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Abstract: Nutrient stress as abiotic stress has become one of the important factors restricting crop
yield and quality. DNA methylation is an essential epigenetic modification that can effectively
regulate genome stability. Exploring DNA methylation responses to nutrient stress could lay the
foundation for improving plant tolerance to nutrient stress. This article summarizes the plant DNA
methylation patterns, the effects of nutrient stress, such as nitrogen, phosphorus, iron, zinc and
sulfur stress, on plant DNA methylation and research techniques for plant DNA methylation, etc.
Our discussion provides insight for further research on epigenetics response to nutrient stress in
the future.
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1. Introduction

The adversity stresses of plants are usually divided into two types: biotic stresses,
including pathogenic bacteria, insect pests and weed damage, and abiotic stresses, such as
water, temperature and nutrient elements [1]. During the growth and development of crops,
17 essential nutrients are required to maintain their growth, including macronutrients,
mesonutrients and micronutrients [1]. As a common abiotic stress, low or excessive levels
of nutrients could cause the loss of crop yield and quality [2]. In order to cope with the
effects of nutrient stress on their growth and development, plants have evolved complex
mechanisms to adapt to fluctuations in the nutrients in the soil [3–5]. Over the past
decade, the core abiotic stress signaling pathways have been gradually elucidated [1].
More studies demonstrate the vital involvement of epigenetic mechanisms in abiotic stress
responses [6–8].

Epigenetic mechanisms play a crucial role in forming adversity-responsive memory
and can be inherited by future generations [9]. Plants are often subjected to adverse envi-
ronmental stress conditions due to their sessile nature. If plants have experienced stress,
they can respond more quickly and have a greater chance of survival than plants that have
never encountered environmental stress [10]. Resistance to stress conditions enhances plant
resistance to abiotic conditions [11]. Mild exposure to stress results in a new cellular state
in comparison to that of plants that have never been exposed to stress [12,13]. If the stress
persists for a period, the plant can generate stressful memories [9,10,12,14]. This stress
memory is usually regulated by DNA methylation, histone modifications and the accu-
mulation of signaling proteins [15–17]. It has already been proven that the stress-induced
changes in DNA methylation could be partially inherited by the next generation, which
preferentially occurs through the female germ line [18,19]. Such heredity was considered a
source of diversity which could be utilized in breeding programs [20]. Therefore, the study
of plant epigenetic mechanisms has great significance for crop cultivation [21]. However,
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persistent stress is vital for establishing DNA methylation-dependent stress memory in
plants [22]. If the progeny were not continuously stressed, the inherited epigenetic status
is gradually reset [19], but how many generations are needed to establish an epigenetic
memory is still unclear.

Epigenetics is the study of DNA sequence-independent changes in gene function that
are mitotically and/or meiotically heritable. It plays an important role in maintaining the
cellular memory of gene expression states [6,23]. Epigenetics includes chromosome configu-
ration recombination, histone modification, DNA methylation, non-coding RNA-mediated
regulation, etc. [24]. DNA methylation is one of the most thoroughly studied mechanisms
in epigenetic research [25]. The dynamic regulation of DNA methylation in response to
environmental changes reduces plants’ survival pressure in harsh environments and helps
plants respond to stress [26–29]. The reversibility of DNA methylation could rapidly and
reversibly modify plant genomic DNA, which avoids excessive gene recombination and
population diversity [30]. Its heritability provides new ideas for plant breeding [31]. This
review determined the mechanism of plant DNA methylation, the effects of different nutri-
ent stresses on DNA methylation and related research techniques. Our review helps breed
new plant varieties with stronger nutrient stress resistance for genome-based breeding.

2. Plant DNA Methylation Patterns

DNA methylation is one of the earliest discovered and most studied regulatory mech-
anisms in epigenetics [32]. Studies have shown that tissue-specific DNA methylation
patterns in plants can be stably transmitted asexually through the complex process of
regenerating intact plants from a single source tissue [33].

DNA methylation includes C5-methylcytosine (5mC), N6-methyladenine (N6-mA)
and N7-methylguanine. 5mC, the fifth position of the cytosine residue, is the most widely
studied DNA methylation [34]. 5mC is the fifth carbon of a cytosine residue that receives
methyl from S-adenosyl-L-methionine (SAM) by the catalysis of DNA methyltransferase
(DNMT) [34,35]. The 5mC in mammals is mainly found at CG sites, but in plants, it can
occur in the three cytosine environments of CG, CHG and CHH (H stands for A, T or C),
and they are catalyzed by different DNMTs [35,36]. Different DNMTs are involved in two
DNA methylation processes in plants: DNA methylation maintenance and de novo DNA
methylation (Figure 1).

Methyltransferase 1 (MET1), one of the DNMTs, mainly maintains symmetric CG
site methylation, which is an ortholog of mammalian DNMT1. MET1 recognizes double-
stranded DNA with hemimethylated CG and induces unmodified cytosine methylation
during DNA replication [35,37]. The symmetrical CHG site methylation is primarily
maintained by chromosomal methylase 3 (CMT3), which binds to the inhibitory H3K9me2
and induces unmodified CHG sites methylation [38,39]. Additionally, CHG methylation is
catalyzed by CMT2 [40,41]. The suppressor of the variegation homolog protein, SUVH4,
SUVH5 and SUVH6 binds to the methylated CHG site and promotes the function of
CMT3/CMT2 [42,43]. During asymmetric de novo DNA methylation, CHH methylation is
performed by domain-rearranged methyltransferase 2 (DRM2) or CMT2, depending on
the genomic region. DRM2 causes CHH methylation through a plant-specific mechanism,
the RNA-directed DNA methylation (RdDM) pathway, which depends on the 24 nt small
interfering RNA (siRNA) [20,35,44].

Most of the RdDM pathway research has studied Arabidopsis thaliana [20,35,45]. RNA
polymerase IV (Pol IV), as the template for RNA-dependent RNA polymerase 2 (RDR2),
mediates the generation of double-stranded RNAs (dsRNA) [20,44]. Then, the DICER-
like protein (DCL2/3/4) cleaves the dsRNAs to generate 24 nt siRNAs. siRNA is loaded
onto the ARGONAUTE proteins (AGO), mainly AGO4 and AGO6, which interact with
DRM2 to catalyze de novo DNA methylation [35,38,46] (Figure 1). This process is assisted
by RNA-DIRECTED DNA METHYLATION 1 (RDM1), which may bind single-stranded
methylated DNA [47]. At some RdDM loci, Pol II produces 24 nt siRNAs and scaffold
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RNAs [48]. Furthermore, at some transposons, POL II and RDR6 produce precursors of
21 nt or 22 nt siRNAs [49–51].

Figure 1. Dynamics of DNA methylation in plants. (H=A, T or C). Two DNA methylation processes in
plants: (a) DNA methylation maintenance and (b) de novo DNA methylation. (a) Methyltransferase
1 (MET1) maintains symmetric CG site methylation. Chromosomal methylase (CMT2/3) maintains
symmetrical CHG site methylation. The suppressor of the variegation homolog protein, SUVH4,
SUVH5 and SUVH6 binds to the methylated CHG site and promotes the function of CMT3/CMT2.
(b) Asymmetric de novo DNA methylation and CHH methylation performed by domain-rearranged
methyltransferase 2 (DRM2) or CMT2, depending on the genomic region. DRM2 causes CHH
methylation through the RNA-directed DNA methylation (RdDM) pathway, which depends on the
24 nt small interfering RNA (siRNA). siRNA is loaded onto the ARGONAUTE proteins (AGO), mainly
AGO4 and AGO6, interacting with DRM2. DNA demethylation includes (c) passive demethylation
and (d) active demethylation. (c) 5mC loses its methyl in passive demethylation during DNA
replication. (d) 5mC losses are catalyzed by DNA glycosylases in active demethylation. DNA
glycosylases including the repressor of silencing 1 (ROS1), Demeter (DME), Demeter-like 2 and
3 (DML2/3).

On the other hand, replacing 5mC with unmethylated cytosine is equally important in
regulating gene expression as cytosine methylated. DNA demethylation includes passive
demethylation and active demethylation [52,53]. In passive demethylation, 5mC loses its
methyl during DNA replication, and in active demethylation, 5mC losses are catalyzed
by DNA glycosylases [54]. Passive demethylation is a nuclear factor (NF) that adheres
to the 5mC during DNA replication and blocks the maintenance of DNA methylation,
which leads to the loss of DNA methylation in the newly synthesized strand [52,54]. Active
demethylation balances the methylation level of the genome and maintains gene expres-
sion. The excision of C5-methylcytosine achieves the active demethylation of 5mC by
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the DNA glycosylase and then repairs the cytosine by the base excision through the base-
excision repair (BER) pathway [54]. There are four DNA glycosylases that are identified,
including the repressor of silencing 1 (ROS1) [55], Demeter (DME) and Demeter-like 2
and 3 (DML2/3) [56,57] (Figure 1). These four glycosylases can remove 5-mC from any
sequence context (mCG, mCHH and mCHG) [58]. ROS1 was the first plant-specific DNA
demethylase to be identified. ROS1 demethylates TEs and could influence transposon
activity and the transcriptional silencing of nearby genes [59]. ROS1 also induces demethy-
lation in the RdDM-independent regions [60]. DME prefers to be demethylated on the
AT-rich transposable elements (TEs), which leads to the expression of the nearby gene
changes [61]. The main function of ROS1 is to restrict DNA methylation to its target re-
gions to avoid DNA methylation proliferation and adjacent gene silencing [59]. DME,
DML2 and DML3 ensure genomic imprinting in the endosperm, which is essential for
seed development [55]. Furthermore, in mammals, 5mC could be actively demethylated
through the ten-eleven translocation (TET) dioxygenase-mediated oxidation of 5mC to
5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC),
which is followed by replication-dependent dilution or thymine DNA lycosylase-dependent
base excision repair [62].

Reports have characterized the proteins and enzymes of plants that are involved in
DNA (de)methylation. However, there is little knowledge about the components control-
ling targeted DNA (de)methylation during the developmental process [20]. Furthermore,
the RdDM model is still not comprehensive; reports showed that RdDM involves allelic
interactions. However, these allelic interactions cannot be explained by the existing RdDM
model, suggesting that radical changes may be needed in the RdDM model [63]. Addition-
ally, Arabidopsis thaliana has been used as a model system to study the basic mechanisms of
DNA (de)methylation. One of the reasons for this is that DNA (de)methylation mutants are
generally not lethal in Arabidopsis thaliana [44]. In recent years, DNA methylation has been
found to have regulated many more essential genes for growth and stress responses in
plants with more complex genomes, such as rice, maize, tomato and barley [64–66], which
could reveal new roles for DNA methylation in different plants.

3. Effects of Nutrient Stress on Plant DNA Methylation

Nutrient limitation is major environmental stress that reduces plant growth, produc-
tivity and quality [67]. Globally, nitrogen (N) and phosphorus (P) limitations are ubiquitous
in soil [68]. Therefore, N and P deficiencies are the main constraints of food production
under low-fertilization conditions, while under high-fertilization conditions, large amounts
of N and P fertilization can cause large-scale environmental pollution [69]. In addition to N
and P, breeding crops with more iron (Fe) and zinc (Zn) is also one of the priorities, since
large numbers of people eat grains due to Fe and Zn deficiencies [70,71]. Furthermore,
there are essential nutrients for plants, such as sulfur (S), potassium (K), calcium (Ca) and
magnesium (Mg) [69,72].

DNA methylation in plants plays a vital role in the response to nutrient changes
and is involved in controlling nutrient homeostasis [73]. The study of DNA methylation
responses to nutrient stress helps breed new nutrient-efficient crops, which help improve
food security while reducing environmental impacts [69].

3.1. Effects of Nitrogen Stress on Plant DNA Methylation

Nitrogen (N) is one of the crucial macronutrients affecting plant growth and crop
yield [74]. When nitrogen is deficient, due to the influence of protein, nucleic acid and phos-
pholipid synthesis in the plant, the plant will grow slowly and dwarf [75]. Epigenetic factors
are considered to be among the essential mechanisms for plants in adapting to nitrogen
deficiency [76]. Meyer et al. proved that RNA-dependent RNA polymerase2 (RDR2) was
involved in the accumulation of biomass under N deficiency in Arabidopsis thaliana, which
indicated that RdDM could be involved in the regulation of N deficiency [76]. Kou et al.
reported that nitrogen deficiency could change DNA methylation in rice. The variation
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could be inherited by offspring and enhance their tolerance to nitrogen deficiency. Low
nitrogen treatment induces the expression of some methylases, such as MET1, DRM1 and
DRM2 [64]. Kuhlmann et al. reported that low nitrogen treatment in Arabidopsis thaliana
affected eight shoot growth-related SNPs on chromosome 1, resulting in changes in the
methylation of their recognition gene regions. They suggested that epigenetic regulation
was involved in the nitrogen-use efficiency (NUE) expression of related traits. They also
found RdDM-mediated asymmetric cytosine methylation changes, which affected the tran-
scription [77]. Yu et al. reported that nitrogen deficiency resulted in altered methylation
patterns in Leymus chinensis. They suggested that the cytosine methylation changes around
transposable elements were higher than those in other genomic regions [78]. Our previous
research reported that the knockdown of the high-affinity nitrate transporter partner pro-
tein OsNAR2.1 caused a decrease in nitrogen content in rice and induced DNA methylation
reduction [79]. We also found that low nitrogen treatment causes low seed N content,
which leads to DNA methylation changes in filial rice [80].

3.2. Effects of Phosphorus Stress on Plant DNA Methylation

Phosphorus (P) is an essential macronutrient for plant growth and development [81].
Secco et al. reported that mC changes induced by phosphate starvation occurred preferen-
tially in transposable elements (TEs). They suggested that, during prolonged P deprivation,
TEs close to high expression stress-induced genes are hypermethylated without DCL3a,
thus preventing their transcription via RNA polymerase II. Furthermore, they found that
partial methylation can propagate through mitosis [82]. Yong-Villalobos et al. showed
that phosphorus starvation leads to gene-wide methylation changes in Arabidopsis thaliana,
which are accompanied by changes in gene expression. They found that phosphorus defi-
ciency induced 20% of up-regulated differentially methylated regions (DMRs) in the shoots
and 86% of up-regulated DMRs underground. They concluded that DNA methylation
changes were required to regulate P sensitive genes, and DNA methylation was necessary
for establishing physiological and morphological P starvation responses [83]. Yen et al.
showed P deficiency-induced changes in the methylome. They identified over 160 DMRs
between low-Pi and Pi-replete conditions. They found that the deubiquitinating enzyme
OTU5 is critical for establishing DNA methylation patterns [84]. Tian et al. reported that
phosphorus starvation caused an increase in the global methylation level, with millions
of differentially methylated cytosines (DmCs) and a few hundred DMRs in tomato. They
suggested that methylation changes on P might largely be shaped by TE distributions [65].
Schönberger et al. showed that differential methylation was associated with different
P treatments with site-dependent microRNAs (miRNA). Furthermore, some miRNA se-
quences were directly targeted by differential methylation [85]. Chu et al. reported that
low P induced differential methylation, and gene expression showed that the transcrip-
tional alterations of a small part of genes were associated with methylation changes in
soybean. They also found that siRNAs modulated TE activity by guiding CHH methylation
in TE regions [86].

3.3. Effects of Other Nutrient Stresses on Plant DNA Methylation

Zn is an essential micronutrient of all organisms in plants. Mager et al. showed
that low Zn treatment could lead to massively reduced DNA methylation, and the en-
zymes involved in DNA maintenance methylation were repressed. They found that Zn
deficiency induced a tremendous reduction in small RNA associated with DNA methyla-
tion [87]. Fe is an essential micronutrient in plants. Fe limitation significantly affects plant
growth [88]. Sun et al. reported that there is widespread hypermethylation in rice after Fe
deficiency, especially in the CHH context. They also found that the transcript abundance
of Fe deficiency-induced genes was positive with the 24 nt siRNAs, suggesting that the
alteration of methylation patterns is directed by siRNAs, which play an important role in
Fe deficiency [88]. Bocchini et al. found that 11 DNA bands were differently methylated in
Fe deficiency barleys. Furthermore, their results showed DNA methylation/demethylation
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patterns very similar to those of barley grown under Fe deprivation in resupplied barley,
which indicated that the DNA modifications were heritable [89]. S is an essential element
for plant organisms [73]. Huang et al. found that the sulfur accumulation1 (MSA1) mutant
msa1 had a strong S-deficiency response compared with WT. The sulfate transporter genes
SULTR1;1 and SULTR1;2 were shown to be differentially methylated in msa1 compared
with WT. The results indicated that MSA1 maintained S homeostasis epigenetically via
DNA methylation [73]. We summarized the effects of different nutrient stresses on plant
methylation in Table 1.

Table 1. Summary of the effects of different nutrient stresses on plant methylation.

Element Plant Genome
Region Treatment Mode of Action Methodology Reference

N Arabidopsis
thaliana RDR2 −N

RDR2 expression
corrlated with

morphological traits

Quantitative
real-time PCR [76]

N Arabidopsis
thaliana

AT1G55420,
AT1G55430

and AT1G55440
−N

DNA methylation
change in recognition

gene regions
(AT1G55420,
AT1G55430

and AT1G55440)

WGBS [77]

N Leymus chinensis Genomic −N
Cytosine methylation
changes more around
transposable elements

AFLP,
MSAP, SSAP [78]

N Rice Genomic −N Heritable alteration in
DNA methylation MSAP [64]

N Rice Genomic

N content
decrease by the

knockdown
of OsNAR2.1

DNA methylation
levels increase in

OsNAR2.1 RNAi lines
WGBS, MeDIP [79]

N Rice Genomic
N content

decrease in the
parent seed

Plant DNA
methylation changes

induced by parent seed
N content

WGBS [80]

P Rice Genomic −P
DNA methylation

occurred preferentially
in TEs

MethylC-Seq [82]

P Arabidopsis
thaliana Genomic −P Gene-wide

methylation changes WGBS [83]

P Arabidopsis
thaliana Genomic −P Over 160 DMRs induce

by P deficiency

Genome-Wide
DNA

methylation
[84]

P Tomato Genomic −P Global methylation
level increase WGBS [65]

P Populus
trichocarpa Genomic −P Differentially

methylated miRNAs WGBS [85]

P Soybean Genomic −P

Differential
methylation, and

siRNAs modulated TE
activity by guiding
CHH methylation

BGS [86]
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Table 1. Cont.

Element Plant Genome
Region Treatment Mode of Action Methodology Reference

Zn Maize Genomic −Zn
Major methylation loss,

mostly in
transposable elements

BGS [87]

Fe Rice Genomic −Fe Hypermethylation,
especially for the CHH MethylC-Seq [88]

Fe Barley Genomic −Fe
Eleven DNA bands

differently
methylated the

MSAP [89]

S Arabidopsis
thaliana

SULTR1.1 and
SULTR1.2 −S

DNA methylation of
SULTR1.1 and

SULTR1.2 changes
in msa1

WGBS [73]

Note: −N: nitrogen deficiency; −P: phosphorus deficiency; −Zn: zinc deficiency; −Fe: iron deficiency; −S: sulfur
deficiency; WGBS/MethylC-Seq: Whole-genome bisulfite sequencing; AFLP: Amplified fragment length polymor-
phism; MSAP: Methylation-sensitive amplified polymorphism; SSAP: Specific-sequence amplified polymorphism;
MeDIP: Methylated DNA co-immunoprecipitation sequencing; BGS: Bisulfite genomic sequencing.

4. Methodology of Plant DNA Methylation

DNA methylation research has made significant progress in plants in recent years,
and the detection methods have been continuously updated. We summarize the detection
methods in plant DNA methylation studies that respond to nutrient stress and other biotic
and abiotic stress. The detection of DNA methylation first started in the 1980s. High-
performance liquid chromatography (HPLC) was used as the earliest detection method of
DNA methylation to measure genomic DNA methylation [90,91]. HPLC is widely used
to detect the DNA methylation level of the whole genome of plants, including cotton, tea
tree, taxus, etc. [92–95]. The advantage of this method is that it can measure the DNA
methylation level of the whole genome of plants without a reference genome, but the
operating system is complicated [96].

Specific-sequence amplified polymorphism (SSAP) and amplified fragment length
polymorphism (AFLP) were initially two efficient marker systems for evaluating genetic
variation and assessing genetic relationships and were later used for the detection of epi-
genetic variation [97]. Methylation-sensitive amplified polymorphism (MSAP) is a PCR
technology that detects DNA methylation based on amplified fragment length polymor-
phism (AFLP) technology [98,99]. Reports showed that the epigenetic diversity differed
slightly from that of MSAP, AFLP and SSAP [78,97]. As one of the standard methods
used in detecting cytosine methylation [64,78,89], the MSAP method uses the restriction
enzymes MspI and HpaII to recognize cytosine methylation on the CCGG sequence. The
two enzymes have different sensitivities to specific cytosine methylation. HpaII can only
recognize mCCGG, the outer methylation site of single-stranded DNA. In contrast, MspI
can recognize CmCGG, the inner methylation site of double-stranded or single-stranded
DNA. Different bands were amplified from the same DNA sequence to determine the
cytosine methylation level at the 5′-CCGG site [100]. The technology is widely used to
detect the methylation levels of watermelon, salvia, loquat, poplar, Viola cazorlensis, pota-
toes, cotton, etc. [92,101–103]. MSAP technology has high economic efficiency and a low
cost. It helps study non-model organisms that lack genome sequencing, and it can screen
for mutations and differentiation in the studied genomes [104]. This technology also has
certain limitations. Due to the selectivity of the restriction enzymes, some methylation
states could be missed [105].

Bisulfite genomic sequencing (BGS) determined the exact positions of 5-methylcytosine
on a single strand of DNA [106,107]. By conversing cytosine but not 5mC to uracil, followed
by PCR and the sequencing of cloned amplicon DNA, BGS could detect the presence of
5mC at single-nucleotide resolution accurately in a region of interest [106,108].
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Next-generation sequencing (NGS) technology is the most effective method to identify
epigenetic modifications occurring at the DNA level and has been widely used in DNA
methylation studies in recent years [109]. Whole-genome bisulfite sequencing (WGBS) tech-
nology, also known as MethylC-seq [82,110,111], combines NGS technology with bisulfite
conversion methods. It can perform the single-base analysis and genome-wide distribution
analysis of DNA methylation in animals and plants [109]. With the development of sequenc-
ing technology, WGBS has been performed in many plants, including Arabidopsis thaliana,
rice, tomato, cucumber and oilseed rape [65,73,77,79,80,83,85,112–114]. This method has
a high sensitivity to DNA, identifying genome-wide DNA methylation sites with a small
number of samples [80]. However, due to its high price, it is primarily use in species
with high-quality reference genomes. Compared with WGBS, the reduced representation
bisulfite sequencing (RRBS) method is mainly used for the differential analysis of multiple
samples with less sequencing. The RRBS method sequences DNA methylation on high-
density and representative genes efficiently and accurately. Nevertheless, it is limited by
the restriction of enzyme cleavage sites [115].

Methylated DNA co-immunoprecipitation sequencing (MeDIP-seq) pre-treats DNA by co-
immunoprecipitation and by enriching methylated DNA fragments with anti-methylcytosine
nucleoside antibodies. Then, through the high-throughput sequencing of CpG methylated
regions, it detects the methylation status and distribution characteristics of the whole
genome rapidly and accurately [116,117]. The method has been used in rice, switch-
grass, black cottonwood, citrus, etc. [79,118–120]. Methyl-CpG-binding domain sequencing
(MBD-seq) locates double-stranded methylated DNA fragments using the methyl-binding
domain [121]. Both MeDIP and MBD-Seq detected 5mC exclusively, unlike bisulfite conver-
sion, which could not distinguish between 5mC and 5hmC [122]. Moreover, the MeDIP-Seq
and Methyl-CpG-binding domain sequencing (MBD-Seq) methods both efficiently detect
DNA methylation levels in the whole genome, and their results are generally concordant
but non-identical [123,124]. MeDIP-Seq can only find high methylated regions in the
genome, such as CpG islands, rather than analyze the single base, and it needs correction
with different densities of CpG. MBD-Seq can be separated by different DNA methylations
according to the CpG density [125,126].

There are methods that are used less, such as methylation-sensitive single nucleotide
primer extension (Ms-SNuPE) [127], methylation-sensitive single-strand conformation
analysis (MS-SSCA) [128] and EpiTYPER™ [129]. We list all the methods in Table 2.

Table 2. Methodology of plant DNA methylation.

Methods Coverage Reference
Genome Advantage Limitation Reference

HPLC Genomic DNA No Do not need a
reference genome

Complicated
operating system [91]

SSAP CG region No High economic efficiency
without a reference genome

Not specifically
designed to

detect methylation
[97]

AFLP CG region No High economic efficiency
without a reference genome

Not specifically
designed to detect

methylation
[97]

MSAP CG region No High economic efficiency
without a reference genome

Miss
methylation states [99]

BGS Genomic DNA Yes
Detects the presence of 5mC

at the single-nucleotide
resolution accurately

Only in the
specific region [106]

WGBS/
MethylC-Seq Genomic DNA Yes High sensitivity to DNA High price [109]
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Table 2. Cont.

Methods Coverage Reference
Genome Advantage Limitation Reference

RRBS Promoters and
CpG islands Yes

Efficient and accurate on the
high-density and

representative genes

Limited by enzyme
cleavage sites [115]

MeDIP-Seq CG region Yes
Detects the CpG island of the
whole genome rapidly and

accurately

Cannot analyze the
single base and needs

correction with
different densities

of CpG

[116]

MBD-Seq CG region Yes
Separated different DNA
methylation according to

CpG density

Antibodies
may cross-react [126]

MS-SSCA Individual CpG
site No Fast Primer design

is complex [128]

Ms-SNuPE CG region No
Analysis of C and T content
representing the degree of

DNA methylation

The number of each
analysis is small [127]

EpiTYPER™ CG region No Fast and reproducible
DNA methylation

status is unclear, with
overlapping CpGs

[129]

Note: HPLC: High-performance liquid chromatography; SSAP: Specific-sequence amplified polymorphism;
AFLP: Amplified fragment length polymorphism; MSAP: Methylation-sensitive amplified polymorphism;
BGS: Bisulfite genomic sequencing; WGBS/MethylC-Seq: Whole-genome bisulfite sequencing; RRBS: Re-
duced representation bisulfite sequencing; MeDIP: Methylated DNA co-immunoprecipitation sequencing;
MBD-Seq: Methyl-CpG-binding domain sequencing; MS-SSCA: Methylation-sensitive single-strand conforma-
tion analysis; Ms-SNuPE: Methylation-sensitive single nucleotide primer extension.

5. Issues and Prospects

DNA methylation is a reversible epigenetic modification. DNA methylation is in-
volved in multiple cellular and biological processes and plays a critical role in genome
stability [24]. In plants, the dynamic regulation of DNA methylation responds to envi-
ronmental changes and helps plants respond to stress [28,29]. In recent years, there have
been many reports about plant DNA methylation, but the signaling and transduction
mechanisms involved in DNA methylation are still unclear. Most studies have focused
on the DNA methylation expression levels in plants but have focused less on its specific
mechanism. It is necessary to conduct further research on how it controls replication
initiation. Furthermore, the reports on DNA methylation responses to nutrient stress lack
specific sites and specific response mechanisms. Compared with those on 5mC, there are
fewer studies on N6-mA in the plant. 6mA DNA methylation is a new epigenetic marker in
eukaryotes which has been proven to be a conserved DNA modification that is positively
associated with gene expression and contributes to key agronomic traits in plants [130,131].
However, the 6mA changes that respond to nutrient stress remain unclear. Moreover, as
we conclude that DNA methylation responds to N, P, Zn, Fe and S, there are rarely reports
about DNA methylation responding to other essential elements such as K, Ca, Mg, etc.
Therefore, there is still a long way to go in studying the influence of nutrient deficiencies
on DNA methylation.

It is necessary to combine DNA methylation modification with histone modification,
chromatin remodeling and RNA interference to study the formation and maintenance
mechanism of DNA methylation under nutrient stress. This would help to reveal the
dynamic changes of methylation during growth and development and to find tissue-specific
differences under nutrient stress conditions. The study of DNA methylation responses to
nutrient stress could stabilize and improve the yield and quality of crops.
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