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Abstract

The apical complex is the definitive cell structure of phylum Apicomplexa, and is the focus of the events of host cell
penetration and the establishment of intracellular parasitism. Despite the importance of this structure, its molecular
composition is relatively poorly known and few studies have experimentally tested its functions. We have characterized a
novel Toxoplasma gondii protein, RNG2, that is located at the apical polar ring—the common structural element of apical
complexes. During cell division, RNG2 is first recruited to centrosomes immediately after their duplication, confirming that
assembly of the new apical complex commences as one of the earliest events of cell replication. RNG2 subsequently forms a
ring, with the carboxy- and amino-termini anchored to the apical polar ring and mobile conoid, respectively, linking these
two structures. Super-resolution microscopy resolves these two termini, and reveals that RNG2 orientation flips during
invasion when the conoid is extruded. Inducible knockdown of RNG2 strongly inhibits host cell invasion. Consistent with
this, secretion of micronemes is prevented in the absence of RNG2. This block, however, can be fully or partially overcome
by exogenous stimulation of calcium or cGMP signaling pathways, respectively, implicating the apical complex directly in
these signaling events. RNG2 demonstrates for the first time a role for the apical complex in controlling secretion of invasion
factors in this important group of parasites.
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Introduction

Apicomplexans are obligate parasites of metazoans that non-

destructively enter their host cells. Here they feed and replicate

before destructively escaping in search of further cells to invade.

Apicomplexa comprises over 6000 species that parasitize virtually

every animal group [1]. The malaria-causing parasites, Plasmodium

spp., are best known for their pattern of invasion and release from

human red blood cells, causing cyclic fevers and the symptoms of

malaria that annually result in 0.6 to 1 million deaths per year and

morbidity in up to 220 million people [2]. Toxoplasma gondii can

infect most nucleated mammalian cell types and infects approx-

imately one third of the human population. Human infections are

typically relatively asymptomatic, however T. gondii causes acute

and even fatal disease in immuno-compromised individuals

(encephalitis and ocular disease), severe or lethal developmental

defects in unborn fetuses, and significant agricultural losses

through miscarriage in livestock [3]. Early-diverging apicomplex-

ans (gregarines) are limited to invertebrate hosts and their invasion

is incomplete, with feeding often achieved through the apical tip of

the parasite being intimately buried within the host cell [4,5].

The defining feature of Apicomplexa is a complex assemblage of

structural and secretory elements at the apical point of the cell,

forming the namesake of the group—the apical complex. The apical

complex is instrumental in the host cell invasion processes [6,7]. It

provides both a semi-rigid framework to these apically pointed cells,

and a focal point for secretory organelles that release various

invasion factors that mediate interaction with, and invasion of, the

host cell. The apical complex is organized around an apical polar

ring that serves as a microtubule organizing center that nucleates an

array of subpellicular microtubules that descend toward the

posterior of the cell (Figure 1A) [8–10]. These microtubules subtend

flattened membrane sacs, or alveoli, that line most of the plasma

membrane [11]. A fibrous proteinaceous membrane skeleton

supports the alveolar sacs against the microtubules [12]. The alveoli

and proteinaceous skeleton form a structure called the inner

membrane complex (IMC), which, together with the subpellicular

microtubules, provides the shape and stability of the cell. The apical

polar ring marks the apical extremity of the IMC. A mobile conoid,

consisting of tightly bent tubulin filaments fused to form a tapered

hollow barrel, sits within the apical polar ring [10,11,13]. The

conoid can either be recessed in the cell, so that its tip is flush with

the apical polar ring, or, during invasion, be extruded from the

apical polar ring to form an extended point to the cell (Figure 1A).

At the tip of the conoid are two preconoidal rings, and a pair of short

microtubules sit eccentrically within the conoid. These preconoidal

rings and interconoidal microtubules move together with the conoid

during extrusion [8].
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The structural elements of the apical complex provide

orientation to the cell, and are the focal point for arrays of

secretory organelles—micronemes and rhoptries—that cluster

towards the base of the conoid in readiness for a staged sequence

of release (Figure 1A) [14]. Microneme contents are secreted first,

prior to invasion, and coat the parasite with proteins that facilitate

host cell adhesion, gliding motility, and contribute to formation of

an annular moving junction with the host plasma membrane

through which the parasite enters the host. During invasion

rhoptries secrete further elements of the moving junction, as well

as proteins that establish the properties of the parasitophorous

vacuole within which the parasite typically resides.

The elements of the apical complex are highly conserved

throughout Apicomplexa, although secondary reduction is evi-

dent. For example, the conoid is only intermittently present within

various members and life stages of haemosporins (including

Plasmodium spp.) and likely completely lost from piroplasms such

as Babesia and Theileria [15,16]. The presence of the apical polar

ring, however, is seemingly universal. Apicomplexans also have a

distinctive model of cell division, whereby daughter cells form

within a mother cell. The pellicle, consisting of the alveolar sacs

and protein skeleton (and plasma membrane in mature cells), with

the associated subpellicular microtubules, is amongst the first

structures formed in the new daughter cells, and this lays down the

scaffold for nuclei and organelles to correctly partition into these

daughters [17–22]. Markers for the conoid in T. gondii also appear

early in daughter cell formation [23], suggesting the apical

complex is also formed early in this process. The apical complex,

therefore, likely plays pivotal roles in both cell division and host

cell invasion.

Despite extensive characterization of the apical complex

through ultrastructural studies, there is relatively limited knowl-

edge of the molecular composition of its structural elements, and

even less experimental illumination of its function. T. gondii

provides the best studied system to date, with several proteins that

associate with the apical complex structures identified either

through proteomics or reporter protein tagging. The conoid itself

is composed of tubulin, and is known to be decorated with several

proteins (TgCentrin3; calcium-binding domain proteins CAM1

and CAM2; dynein light chain, TgDLC), although the functions of

these proteins remain untested [13,23]. The preconoidal rings are

associated with TgCentrin2 and SAS6L, two proteins typically

implicated with centriolar function [23–25]. SAS6L knockout cells

showed a subtle negative growth phenotype, however the basis of

this phenotype has not been determined [24]. The novel protein

TgICMAP1 decorates the intraconoidal microtubules but its

function is unknown [26]. Even the curious behavior of conoid

extrusion, while hypothesized to provide some mechanical role in

invasion, has evaded clear insight into its function [27]. A small

number of proteins associated with the apical cap of the IMC are

closely associated with the apical complex, but these appear to

serve more general pellicle functions in gliding motility (GAP70),

coordination of assembly and spatial organization of the pellicle

(IMC15, ISP1, MORN1) or are of unknown function (PhIL1,

TgDLC) [18]. The composition of the apical polar ring is the most

poorly characterized of these structures, despite its central role and

universality in the phylum. A single protein, RNG1, has been

localized to this structure [28]. RNG1 associates with the apical

polar ring only as daughter cells reach maturity, so presumably is

not responsible for the early formation of this ring. Attempts to

generate a knockout were unsuccessful, suggesting an essential but

undetermined function.

As part of a broader study of conserved pellicle proteins of

Infrakingdom Alveolata (Apicomplexa, Dinoflagellata, Ciliopho-

ra), we previously identified a novel T. gondii protein that localized

as a ring in the region of the apical complex [29]. To investigate

the function of the apical complex we have investigated the

localization and behavior of this ring protein (we now call RNG2)

during cell replication and invasion, and examined its role by

inducible knockdown of RNG2 expression. These results confirm

that new components of the apical complex are first assembled at

the centrosomes at the earliest stages of cell replication, and that

the apical complex acts as a gatekeeper that regulates secretion

during parasite invasion.

Results

We previously identified T. gondii pellicle protein

TGME49_244470 (toxodb.org) through its similarity to unchar-

acterized proteins found in the cell pellicles of the related phylum

Ciliophora [29]. These proteins share repetitive protein sequences

biased for lysine, glutamic acid, glutamine and hydrophobic

residues (leucine, isoleucine and valine). TGME49_244470

localized to an apical ring structure, similar to a previously

identified apical ring protein, RNG1 [28,29]. We, therefore, name

the new protein RNG2 although it shares no sequence similarity to

RNG1. RNG2 expression is cell cycle-dependent, peaking during

DNA synthesis and mitosis (Figure 1B) [30,31], consistent with

early appearance of RNG2 rings in developing daughter cells [29].

RNG2 is a large protein (2595 amino acid, 290 kDa), predicted to

form multiple coiled-coils (from approximately amino acid 550 to

2150; COILS, [32]).

RNG2 bridges the apical polar ring and conoid
To investigate the fine localization and interactions of RNG2

with other apical structures we used 3D-structured illumination

microscopy (SIM), which provides an 8-fold increase in volume

resolution over conventional light microscopy [33,34]. Given the

large size of RNG2 and its potential to fill a volume larger than

SIM resolution, we separately tagged the N-terminus and C-

terminus, with epitope tags HA and cMyc, respectively (HA-

RNG2-cMyc, see knockdown construct below). Immuno-detection

Author Summary

Apicomplexan parasites comprise major human patho-
gens, including the malaria-causing parasites Plasmodium
spp., and Toxoplasma gondii that causes birth defects and
neurological disorders. Key to the success of this group
was the evolution of the apical complex, a structure at the
focus of the events of host cell invasion. This structure was
recently shown to derive from elements of the flagellar
apparatus, and rudiments of an apical complex are used
for feeding in related protists. Evolution of host cell
invasion in Apicomplexa has entailed development of a
coordinated secretion of invasion factors from the cell
apex. Little is known, however, of the behaviour or
function of the components of the apical complex during
invasion. We have characterized a new protein, RNG2, that
forms a ring at the heart of the apical complex in T. gondii.
This is a dynamic ring that links the mobile conoid with the
apical polar ring, and is assembled as one of the first
structures in replicating parasites. When RNG2 is artificially
depleted, cells become insensitive to the molecular cues
for secretion, and invasion of host cells is blocked. This
reveals that the apical complex participates directly in
regulating secretion, and controlling the events of inva-
sion.

The Apical Complex Regulates Secretion
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of these tags in intracellular parasites shows that each forms a

continuous apical ring in mature cells measuring 380 +/2 20 nm

(standard deviation (SD)) in diameter (Figure 1C, D). These two

rings are consistently displaced, with the C-terminus (red) adjacent

to the apical extremity of the GAP45-labeled IMC (blue), and the

N-terminus (green) occurring below the IMC in the region of the

retracted conoid (Figure 1Di and ii). This implies that RNG2

forms a tube or collar, with a consistent orientation of the protein

termini. The conoid can also be extruded relative to the apical

polar ring, a state that typically occurs during invasion. Conoid

extrusion can be artificially achieved by exposure to the calcium

ionophore A23187 [35,36]. When extracellular parasites were

treated with A23187 to effect conoid extrusion, the orientation of

the RNG2 N- and C-terminus was completely reversed, with the

N-terminus now extended anterior to the C-terminus (Figure 1Diii

and iv). To test that the RNG2 protein termini could be

reproducibly detected, we also created a RNG2 fusion with

fluorescent proteins (mCherry-cMyc-RNG2-GFP). Observation of

these live cell markers resulted in the same pattern of a polarized

orientation of the RNG2 collar that inverted upon conoid

extrusion (Figure S1).

To better understand the RNG2 flip during conoid extrusion, the

two termini were co-labeled with markers for the apical polar ring,

RNG1 [28], and the conoid, CAM1 [23]. RNG1 was transiently

expressed as a RNG1-GFP fusion in the HA-RNG2-cMyc cells.

When the conoid was in the retracted position, the C-terminus of

RNG2 (red) collocates with RNG1 (blue), whereas the RNG2 N-

terminus (green) is posterior (Figure 2A and B). This indicates that

the C-terminus of RNG2 is in close association with the apical polar

ring. When the conoid is extruded by A23187, the N-terminus of

RNG2 (green) is now extended anterior of RNG1 (blue), suggesting

that it has passed through the apical polar ring (Figure 2C). CAM1

is a known conoid marker, although its precise location on the

conoid remains undetermined [18,23]. We transiently expressed

CAM1-GFP in the HA-RNG2-cMyc cells to observe the position

and behavior of the RNG2 termini with respect to this conoid

marker. Using SIM the CAM1-GFP (blue) resolved as a narrow ring

of smaller diameter than the apical polar ring, but of similar

apparent depth (Figure 2D-F). The N-terminus of RNG2 was a

consistent distance posterior to CAM1, maintaining this position

when the conoid was extruded and RNG2 flipped. These data

suggest that the C-terminus of RNG2 is attached to the apical polar

Figure 1. RNG2 apical rings. (A) Schematic of Toxoplasma gondii cell representing the structural elements of the apical complex, the cell pellicle,
and the secretory organelles. The conoid is shown extruded. (B) RNG2 expression throughout the cell cycle based on dataset of Behnke et al. [31]. (C)
3D-SIM image of intracellular HA-RNG2-cMyc parasites showing the RNG2 N-terminus (HA, green) against GAP45 labeling of the IMC (blue). (D). 3D-
SIM images of intracellular parasites with retracted conoids (i, ii) and extracellular parasites treated with A23187 to extrude conoids (iii, iv) labeled for
RNG2 N-terminus (green) and C-terminus (red), and GAP45 (blue). Scale bar = 500 nm.
doi:10.1371/journal.ppat.1004074.g001

The Apical Complex Regulates Secretion
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ring, and the N-terminus is attached to the conoid at a position

posterior to CAM1. During conoid extrusion and retraction the

RNG2 N-terminus moves with the mobile conoid, while the C-

terminus is apparently anchored to the apical polar ring. CAM1

itself is confined to a narrow band on the conoid, likely towards the

conoid tip as when the conoid was retracted the CAM1 ring was

approximately level with RNG2 C-terminus (Figure 2E).

RNG2 is an early marker for daughter cell assembly
Our first report of RNG2 indicated that this protein associates

with the apical complex early during cell division, whereas RNG1

is a late marker of daughter cell formation [28,29]. To correlate

RNG2 behavior with other known early events in daughter cell

formation, we have used markers of the centrosome (centrin 1

antibodies) and centrocone (MORN1-cMyc expression) with the

Figure 2. 3D-SIM of RNG2 location relative apical polar ring marker RNG1 and conoid marker CAM1. (A-C) RNG1-GFP (pseudo-colored
blue), and (D-F) CAM1-GFP (pseudo-colored blue) colocalized with HA (green) and cMyc (red) of the HA-RNG2-cMyc fusion. Conoid position is
indicated. Individual immuno-signals are shown in monochrome, and colored in the merged image where GAP45 labeling is shown by a dashed
outline. Right hand column shows GAP45 labeling of each cell at 0.25 magnification. Scale bars = 500 nm.
doi:10.1371/journal.ppat.1004074.g002
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39 endogenous tagged RNG2-HA cells where RNG2 maintains its

native promoter [29]. Duplication of the centrosome is one of the

earliest events of daughter cell formation [37], and we see RNG2

association with daughter cells only after this event (Figure 3A–C).

RNG2 first appears as two diffuse dots apparently in contact with

each centrosome (Figure 3C). Subsequently, RNG2 resolves into a

small ring that is separate and anterior to the centrosome

(Figure 3D). This indicates a separation of these nascent structures,

but we often see a small residual amount of RNG2 that persists

with the centrosome (Figure 3D, arrowheads), suggesting a direct

interaction with the centrosome occurs.

The centrocone is an elaboration of the nuclear envelope that

serves as the connection point between centromeres of chromo-

somes in the nucleus to the extranuclear centrosome [38].

Following duplication of the centrosome and development of the

mitotic spindle, the centrocone elongates before separating into

two resolved centrocones. MORN1 labels the centrocone, as well

as the basal complex of the IMC (seen as a ring at the base of the

mother cell as well as forming daughter cells: Figure 4) [23,39–41].

The nascent dots of RNG2 are seen before the centrocone

separates into two structures, and before any MORN1 is

associated with the IMC of the daughter buds (Figure 4B).

RNG2 resolves into rings before the inner membrane complex

protein IMC1 is associated with daughter cells (Figure 4D, see also

Figure 5E). Together these data suggest that RNG2 is recruited to

centrosomes immediately after their duplication, and then resolves

into rings during initiation of daughter cell pellicle buds.

RNG2 knockdown affects growth, but not cell replication
or pellicle structure

To examine the function of RNG2 we generated an inducible

knockdown cell line (iDHA-RNG2) by 59-replacement of the

native RNG2 promoter with the tetracycline regulatable promoter

(t7s4) in a Dku80/TATi background [42,43]. An HA coding

sequence was also appended to the 59-terminus of the gene to

follow RNG2 expression, and subsequently a cMyc tag at the 3-

terminus (Figure 5A). Correct integration into the single rng2 locus

was verified by PCR, Western blot, and immunofluorescence

microscopy. By PCR, the RNG2 coding region of the iDHA-

RNG2 mutant occurred downstream of the t7s4 promoter (P2,3;

expected fragment size 2281 bp) and not the native promoter

region (P1,3; expected fragment size 2134 bp) (Figure 5A and B).

Western blots show that the N-terminal HA tag labels a .188 kDa

protein in iDHA-RNG2 cells, consistent with the predicted size of

RNG2 (Figure 5C). This is of identical size to RNG2-HA that we

previously generated by 39 endogenous gene tagging (Figure 5C).

Further, Western blotting against cMyc in the iDHA-RNG2-cMyc

cell line confirms this correct subsequent gene-tagging event,

Figure 3. RNG2 appears in daughter cells after centrosome duplication. RNG2-HA (green) cells immuno-labeled for centrin1 (red) show
single centrosome duplication at the beginning of daughter cell formation (A, B), after which RNG2 appears in association with each centrosome (C).
(D) As centrosome pairs separate, RNG2 dissociates and forms rings, but leaves a trace of RNG2 in association with the centrosome (e.g. arrowheads).
Inferred daughter buds shown with dashed lines, scale bars = 3 mm.
doi:10.1371/journal.ppat.1004074.g003
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including some common minor presumed C-terminal processed or

degradation products seen in both RNG2-HA and RNG2-cMyc

cell lines (Figure 5C). Finally, immuno-localization of HA in

iDHA-RNG2 cells (and cMyc in iDHA-RNG2-cMyc cells)

(Figure 5E) shows the protein at apical rings that are first observed

early in daughter cell formation, consistent with the RNG2-HA

localization and behavior (Figures 1-4). Together, these data

indicate that we have successfully replaced the native promoter of

RNG2 with the regulatable t7s4 promoter.

The expression levels of HA-RNG2 in the iDHA-RNG2 cells

grown in the absence of the tetracycline analogue, anhydrote-

tracycline (ATc) is equivalent to RNG2-HA that is driven by the

native promoter (Figure 5C). When iDHA-RNG2 parasites were

incubated in the presence of ATc (0.5 mg ml21), HA-RNG2

expression was reduced to below detectable levels by Western blot

within one day of ATc incubation (Figure 5D). Similarly, we were

unable to detect HA-RNG2 protein by immunofluorescence assay

(IFA) after one day of ATc incubation (Figure 5E). These data

indicate effective knockdown of RNG2. To test for a growth

phenotype associated with RNG2 knockdown, we measured

growth across eight days using a plaque assay. In the absence of

ATc, iDHA-RNG2 cells developed plaques in host cell monolayers

that were indistinguishable from plaques in the unmodified

parental cell line (Figure 5F). When ATc was present, plaque

sizes were dramatically reduced in iDHA-RNG2 cells but not the

parental cells, indicating that RNG2 plays a significant role in

parasite proliferation.

The early presence of RNG2 during daughter pellicle bud

assembly suggested that knockdown of RNG2 might perturb

this important developmental stage and this could be respon-

sible for the growth phenotype observed. We tested this by

measuring parasite replication rates in host cells with or

without RNG2 knocked down. iDHA-RNG2 cells were

cultured for three days, with or without ATc, then allowed

to invade fresh host cells. After 24 hours of further incubation

with or without ATc, infected monolayers were fixed and

parasites immuno-stained with surface antigen SAG1 to count

the number of parasites per vacuole. There was no significant

difference in the replication rate of cells with or without RNG2

expression. Most vacuoles in both treatments contained eight

cells (three division cycles), with equivalent distributions of

vacuoles either lagging (two or four cells) or ahead (16 or 32

cells) of this replication state (Figure 6). The morphology of the

+ATc replicating cells also appeared normal by SAG1 labeling,

with the only notable difference being a reduction in the total

number of vacuoles (see below).

Figure 4. RNG2 appears before centrocone duplication or IMC1 association with daughter pellicles. (A, B, C) RNG2-HA (green) co-
expressed with MORN1-cMyc (red). MORN1 can be seen at the basal complex of both mother (e.g. A, open arrowhead) and daughter cell pellicles, and
at the centrocone (e.g. A, filled arrowhead). Inferred daughter buds shown with dashed lines (C) Elongation of the centrocone occurs prior to
resolution of two centrocones and mitosis. (D) Immuno-labeled RNG2-HA (green) and IMC1 (red). Scale bars = 3 mm.
doi:10.1371/journal.ppat.1004074.g004
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Figure 5. RNG2 is required for parasite growth. (A) Schematic of the chromosomal locus of wild type RNG2 and the insertional mutant iDHA-
RNG2 showing the tetracycline regulatable promoter (t7s4), N-terminal HA tag, C-terminal cMyc tag (integrated separately) selectable marker DHFR,
exon structure of RNG2 (black boxes), and primers (P1–3) used to verify correct integration. (B) PCR analysis of genomic rng2 locus after integration of
the iDHA insert. Primer P1–3 locations shown in (A) while P4,5 amplify tic22 as a positive control. (C) Western blot of three versions of tagged RNG2

The Apical Complex Regulates Secretion
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We also tested for structural phenotypes associated with RNG2

knockdown. Formation of daughter inner membrane complexes,

as measured by IFA, appeared unimpaired in parasites depleted of

RNG2 (Figure 5E, bottom panel). Additionally, we examined the

ultrastructure of cells grown with and without ATc by transmission

electron microscopy and observed no differences in the apical

complexes, including the apical polar ring, conoid, cell pellicle and

position of rhoptries and micronemes (Figure 7A). The apical

polar ring marker RNG1 was examined in cells replicating in the

presence of ATc to determine if recruitment of this late ring

marker requires RNG2. RNG1 localization to the apical polar

ring was unchanged from wild type in the absence of RNG2

(Figure 7B), consistent with the loss of RNG2 having no effect on

the structure of the apical polar ring. To test if the integrity of the

sub-pellicular microtubular basket was perturbed by RNG2

knockdown, we performed detergent extraction of parasite

pellicles. Without ATc, extracted pellicles were typical, with all

microtubules anchored to the apical polar ring and conoid

(Figure 7C). RNG2 rings remained stably associated with the

extracted pellicles, indicating a detergent-resistant, strong associ-

ation. Extracted pellicles from ATc-treated cells were identical

with the exception of lacking RNG2 staining (Figure 7D). The

ability of the conoid to be extruded from below the apical polar

ring was also examined in knockdown cells. Extracellular parasites

were stimulated using A23187 and the number of cells with

everted conoids scored. No significant difference was seen in the

rates of extrusion between iDHA-RNG2 cells treated without ATc

(81.4%, +/2 10.4% SD) or with ATc (84.6%, +/2 6.0% SD). We

conclude that loss of RNG2 does not impair intracellular growth

or daughter cell development.

RNG2 knockdown perturbs invasion, motility and rhoptry
evacuole formation

In the absence of a replication defect to explain the growth

phenotype of RNG2 knockdown, we investigated host cell

invasion. We assayed invasion efficiency using a red/green

invasion assay [44,45]. iDHA-RNG2 parasites were cultured for

two days with or without ATc, mechanically harvested from the

host cells in potassium-rich Endo buffer, and then activated for

invasion in low potassium buffer and allowed to invade host cells

for 10 minutes. Invasion was then arrested by chemical fixation

and parasites differentially immuno-stained according to whether

they were outside or inside the host cells. The RNG2 knockdown

parasites showed a strong invasion defect, with 66% reduction in

invasion efficiency (Figure 8A).

Gliding motility is integral to invasion, and we tested the ability

of iDHA-RNG2 parasites to glide with or without ATc. Without

ATc, parasites showed typical extracellular gliding activity,

indicated by trails of surface protein SAG1 left on coated

coverslips (Figure 8B). These trails were ablated by treatment

with the actin inhibitor cytochalasin D. In RNG2 knocked down

parasites (+ATc), we could see no such trails or evidence of gliding

motility. Gliding, however, could be restored in RNG2 knock-

down cells by treatment with the calcium ionophore A23187

(Figure 8B).

To further dissect the events of parasite invasion, we monitored

evacuole formation, which is the release of rhoptry contents into

the host cell [46]. To do this we allowed parasites to settle onto

host cells in the presence of cytochalasin D. This enables parasites

to apically attach to host cells, and secrete their rhoptry contents as

evacuoles, but prevents them from further invasion. After 15

minutes, we fixed parasites and visualized evacuoles by immuno-

staining with the rhoptry marker ROP1. Evacuoles can be seen as

extended ROP1-positive emissions within the host cell. For cells

grown without ATc, 44% of parasites formed evacuoles, which is

consistent with controls in previous experiments (e.g. [47]). For

iDHA-RNG2 cells grown with ATc, only 27% of parasites

generated evacuoles, which is a 39% reduction compared to

controls (Figure 8C).

RNG2 has a role in regulated secretion of micronemes
Staged release of invasion factors from secretory organelles—

micronemes, rhoptries and dense granules—facilitates the coordi-

nated events of parasite invasion and establishment of the

parasitophorous vacuole [14]. In extracellular parasites, some

secreted micronemal proteins translocate to the parasite surface,

where they function in attachment of parasites to the host cells, a

critical component of processes such as motility and invasion.

Subsequent to their function, these micronemal proteins are

cleaved by parasite proteases and released into the extracellular

medium [48]. We assayed the release of two species of micronemal

proteins, MIC2 and AMA1, from extracellular parasites. In the

absence of ATc, iDHA-RNG2 constitutively secreted both MIC2

and AMA1 (Figure 9). In ATc-treated iDHA-RNG2 cells, we

observed a marked microneme secretion defect for both MIC2

and AMA1, with little or no detectable protein in the extracellular

medium (Figure 9). To check that MIC2 and AMA1 were

synthesized to equivalent levels in ATc-treated cells we assayed for

these proteins in intact parasites, and found no reduction in either

microneme protein type (Figure S2A). IFAs against AMA1 and

MIC2 similarly showed no difference in microneme distribution in

the cells, predominantly towards the cell apex, when cells are

depleted of RNG2 (Figure S2B, C). This indicates that the

using either HA or cMyc antibodies (equal protein loading in all lanes). (D) Western blot of HA-RNG2 expression after 0 to 3 days of
anhydrotetracycline (ATc) treatment. Dense granule protein GRA8 used as a loading control. (E) Immuno-fluorescence detection of HA-RNG2 (green)
and cell pellicles (IMC1, red) after no or one day of ATc treatment. Scale bar = 3 mm. (F) Plaque assay measuring parasite growth over 8 days of either
the parental or knockdown cell lines, in the absence (2) or presence (+) of ATc.
doi:10.1371/journal.ppat.1004074.g005

Figure 6. RNG2 is not required for intracellular parasite
replication. Replication rate of iDHA-RNG2 parasites grown with (+)
or without (2) ATc treatment measured by parasite number per
parasitophorous vacuole after 24 hours of growth post infection. .200
vacuoles were counted for each of three biological replicates, error
bars = standard error of the mean. Representative SAG1-stained
vacuoles show no gross difference between + or 2 ATc-treated cells.
doi:10.1371/journal.ppat.1004074.g006
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reduction in microneme proteins in the supernatant was caused by

reduction in secretion rather than available protein.

Microneme secretion is regulated by two main signaling

pathways: activation of calcium-dependent protein kinases

(CDPKs) by calcium release from the ER; and activation of

Protein Kinase G (PKG) by cGMP [49–51]. These two pathways

can be experimentally manipulated by either inducing calcium

store release into the cytoplasm with the ionophore A23187, or by

elevating internal cGMP concentration by treatment with cGMP-

specific phospho-diesterase inhibitor Zaprinast. Microneme secre-

tion is upregulated by both A23187 and Zaprinast, and we saw

equally robust secretion measured by MIC2 and AMA1 markers

with both these stimuli in cells where RNG2 was present (-ATc)

(Figure 9). In RNG2 knockdown parasites (+ATc) we also

observed upregulation in microneme secretion (Figure 9). Inter-

estingly, however, we observed distinct responses to calcium and

cGMP stimuli. Calcium stimulation produced upregulation of

secretion of both MIC2 and AMA1 in the knockdown cells to

levels equivalent to the RNG2-expressing parasites (Figure 9C, F).

Although cGMP stimulation did elevate MIC2 and AMA1

secretion, this was clearly less in RNG2 knockdown cells than

when RNG2 was present (Figure 9C, F). To test this further, we

stimulated microneme secretion with 8-Br-cGMP, an alternative

activator of the cGMP pathway. We observed a similar muted

Figure 7. RNG2 knockdown results in no obvious structural change. (A) Transmission electron microscopy of ATc-treated parasites show
typical apical structures. (i) Transverse section of apical complex showing rhoptries (R) extending within the conoid (white arrowheads) and
microtubules and the IMC (arrows) converging on the apical polar ring. (ii) Oblique section of the apical complex shows the retracted conoid
(arrowhead), preconoidal rings and micronemes (m), while a glancing section shows subpellicular microtubules (arrows) converging on the apical
polar ring (iii).(B) iDHA-RNG2 cells treated with ATc and co-expressing RNG1-cMyc show no change in RNG1 association with the apical polar ring. (C)
Detergent-extracted pellicles show HA-RNG2 persists with the microtubular conoid (arrowhead) and sub-pellicular basket. (D) With ATc treatment
and RNG2 knockdown these extracted pellicles remain unchanged with microtubules attached to the conoid (arrowhead). Inset image shows a
splayed microtubular basket. Black scale bar = 200 nm, white scale bar = 3 mm.
doi:10.1371/journal.ppat.1004074.g007
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response in microneme secretion when RNG2 was absent (Figure

S3). These results suggest that RNG2 is critical for the constitutive

secretion of micronemes, and demonstrates a relative insensitivity

of microneme secretion to the cGMP pathway in parasites lacking

RNG2.

Discussion

The apical polar ring is the unifying structural feature of the

apical complex, and arguably of all of Apicomplexa [10]. It

provides a structural basis for the assembly of new daughter cells,

and a focal point for invasion events into host cells. However, its

molecular composition is poorly characterized, and its specific

functions are experimentally untested. The T. gondii protein RNG2

provides insight into the early formation of this structure, its

molecular interactions with other apical complex structures, and

the molecular function of this gateway into the host cell.

The earliest events of cell division in T. gondii are extension and

fission of the Golgi apparatus and the duplication of the

centrosomes [20,37,52]. Immediately following centrosome dupli-

cation, the first recruitment of molecules associated with the new

daughter cell pellicles is seen. Rab11B and IMC15 appear closely

associated with the centrosomes shortly after their duplication

[18,19]. Rab11B is implicated in trafficking Golgi-derived vesicles

to the developing alveolar sacs of the daughter cell pellicles, and

IMC15 is one of the earliest pellicle scaffolding proteins that likely

contributes to the coordination of alveolar sac assembly. We show

that the earliest nascent components of the apical complex are also

recruited to the centrosomes just after their division. RNG2

appears initially as a dot in contact with each centrosome before

the mitotic spindle is evident. RNG2 then resolves into a ring

associated with the apical polar ring as the nascent apical complex

separates from its centrosome. Some residual RNG2 remains

associated with the centrosome during daughter cell development

suggesting that RNG2 interacts directly with the centrosome.

Centrin2 is permanently associated with the centrosomes, but it

also locates to the preconoidal rings, basal complex and peripheral

annuli during daughter cell assembly [23,25,39]. It is unclear if

centrosomal centrin2 contributes to these latter structures.

The apical polar ring acts as the microtubule organizing center

that gives rise to the subpellicular array of 22 microtubules [8,10].

Knockdown of RNG2 has no effect on daughter cell formation or

stability of the microtubule array, so it is evidently neither

Figure 8. RNG2 is required for invasion, motility and rhoptry
evacuole formation. (A) Percentage parasite invasion success of
iDHA-RNG2 cells grown either with or without ATc. .200 parasites were
scored for each of three biological replicates. (B) Gliding motility
detected by SAG1-positive trails of iDHA-RNG2 cells with or without
ATc. Motility was also assessed with further treatments of actin
polymerization inhibitor cytochalasin D, or calcium ionophore
A23187. (C) Percentage of ROP1-positive evacuoles formed by iDHA-
RNG2 cells grown with or without ATc. .200 parasites were scored for
each of six biological replicates. Error bars = standard error of the
mean, * denotes significant differences (P,0.05, two-tailed Student’s t-
test).
doi:10.1371/journal.ppat.1004074.g008

Figure 9. RNG2 has a role in regulated microneme secretion. Constitutive secretion of microneme proteins MIC2 (A, B) and AMA1 (D, E) from
extracellular iDHA-RNG2 cells grown with or without ATc. Secretion was also assessed with cGMP stimulation by Zaprinast (A, D), or with calcium
stimulation by A23187 (B, E). Tom40 detection in cell pellets provides a control for parasite number used for secretion assays. (C, F) Secretion averages
from biological replicates (n = 6 for constitutive (Con.) secretion; n = 4 for stimulated secretion). Error bars = standard error of the mean.
doi:10.1371/journal.ppat.1004074.g009
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necessary for ring formation or recruitment of other proteins

required to form this ring. Rather, RNG2 is presumably itself

recruited to the new ring. It therefore presents a conundrum as to

why such early association of RNG2 within the apical complex

occurs, if no early phenotype of its loss is evident. It is possible that

the order of assembly of the apical complex might simply require

an early recruitment of RNG2. The T. gondii pellicle is a

remarkably robust and stable structure, including unusually static

associated microtublues [11], and even after detergent extraction

RNG2 remains in place. Perhaps correct integration of RNG2 in

association with the apical polar ring and conoid necessitates early

addition, despite the functional role awaiting daughter maturation.

A growing theme in apicomplexan biology is the key role of the

centrosome in coordinating the essential structures of new

daughter cells, including the Golgi apparatus, apicoplast, nucleus

and pellicle buds [18,37,53–59]. Even after the daughter buds

separate from the centrosomes, a striated fiber, homologous to

rootlets of the flagellar apparatus found in flagellated cells,

provides a tether between the centrosomes and the daughter

pellicles as they continue to develop [57]. RNG2 suggests an

additional, direct role for the centrosome in recruiting proteins

that are then assembled into the new apical complexes. This

behavior is similar to that seen in the basal bodies of ciliates that

also appear to provide recruitment surfaces for repetitive, charged

residue-containing proteins that are subsequently deployed to

other cell pellicle structures [60]. Basal bodies are homologous

structures to the centrioles of centrosomes, and RNG2 was

identified by broad similarity to such pellicle proteins of ciliates

[29].

The resolvable displacement of the N- and C- termini of RNG2

in mature parasites, and their non-identical behavior during

conoid extrusion, suggests that RNG2 interacts both with the

apical polar ring and the conoid. The C-terminus forms a ring

consistent with position, diameter and static behavior of the apical

polar ring [8]. Predicted acylation sites (at least two palmitoylation

sites by CSS-Palm 3.0, [61] using the highest stringency threshold,

and up to eight) might facilitate association with the apical portion

of the alveolar sacs, as is known to occur for some IMC-bound

proteins [62–66]. The N-terminus, on the other hand, associates

with the mobile conoid at a position posterior to the conoid

protein CAM1. When the conoid is extruded the N-terminus is

clearly anterior to the C-terminus, suggesting that it is not attached

to the very base of the conoid which is aligned with the apical

polar ring in this state [8]. The simplest model for RNG2,

therefore, is that it forms a collar between the apical polar ring and

the conoid (Figure 10). During conoid extrusion, a substantial

reorientation of the RNG2 collar occurs, with the ring created by

the N-terminus passing through that of the RNG2 C-terminus,

and the collar turning inside-out (Figure 10B). It is notable that

RNG2 knockdown does not effect conoid extrusion, indicating

that RNG2 itself does not function in conoid extrusion. Instead,

we speculate that conoid extrusion may mediate an altered RNG2

conformation, and changed presentation of RNG2 surfaces to

other apical organelles or molecules. It is possible that this enables

changed RNG2 function. Given the role of RNG2 in invasion—

and more specifically in microneme secretion—conoid extrusion

could function as an invasion-ready switch to enable RNG2 to

perform its role.

The dramatic reduction in parasite growth with RNG2

knockdown provides the first experimental insight into the role

of the apical polar ring in apicomplexan biology. Loss of RNG2

was associated with reduced parasite proliferation, motility and

invasion. Secretion of both the micronemes and the rhoptries was

markedly reduced. A reduction in microneme secretion alone

could explain all of these phenotypes given that motility and

evacuole formation are necessary for invasion, and are dependent

on proteins secreted from micronemes such as the adhesin MIC2

for motility, MIC8 for rhoptry secretion and AMA1 for orientating

the cell for moving junction formation [47,67–70]. Reduction in

microneme secretion was not due to any obvious perturbation of

microneme formation or maturation as RNG2 depletion did not

reduce microneme protein content or presentation of micronemes

to the apical portion of the cells. The loss of microneme secretion

in RNG2 knockdown cells was not absolute, with some secretion

still occurring. Inhibition of secretion appeared to be more

pronounced for MIC2 compared to AMA1. This might reflect

different sensitivities of respective immuno-detections, or could

indicate alternative secretion pathways for these two micronemal

proteins. Recently, pools of different micronemal proteins have

been shown to rely on distinct Rab-GTPases [71]. While both

MIC2 and AMA1 were in the Rab5A/C-independent pools, it is

unknown if there is further division amongst these different

proteins.

Despite a reduction in invasion, approximately one third of

RNG2 knockdown parasites were still able to invade, suggesting

that they are able to overcome the microneme secretion defect. It

is technically possible that, upon knockdown, there remains a

residual amount of RNG2 protein that allows a low level of

Figure 10. Schematic of RNG2 location within the apical complex. (A) Inferred positions of the N and C termini of RNG2 (labeled N-RNG2 and
RNG2-C, respectively), conoid marker CAM1, and apical polar ring marker RNG1 within the structures of the apical complex, and with the conoid
either retracted (subpellicular microtubules removed) or extruded. (B) Spatial model of RNG2 (orange and yellow), based on locations of protein
termini, forming a collar between the apical polar ring and conoid. The collar is inverted upon conoid extrusion, potentially turning inside-out. See
Figure 1 for full labeling of structures.
doi:10.1371/journal.ppat.1004074.g010
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microneme secretion and subsequent invasion. Notably, however,

recent knockout studies of the motility associated proteins

MyosinA, MIC2 and Actin1 showed that parasites lacking these

proteins were still able to invade host cells, albeit with dramatically

reduced efficiency [72]. Similarly, approximately 15% of AMA1

knockdown cells remain invasion competent, suggesting this

protein is also not completely essential to parasite invasion [47].

It is conceivable, therefore, that a RNG2-independent invasion

pathway exists, mirroring the presumed ‘‘alternative’’ invasion

pathways seen in the MyosinA, MIC2 and Actin1 knockouts [72].

The inhibition of microneme secretion by RNG2 knockdown

was not due to a mechanistic block in secretion, as agonists of

either the calcium- or cGMP-signaling pathways were able to

reverse this inhibition. Indeed, the restoration of gliding motility in

RNG2 knockdown cells by calcium stimulation (A23187) is

consistent with this motility phenotype being due to lack of

microneme secretion. Calcium and cGMP signaling have been

implicated in regulation of key events in parasite invasion cycles

[51,73–75]. These molecules are believed to be second messengers

for various extracellular stimuli, and in T. gondii act on up to twelve

calcium-dependent protein kinases (CDPKs) and a cGMP-

dependent protein kinase G (PKG), respectively [51]. While there

is evidence of a division of labour amongst some of these different

protein kinases for discrete events of invasion (e.g. TgCDPK1) and

egress (e.g. TgCDPK1 and 3), there is also some level of

redundancy and/or codependency on calcium and cGMP

signaling [50,64,65]. For instance, while TgCDPK1 is required

for microneme secretion during invasion [50], the PKG inhibitor

compound 1 will also block this secretion [49].

We found that the response of microneme secretion in RNG2

knockdown cells to calcium stimulation was the same as that of

cells retaining RNG2. However, for cGMP stimulation the

response in the knockdowns was markedly less than in RNG2-

expressing parasites (using either Zaprinast or 8-Br-cGMP). This

indicates that parasites depleted in RNG2 are less sensitive to

cGMP with respect to microneme secretion, and that RNG2 has

some role either in cGMP sensing, or is downstream of PKG. If

RNG2 has a role in the calcium signaling pathway then it is

presumably upstream of calcium sensing, given that overriding

calcium release provided full secretion. These data also indicate

that activation of the calcium-dependent pathway can comple-

ment this cGMP pathway defect, whereas it cannot rescue a

stronger inhibitor of the cGMP pathway such as compound 1 [49].

This suggests subtle interplay of multiple layers of regulation of

these important cell processes, consistent with the observations of

others [49,64].

While the role of signaling molecules in the control of invasion

events has been recognized for some time, this is the first insight

into a location-specific function of the apical complex in these

processes. RNG2 implicates the apical polar ring in control of

microneme release, creating a regulated gateway for secretion at

the apical complex. The precise site of microneme secretion is

controversial, with some arguing that release occurs between the

apical polar ring and the base of the extruded conoid [76], rather

than at the apical aperture of the conoid. The location of RNG2

between the apical polar ring and conoid base is therefore

intriguing, however, we cannot currently say whether this supports

basal release, or whether RNG2 controls the onward traffic of

micronemes to the conoid apex. RNG2 activity in these processes

may be activated directly by CDPK and/or PKG phosphoryla-

tion, and phosphoproteomic studies have identified numerous

phosphorylated sites in RNG2, including one calcium-dependent

event [30,77,78]. Alternatively, it is possible that RNG2 may

recruit other proteins to the apical polar ring that provide a link in

these phospho-signaling events. The repetitive and high charged

amino acid content of the class of proteins to which RNG2 belong

[29], and prediction of coiled-coil domains, is consistent with

facilitating protein-protein interactions.

The sequence of RNG2 is apparently fast evolving, with the

homologue in closely related Neospora caninum sharing only 58%

amino acid identity. Consequently, homologues are difficult to

identify in more distantly related apicomplexans. Nevertheless, we

predict that the function of secretion regulation that RNG2

confers on the polar ring of the apical complex is likely conserved

throughout Apicomplexa. Possible homologues of the apical

complex are also evident in the early ancestor lineages of

apicomplexans (Chromerids and Colpodelids) as well as some

some early-diverging members of the neighboring dinoflagellate

lineage (Perkinsids and Psammosa) [79–83]. These organisms

include symbionts, micropredators and parasites, and are believed

to use their apical complex for myzocytoic feeding or entry into

their metazoan partners. In all these lineages, conspicuous putative

secretory organelles are clustered around structural elements of an

apical complex, which are intimately associated with, and perhaps

derived from, the flagellar apparatus of these flagellate organisms.

Recent reports of flagellar-associated proteins (striated fiber

assemblins and SAS6L) contributing to T. gondii apical complex

assembly corroborate this ancestral state of the apical complex

[24,57]. Moreover, the cGMP signaling pathway is known to

correlate specifically with presence of flagella, where it contributes

to the important flagellum function of environmental sensing and

signal transduction [84]. Together these observations suggest that

a key feature of the evolution of the apical complex was likely

specialization of flagellar-associated structures in the regulated

delivery of secreted factors that facilitate predation and ultimately

parasitism.

Materials and Methods

Growth and generation of protein-tagged and
knockdown parasites

T. gondii tachyzoites were grown by serial passage in human

foreskin fibroblast (HFF) cells as previously described [85]. RNG2-

HA parasites were previously generated by 39 endogenous tagging

with 3XHA coding sequence of the rng2 gene (toxodb.org gene

ID:TgME49_244470) [29]. To generate the conditional RNG2

knockdown parasite strain (iDHA-RNG2), we began by amplifying

2015 bp upstream of the RNG2 start codon (59 flank) using the

primers 59-CTGACATATGGAGACTGCCACAAAGGAAGG-

TACAC and 59-GATCATCCATCGAAACGCTCCGTGACG-

GAAGTA. We digested the product with NsiI and NdeI and ligated

this into the equivalent sites of the vector pPR2-HA3 (Chris

Tonkin and GvD, unpublished), a modified version of the vector

pPR (a kind gift from Lilach Sheiner, U. Georgia; [42]). We next

amplified a 2042 bp fragment beginning at the start codon of

RNG2 (39 flank) with the primers 59-GATCCCCGGGATG-

CACCCCCACCTTTCTTCCGCAG and 59-CGATGCGG-

CCGCGACGGTGGTGTTATTGATTGGTTGC. We digested

this with XmaI and NotI and ligated this into equivalent sites of the

pPR2-HA3 vector that already contained the RNG2 59 flank. The

resulting vector positions the first RNG2 codon downstream of the

ATc-regulatable t7s4 promoter and a 3xHA tag. We linearized the

resulting vector with NotI and transfected this into TATiDku80

parasites (a kind gift from Lilach Sheiner and Boris Striepen, U.

Georgia; [42]). Parasites were selected with pyrimethamine and

cloned by limiting dilution. To identify parasite clones where the

t7s4 promoter had successfully replaced the native RNG2

promoter, we utilized the primers P1 (59- CAGATTCC-
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GAATTCTTTGG), P2 (59-TGTAGAGCTGGTGCGTGAG)

and P3 (59-AAGGGGACGCAGTTCTCGGA) in the combina-

tions described in Figure 5A. For RNG2 cMyc tagging, we PCR

amplified a 39 fragment of rng2 gene using the primers 59-

GATCAGATCTGCAGCTGACACACTCCTGACG and 59-

GCATTCTAGAGTTTGTTGATGCGTCCGAGACAAC, di-

gested this with BglII and XbaI and ligated into the BglII and

AvrII sites of the vector pgCM3, a vector that fuses the 39 region of

a gene-of-interest with a 36 cmyc tag (NK and GvD,

unpublished). This vector was linearized with AvrII, transfected

into the iDHA-RNG2 strain, selected on chloramphenicol and

cloned by limiting dilution. RNG2 knockdown was induced by

culturing with 0.5 mg ml 21 of anhydrotetracycline (ATc). All

PCRs were performed with Phusion polymerase (Thermo

Scientific).

To tag the C-terminus of RNG2 with GFP, we digested the

pCTG vector [86] with AvrII and BamHI and ligated this into

the equivalent sites of the pHA3-LIC-DHFR(RNG2) vector

[29]. This exchanged the 3xHA tag with a GFP tag in a RNG2

39 replacement vector that we termed pGFP-LIC-

DHFR(RNG2). We linearized the resultant vector with NsiI,

transfected this into the TATi/DKu80 parasites [42] and

selected on pyrimethamine. We cloned the resulting drug

resistant parasites and confirmed expression of RNG2-GFP by

microscopy. We next tagged the N-terminus of RNG2-GFP

with a mCherry-36 c-myc tag through a promoter replace-

ment strategy. First, we digested the pPR2-HA3(RNG2) vector

described above with NheI and XmaI to excise the 3x-HA tag.

We then digested the mCherry-36 c-myc tag from the vector

pCTChM3 (a kind gift from Chris Tonkin, Walter and Eliza

Hall Institute) with NheI and XmaI and ligated the resulting

fragment into the pPR2 (RNG2) vector to generate the vector

we termed pPR2-GFP(RNG2). We next replaced the pyri-

methamine-resistance cassette in this vector with a chloram-

phenicol-resistance cassette. We PCR amplified the chloram-

phenicol-resistance cassette from the vector pgCM3 using the

primers 59-GATCATGCATAAAACCCTCGAAGGCTGC-

TAGTAC and 59-GATCACTAGTGGATCCCCCTCGGG.

The resulting PCR product was digested with SpeI and NsiI and

ligated into the equivalent sites of the pPR2-GFP(RNG2)

vector to generate a vector we termed pPR2-CAT-

GFP(RNG2). We linearized this vector with NotI and trans-

fected this into the RNG2-GFP cell line, selecting on

chloramphenicol. We cloned drug-resistant parasites, and

confirmed integration through Western blotting.

For C-terminal 3XcMyc-tagged RNG1 and CAM1 (via 39

endogenous gene replacement) the coding sequence of each

gene was amplified and cloned into pBTM3 (GvD, unpub-

lished). The primers used to amplify the coding sequence of

RNG1 were 59- GATCAGATCTAAAATGGCGCTAAT-

TCCCTCGC and 59- GATCCCTAGGCGCCAGGTAGTA-

GACAGGTGGA, and CAM1 were 59-GATCCCTAGGTT-

TATTCGCGGAAGGCAGAGAC and 59-TGGACTGTGG-

TCGACGCAGAAG. For transient expression of RNG1-GFP,

the 3XcMyc tag was removed from the RNG1-cMyc vector by

digestion with AvrII and Not1 and GFP coding sequence ligated

in its place. The CAM1-GFP vector was a kind gift by Martin

Blume, Bio21, Australia. To label MORN1 we transiently

transfected parasites with a cMyc-tagged MORN1 plasmid (a

kind gift from MJ Gubbels, Boston College).

Microscopy
Immunofluorescence assays (IFAs) were performed as

previously described [87] using antibodies and their

concentrations listed in Supplemental Table S1. 3D-SIM was

implemented on a DeltaVision OMX V4 Blaze (Applied

Precision) with samples prepared as described [88], excited

using 488 and 568 nm lasers and imaged using band pass

filters at 528 and 608 with a 606oil immersion lens (1.42 NA).

Parasite pellicles were extracted in deoxycholate as previously

described [66]. Briefly, we filtered parasites through a 3 mm

filter and resuspended them in phosphate-buffered saline. We

attached parasites to coverslips with 0.1% polyethyleneimine

(PEI) and extracted in 10 mM deoxycholate for 10 min at

room temperature. We fixed parasites in 4% paraformalde-

hyde for 10 min and then proceeded as for IFAs. Cells or cell

extracts were analyzed on a Leica TCS SP2 confocal laser-

scanning microscope. Only the brightness/contrast ratio of the

images was modified, using Adobe Photoshop CS4. For live

cell imaging, parasites were incubated in glass-bottomed dishes

(MatTek) in phenol-red free Dulbecco’s modified Eagle’s

medium supplemented with 1% foetal calf serum and

antibiotics. During imaging, parasites were incubated in a

5% CO2/air atmosphere in a humidified 37uC chamber.

Imaging was performed using a DeltaVision set-up with an

inverted Olympus IX71 microscope, an Olympus objective

lens (UPlanSApo, 1006/1.40 oil), and a Photometrics Cool-

SNAP HQ2 camera. Images were acquired using 262 binning,

and deconvolved prior to linear adjustment of contrast and

brightness. For transmission electron microscopy, parasites

were cultured for three days on 0.5 mg ml21 ATc, fixed in PBS

with 2.5% paraformaldehyde and 1% glutaraldehyde, post

fixed in 1% OsO4, and pellet-embedded in 1% low-melting

agarose. The agarose block was ethanol dehydrated, embedded

in LR White resin and polymerized. Ultrathin sections were

cut on a Leica Ultracut R microtome, lead and uranium

stained and visualized with a Philips CM120 BioTWIN

transmission electron microscope at 120 kV.

Western blot analysis
Antibodies and their concentrations used for Western blots

are listed in Table S1. Parasites were filtered through a 3 mm

filter, counted by haemocytometer and solubilized in sample

buffer (Invitrogen) at equivalent cell densities. Standard

Western blot detection was performed, with Horse Radish

Peroxidase conjugated secondary antibodies detected using

SuperSignal West Pico Chemiluminescent Substrate (Pierce).

Signal strength was quantified using a BioRad Chemidoc

imager.

Growth, replication and conoid extrusion assays
For growth assays extracellular parasites were filtered,

counted by haemocytometer, and 500 parasites added to

25 cm2 tissue culture flasks containing a confluent monolayer

of HFF cells. ATc (0.5 mg ml21) was added from the outset of

the experiment. To visualize plaque sizes, flasks were aspirat-

ed, fixed with 5 ml 100% ethanol (5 minutes), stained with

5 ml crystal violet solution (15 minutes) then washed once with

16 phosphate-buffered saline (PBS) and dried before imaging.

For replication assays, parasites grown for three days with or

without ATc (0.5 mg ml21), harvested and filtered. Equal

numbers were allowed to invade HFF cells on coverslips for

two hours. Coverslips were washed three times with Dulbecco’s

modified Eagle’s medium (DMEM) (supplemented with 1%

FCS, 0.2 mM L-glutamine) to remove uninvaded parasites,

and cultured for 24 hours with ongoing +/2 ATc regimens.

Cells were then fixed and processed for SAG1 IFA and parasite

number per parasitophorous vacuole scored. To assess conoid
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extrusion ability, parasites were grown for three days with or

without ATc, harvested, filtered and resuspened in DMEM to

2.56107 parasites ml21. A23187 was added to samples at a

final concentration of 5 mM (or equivalent volume of DMSO

as a control), and parasites incubated for 30 seconds at 37

uC, then fixed with 1.25% glutaraldehyde and settled on

PEI coated coverslips. Conoid extrusion was scored by

phase microscopy with .200 cells counted per replicate

(n = 3).

Invasion, motility and evacuole assays
Red/green invasion assays were performed as described

previously [44,45]. Briefly, parasites were grown for two days

with or without ATc, harvested within HFF cells by trypsin-

isation, then mechanically released by passage through a 26

gauge needle in Endo Buffer (44.7 mM K2SO4, 10 mM

MgSO4, 106 mM sucrose, 5 mM glucose, 20 mM Tris-

H2SO4, 3.5 mg/ml BSA, pH 8.2). Cells were counted and

resuspended to 2.56107 parasites ml21, and 200 ml allowed to

settle onto HFF cells on coverslips in Endo buffer for 20

minutes. Endo Buffer was then aspirated, and replaced with

200 ml of Invasion Buffer (DMEM supplemented with 3%

FCS, 10 mM HEPES, pH 7.4). After 10 minutes at 37 uC, cells

were fixed with 2.5% Paraformaldehyde and 0.02% glutaral-

dehyde in PBS, blocked, then probed with anti-SAG1 (Abcam)

to label uninvaded cells. Samples were then permeabilized

(0.25%TX100 in 1xPBS) for 10 minutes and probed with anti-

GAP45 to label all cells. IFAs were completed with

secondary antibodies as normal, and then imaged using a

Leica SP2 confocal microscope. Fields of view were selected

observing the green (anti-GAP45) channel only to eliminate

biased selection of parasites. Images were processed using the

Leica SP2 software, and labeled cells scored according to

invaded (red) or uninvaded (red and green). A minimum of 200

parasites were scored for each of three biological replicates,

and invasion percentage calculated as invaded over total

parasites.

For motility assays, PEI coated coverslips were incubated with

fetal calf serum for two hours. Parasite cultures grown for two

days with or without ATc were needle passed, filtered and

resuspended to 107 cells ml21. 1 ml of parasites was placed on

coverslip with either no drug (plus DMSO to equivalent of drug

samples), 1 mm cytochalasin D, or 5 mM A23187, and incubated

at 37 uC for 90 minutes. Samples were then fixed and SAG1 IFAs

performed. Evacuole assays were performed as previously

described [47].

Secretion assay
Parasite cultures grown for two days with or without ATc

were harvested, pelleted, washed with Invasion Buffer and

resuspended to 2.56108 cells ml21. Cells were maintained at

20uC in all steps post harvesting. 50 ml of parasite suspensions

were mixed separately with an equal volume of either Invasion

Buffer alone (plus DMSO to equivalent of drug samples),

1.0 mM mM Zaprinast, 10 mM A23187 or 10 mM 8-Br-cGMP

(final concentrations 0.5 mM, 5 mm, and 5 mM, respectively).

Cells were incubated at 37uC for 20 minutes to allow secretion,

then arrested on ice for 2 minutes before parasites were

separated from secreted soluble proteins by centrifugation at

8000rpm at 4uC for 2 minutes. 85 ml of supernatant was

removed, centrifuged at 8000rpm at 4uC for 2 minutes to

remove any remaining cells, and 75 ml removed and boiled

with Sample Buffer as the secreted protein fraction. The

pelleted cells were washed with PBS and then boiled with

Sample Buffer. Secreted protein samples were analyzed for

MIC2 and AMA1 by Western blot, and cell pellets analyzed

for Tom40 to verify equal cell numbers used for the different

assay conditions.

Supporting Information

Figure S1 Live cell imaging of the N- and C-termini of
RNG2. (A-B) A Western blot depicting mCherry-cMyc-RNG2-

GFP parasites probed with (A) anti-cMyc and (B) anti-GFP. In

both blots, the masses of the tagged RNG2 protein are

equivalent in size (.260 kDa), indicative of successful target-

ing of both termini of the gene. (C) Live cell imaging of

mCherry-cMyc-RNG2-GFP intracellular parasites. Arrow-

heads depict the apical ring. In all parasites, N-terminal

mCherry labeling is posterior to the C-terminal GFP labeling.

(i) In the newly formed apical rings of daughter buds, the N-

terminus of RNG2 is also posterior to the C-terminus (bottom

panel, arrows). Note: fluorescence is also retained in the

residual bodies. (D) Live cell imaging of mCherry-c-myc-

RNG2-GFP parasites in extracellular parasites. (i) N-terminal

mCherry labeling is posterior to the C-terminal GFP-labeling

when the conoid is retracted. (ii) Treatment with Ca2+

ionophore A23187 causes conoid extrusion, and relocation of

the N-terminus of RNG2 to the anterior side of the C-

terminus. Scale bars are 2 mm.

(PDF)

Figure S2 Western blot and immunofluorescence assays
for microneme maturity with RNG2 depletion. (A) In

parasite total protein samples, microneme proteins MIC2 and

AMA1, and mitochondrial protein Tom40, show equivalent

amounts of protein in iDHA-RNG2 cells treated with or

without ATc for three days. Only HA-RNG2, detected by HA

antibodies, shows depletion with ATc treatment. Equal cell

numbers were used in all gel lanes. (B, C) IFA detection of (B)

AMA1 and HA-RNG2, or (C) MIC2 in intracellular iDHA-

RNG2 cells treated with or without ATc for two days. Scale

bar = 5 mm.

(PDF)

Figure S3 8-Br-cGMP-stimulation of microneme secre-
tion is muted in RNG2 minus cells. MIC2 secretion without

RNG2 (iDHA-RNG2 cells +ATc) or with RNG2 (iDHA-RNG2

cells -ATc and parental cells). Constitutive MIC2 secretion, and

secretion with exogenous cGMP (by analogue 8-Br-cGMP) (A), or

calcium stimulation (by ionophore A23187) (B) is assayed by

Western blot. Stimulated microneme secretion by exogenous

calcium is strong in all cells, but by exogenous cGMP is reduced in

RNG2 knockdown cells.

(PDF)

Table S1 Antibodies used for microscopy and protein
assays.

(PDF)
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