceftazidime, tobramycin, ciprofloxacin, and colistin) could
impact a polymicrobial biofilm community composed of P. aeruginosa, S. aureus,
Streptococcus anginosus, Achromobacter xylosoxidans, R. mucilaginosa, and Gemella
haemolysans compared to their monospecies counterparts. Interestingly, the authors
observed that the antibiotic susceptibility of bacterial species grown as a community
was similar to when they were grown as pure culture biofilms. This finding was surpris-
ing given previous studies showing the complex response of mixed communities to
antibiotic treatment (12–15, 39, 41). Importantly, the medium used in that study was
one that could sustain the growth of pure culture species biofilm (brain heart infusion
broth supplemented with blood); however, this medium was unlikely to mimic condi-
tions in vivo. A more representative in vitro system would accurately reflect the in vivo
nutritional environment, oxygen levels, pH, etc., factors that can also be included as
inputs for metabolic modeling approaches. For example, the artificial sputum medium
developed by Palmer and Whiteley is thought to accurately reflect key features of the
CF airway nutritional environment (33–35), and this medium can be buffered to mimic
in vivo pH or supplemented with mucin to mirror sputum composition and viscosity.

SUMMARY AND FUTURE DIRECTIONS

The multiple studies reporting the microbial communities in sputum and lavage
fluid so far have made it clear that our hope of finding a single microbial community
shared by most pwCF and responsible for driving disease is unrealistic. However, there
may be a small set of communities informed by metabolic modeling, i.e., “metabolo-
types” that represent the majority of CF-relevant airway infections. Identifying such mi-
crobial communities is important for several reasons. First, they provide a focus for
identifying microbes needed to build in vitro model systems—of course such models
need to strive to show growth in conditions that, to the best of our ability, reflect the
in vivo environment. Second, such models provide key experimental systems needed
to explore the mechanisms of microbial interactions that drive clinically relevant phe-
notypes like persistence, antimicrobial recalcitrance, and virulence factor production.
Exploring these mechanisms will likely reveal novel drug targets relevant to the poly-
microbial community context. Third, identifying a small number of model communities
will make research results more reproducible both within and between laboratories
and pave the way for the development of standard assays in the same way that specific
strains of Escherichia coli or Bacillus subtilis have facilitated research in single species.
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Fourth, in vitro polymicrobial model systems can serve as screening platforms for novel
therapeutics that specifically target polymicrobial infections, perhaps identifying new
therapeutic classes of antimicrobials. Together, we are advocating for investigators
working on a range of chronic polymicrobial infections, including CF, to leverage exist-
ing microbiome data sets, combined with bioinformatics, metabolomics data, and met-
abolic modeling, to build laboratory models that more closely reflect the complexity of
polymicrobial infections and serve as focal points for the research efforts of the scien-
tific community.

Much of the discussion above focused on the analysis of communities during clini-
cal stability, and sometimes at a single time point for a given pwCF. The approaches
described above might also help us understand how infection communities change
over time. For example, over the lifetime of the pwCF, does the metabolotype change?
Alternatively, pwCF undergo intermittent clinical flares (exacerbations), which often
require hospitalization and intravenous antibiotic treatment. Thus, it might be possible
to note changes in metabolotype across the disease cycle, from exacerbation to treat-
ment to clinical recovery, versus the baseline state of those airway communities. These
temporal changes in metabolotype may call for (and allow the prediction of) distinct
therapeutic strategies for effective treatment of the airway infections. Indeed, a recent
report examining the metabolomic profile of a large number of longitudinal sputum
samples (n=594) collected from six pwCF has recently been published (42). In this
study, the investigators did not identify a clear microbial metabolic signature that is
associated with exacerbation events across all patients. Such findings could potentially
be explained by the selection of a cohort with poor lung function and/or at different
stages of CF lung disease. However, we propose that more studies employing metabo-
lomic approaches in combination with metabolic modeling will be necessary to gener-
ate a better understanding of the dynamic metabolic environment existing in the CF
lung across multiple patients and across time, which might help in pinpointing key
metabolic features associated with negative clinical outcomes.

Last, an important caveat to most of the microbiome studies published so far is the
strong focus on bacteria; most reports have overlooked the presence of fungi and
viruses and their impact on CF airway disease (26, 43, 44). Taken together, these multi-
ple lines of evidence now make it clear that chronic CF lung infections are not re-
stricted to bacteria and that interkingdom interactions involving viruses and fungi
have the potential to be major players in CF lung disease. Thus, as we go forward, fun-
gal and viral data, in addition to classic bacterial pathogens and anaerobic bacteria,
should be incorporated into CF airway community models.
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