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Abstract: Glioma grading and classification, today based on histological features, is not 

always easy to interpret and diagnosis partly relies on the personal experience of the 

neuropathologists. The most important feature of the classification is the aimed correlation 

between tumor grade and prognosis. However, in the clinical reality, large variations exist 

in the survival of patients concerning both glioblastomas and low-grade gliomas. Thus, there 

is a need for biomarkers for a more reliable classification of glioma tumors as well as for 

prognosis. We analyzed relative metabolite concentrations in serum samples from  

96 fasting glioma patients and 81 corresponding tumor samples with different diagnosis 

(glioblastoma, oligodendroglioma) and grade (World Health Organization (WHO) grade II, 

III and IV) using gas chromatography-time of flight mass spectrometry (GC-TOFMS). The 

acquired data was analyzed and evaluated by pattern recognition based on chemometric 

bioinformatics tools. We detected feature patterns in the metabolomics data in both tumor 

and serum that distinguished glioblastomas from oligodendrogliomas (ptumor = 2.46 × 10−8, 

pserum = 1.3 × 10−5) and oligodendroglioma grade II from oligodendroglioma grade III  

(ptumor = 0.01, pserum = 0.0008). Interestingly, we also found patterns in both tumor and serum 

OPEN ACCESS



Metabolites 2015, 5 503 

 

 

with individual metabolite features that were both elevated and decreased in patients that 

lived long after being diagnosed with glioblastoma compared to those who died shortly after 

diagnosis (ptumor = 0.006, pserum = 0.004; AUROCCtumor = 0.846 (0.647–1.000), 

AUROCCserum = 0.958 (0.870–1.000)). Metabolic patterns could also distinguish long and 

short survival in patients diagnosed with oligodendroglioma (ptumor = 0.01, pserum = 0.001; 

AUROCCtumor = 1 (1.000–1.000), AUROCCserum = 1 (1.000–1.000)). In summary, we found 

different metabolic feature patterns in tumor tissue and serum for glioma diagnosis, grade 

and survival, which indicates that, following further verification, metabolomic profiling of 

glioma tissue as well as serum may be a valuable tool in the search for latent biomarkers for 

future characterization of malignant glioma. 

Keywords: glioma; diagnosis; prognosis; blood; tumor; metabolomics; chemometrics; 

latent biomarkers 

 

1. Introduction 

The World Health Organization (WHO) classification of brain tumors of neuroepithelial origin is 

based on histological features [1,2]. Although the classification system has been developed and improved 

over the years, it is still linked to some problems with possible clinical implications [3]. There is a large 

variation in the survival of patients with both glioblastomas (GBM) and low-grade gliomas [4,5]. The 

prognosis for GBM and low-grade gliomas still depends heavily on clinical factors such as age and 

performance status [5–9]. There is a great need to further improve the sub classification of malignant 

brain tumors and molecular pathology holds great promise. Genetic changes such as EGFR and p53 

mutations have been of diagnostic importance but failed to give reliable prognostic or predictive 

information [10]. In anaplastic oligodendroglioma, 1p/19q deletions are associated with better response to 

chemotherapy [9,11] while loss of heterozygosity (LOH) 10q is shown to be a negative factor [9].  

In GBM methylation of the methyl-guanin-methyl transferase (MGMT) promotor has been shown to be 

a positive predictive factor for temozolomide treatment in GBM [12]. More recently isocitrate 

dehydrogenase 1 and 2 (IDH1, IDH2) mutations have been associated with a favorable outcome for low 

grade gliomas in particular but also in GBM [10,13]. Therefore, discussions are ongoing for the 

possibility of including these markers in the WHO classification system [14]. Profiling of mutations, 

gene and protein expressions have recently contributed significantly to the understanding of glioma 

biology [15]. Downstream of the genome and proteome a plethora of low molecular weight metabolites 

constitute the metabolome. The metabolites and their reactions may be considered to be the functional 

fingerprint of protein function, genetic variation and environmental effects. So far, there are a few 

metabolomic studies indicating that specific metabolites detected by magnetic resonance spectroscopy 

(MRS) may be of prognostic value in GBM [16]. In cerebrospinal fluid (CSF), metabolomic analyses 

have demonstrated differences in various metabolites in different glial tumors [17]. However, reports on 

mass spectrometry based metabolomics studies of brain tumor tissue are sparse [18] and only a few 

demonstrate the diagnostic potential of metabolomics [19]. Furthermore, combined metabolomic 

profiling of tumor tissue and serum in the same patients are up to now unexplored. In this paper, we 
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applied a predictive metabolomics strategy [20] to a series of consecutive primary neuroepithelial brain 

tumors and corresponding serum samples. Gas chromatography coupled to time of flight mass 

spectrometry (GC-TOFMS) and pattern recognition by means of multivariate data analysis was applied 

for the identification of potentially discriminative or prognostic metabolic patterns. Based on this, we 

show that the metabolic profiles in tumor and serum discriminate different glioma subgroups and may 

harbor prognostic information that may potentially play a future role as latent biomarkers in a clinical setting. 

2. Results 

2.1. Data Processing and Curation 

From the GC-TOFMS acquired data from tumor tissue sample extracts 197 features were detected 

and resolved using hierarchical multivariate curve resolution (HMCR). Of those, 63 were assigned with 

a putative molecular identity by standard library comparisons. From the GC-TOFMS acquired data from 

serum sample extracts 230 features were detected and resolved. Of those, 87 could be assigned with a 

putative molecular identity by standard library comparisons. Unidentified features were kept in the 

analysis. Two features from each sample type data were found to be artifacts and thus excluded from the 

data. One tissue sample displayed a distinctly deviating profile compared to the others, due to an 

analytical error, and was excluded from further analysis resulting in a total of 80 tissue samples. Six 

serum samples were not properly derivatized causing erroneous data and were thus excluded from further 

analysis, resulting in a total of 90 serum samples included in the final analysis. 

2.2. GBM and Oligodendroglioma Show Different Metabolic Patterns 

Comparing metabolic profiles from tissue between GBM and oligodendrogliomas revealed 12 

significantly differentiating features (w*average ± 2 standard deviations (SD)). In serum, 13 metabolic 

features were significantly differentially expressed. Investigation of the significance of the detected 

metabolic patterns by means of orthogonal partial least squares-discriminant analysis (OPLS-DA) 

showed that it was possible to distinguish between glioblastomas and oligodendrogliomas in both tumor 

and serum (A = 1 + 0 + 0, R2X = 0.39, R2Y = 0.379, Q2 = 0.341, p = 2.46 × 10−8 and A = 1 + 0 + 0, 

R2X = 0.25 R2Y = 0.251 Q2 = 0.223, p = 1.3 × 10−5) (Figure 1). Detected features with a suggested 

identity from spectral library comparison (fragmentation pattern and retention index) responsible for 

discriminating between the diagnoses in tumor and serum are listed in Table 1. In summary, higher levels 

of mannitol and phenylalanine where found in GBMs compared to oligodendrogliomas in tissue while 

2-hydroxyglutaric acid, 4-Aminobutyric acid (GABA), creatinine, glycerol-2-phosphate,  

glycerol-3-phosphate, ribitol and myo-inositol showed higher levels in oligodendrogliomas as compared 

to GBM. In serum, cysteine was found at higher levels in GBMs, while lysine and 2-oxoisocaproic acid 

showed higher levels in oligodendrogliomas. 
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Table 1. Metabolic features altered in multivariate comparisons. 

 Tissue Serum 

Metabolite Id RI 
Corr. Diagnosis 

GBM vs. Oligo 

Corr. Grade 

Oligo 

Corr. Survival 

GBM 

Corr. Survival 

Oligo 
RI 

Corr. Diagnosis 

GBM vs. Oligo 

Corr. Grade 

Oligo 

Corr. Survival 

GBM 

Corr. Survival 

Oligo 

1-Monohexadecanoylglycerol      2679  ↓ *   

2-Hydroxyglutaric acid 1570.5 ↓ *         

2-Oxoisocaproic acid      - ↓    

4-Aminobutyric acid (GABA) 1525.3 ↓ *         

Alanine      1472.4  ↑   

Aminomalonic acid 1465.0    ↓ *      

Creatinine 1548.3 ↓ *         

Cystine      2385.4 ↑ *    

Fructose 1858.8 ↓ *  ↑ *       

Glycerol-2-phosphate 1714.6 ↓ *         

Glycerol-3-phosphate - ↓ *  ↑ *  -     

Glycine 1305.5    ↓ *      

Hexadecenoic acid      2123.6    ↑ 

Lauric acid      1749.9 ↓    

Lysine      2020.7  ↓   

Maltose      2824.1  ↑  ↓ 

Mannitol 1917.5 ↑ * ↑*   2029.0  ↑*   

Myo-Inositol - ↓ *  ↑ * ↑ -    ↑ * 

Oxalic acid 1118.3  ↓*        

Phenylalanine 1621.0 ↑ *    1722.0     

Ribitol 1708.2 ↓ *  ↑ * ↑ *      

Serine 1358.4  ↑        

Spermidine 2244.7    ↑ *      

Sterol 2864.5    ↓      
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Table 1. Cont. 

 Tissue Serum 

Metabolite Id RI 
Corr. Diagnosis 

GBM vs. Oligo 

Corr. Grade 

Oligo 

Corr. Survival 

GBM 

Corr. Survival 

Oligo 
RI 

Corr. Diagnosis 

GBM vs. Oligo 

Corr. Grade 

Oligo 

Corr. Survival 

GBM 

Corr. Survival 

Oligo 

Threonic acid 1551.6  ↑        

Threonic acid-1,4-lactone      1472.2  ↑   

The Metabolite id column show putative identities of all resolved features altered in the multivariate models based on spectral library comparison (fragmentation pattern and 

retention index). RI denotes retention index. The Corr. Diagnosis column shows the features affected by diagnosis (GBM vs. oligodendroglioma) where the arrows denote 

if the metabolic feature is elevated (↑) or lowered (↓) in GBM compared to oligodendrogliomas. The Corr. Grade column shows the feature affected by different grades (II 

and III) in oligodendrogliomas, the arrows illustrate if the metabolic feature is elevated (↑) or lowered (↓) in grade III compared to grade II. The column Corr. Survival 

GBM, show the features that differ between long and short survival in glioblastoma and the Corr. Survival Oligo column show the metabolic features that differ in relation 

to survival time in oligodendrogliomas. The arrows illustrate if the metabolic feature is elevated (↑) or lowered (↓) in long survival patients as compared to short survival 

patients. * denote a significant p-value (<0.05) calculated using Mann–Whitney U test. 
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Figure 1. Receiver operating characteristic (ROC) curves and scatter plots of orthogonal 

partial least squares-discriminant analysis (OPLS-DA) scores following a seven-fold  

cross-validation procedure showing differences associated with diagnosis and tumor grade. 

(Upper panel) ROC curves based on the cross-validated score values from the final  

OPLS-DA model for the discrimination of glioblastoma and oligodendroglioma in tissue 

(blue line) and serum (red line) with area under the ROC curve (AUROCC) values of 0.881 

(0.791–0.970) and 0.826 (0.722–0.929), respectively (left). The scatter plots show the class 

differences between glioblastoma and oligodendroglioma based on cross-validated 

predictive OPLS-DA scores (tcv[1]p) for tissue (center) and serum (right). (Lower panel) 

ROC curves based on the cross-validated score values from the final OPLS-DA model 

discriminating between World Health Organization (WHO) grade II and III in 

oligodendroglioma in tissue (blue line) and serum (red line) with AUROCC values of 0.833 

(0.557–1.000) and 0.946 (0.858–1.000), respectively (left). The scatter plots show the class 

differences between grade II and grade III based on cross-validated predictive OPLS-DA 

scores (tcv[1]p) for tissue (center) and serum (right). 

2.3. Metabolic Differences between Oligodendroglioma WHO Grade II and III 

For the comparison between oligodendroglioma grade II and grade III, 10 resolved features fulfilled 

the significance criteria in tissue and provided a separation between the two sample classes in an  

OPLS-DA model (A = 1 + 0 + 0, R2X = 0.579, R2Y = 0.505, Q2 = 0.434, p = 0.01) (Figure 1). Serine, 

threonic acid and mannitol were all elevated in in oligodendroglioma grade III, while oxalic acid was 

elevated in oligodendroglioma grade II. In serum, 12 resolved features as a pattern in an OPLS-DA 

model provided a significant difference between oligodendroglioma grade II and grade III  

(A = 1 + 0 + 0, R2X = 0.405, R2Y = 0.589, Q2 = 0.589, p = 0.0008) (Figure 1). Mannitol, maltose, 

threonic acid-1,4-lactone and alanine were all higher in relative concentration in grade III 

oligodendrogliomas, while lysine and 1-monohexadecanoylglycerol were found in lower relative 

concentrations in grade III as compared to grade II oligodendrogliomas (Table 1). 
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2.4. Metabolic Profiles Associated with Survival 

In GBM, the metabolic profiles of tumor samples from patients surviving long after diagnosis  

(≥3 years) were compared to patients that died shortly after diagnosis (≤4 months). Based on seven 

resolved features passing the significance criteria, OPLS-DA provided a significant separation 

associated with time of survival (A = 1 + 0 + 0, R2X = 0.669, R2Y = 0.474, Q2 = 0.427, p = 0.006) 

(Figure 2). Interpretation of the model revealed that glycerol-3-phoshate, myo-inositol, ribitol and 

fructose increased in level with long survival. Furthermore, we detected a significant association with 

survival time in serum samples from the same patients in an OPLS-DA model based on five resolved 

features (A = 1 + 0 + 0, R2X = 0.536, R2Y = 0.572, Q2 = 0.478, p = 0.004; Figure 2). Unfortunately, it 

was not possible to obtain a suggested identity for any of the affected features found in serum. The same 

comparison was carried out in patients with oligodendroglioma. In tumor tissue, eight resolved features 

passed the significance criteria and provided a significant metabolic pattern (OPLS-DA model) in 

relation to time of survival (A = 1 + 0 + 0, R2X = 0.56, R2Y = 0.796, Q2 = 0.767, p = 0.01; Figure 2). 

High levels of ribitol, myo-inositol and spermidine were associated with long survival, while high levels 

of glycine, aminomalonic acid and highly likely an unidentified sterol were associated with short survival 

time. A complete separation with respect to survival time could also be seen in serum (Figure 2). The 

final OPLS-DA model was based on 13 resolved features, which together formed a significant metabolic 

pattern (A = 1 + 0 + 0, R2X = 0.521, R2Y = 0.909, Q2 = 0.855, p = 0.001). In this model, myo-inositol 

and hexadecenoic acid were associated with long survival time. All features with a putative identity 

significant in oligodendroglioma survival can be viewed in Table 1. AUCROCC analyses of the extracted 

metabolic patterns visualized as the OPLS-DA score values following a seven-fold cross-validation 

procedure for GBM in tumor and serum gave ROC values of 0.846 (0.647–1.000) and 0.958 (0.870–1.000), 

respectively (Figure 2). In oligodendroglioma, the corresponding ROC values reached the value 1 

(1.000–1.000) in both tumor and serum. 

2.5. Pathway Analysis 

By processing the features of interest using their putative metabolite identity (Table 1) utilizing the 

IPA® platform (Ingenuity Systems, Inc), a number of canonical pathways in serum and tissue were 

identified, with amino and fatty acid metabolism ending up among the top ranked pathways. Metabolites 

involved in theses pathways as well as other metabolites of interest described in Table 1 with regards to 

tumor biology were selected for further discussion. 
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Figure 2. Receiver operating characteristic (ROC) curves and scatter plots of orthogonal 

partial least squares-discriminant analysis (OPLS-DA) scores following a seven-fold  

cross-validation procedure showing differences between long and short survival time. 

(Upper panel) ROC curves based on the cross-validated score values from the final  

OPLS-DA model for the discrimination of short survival time compared to long survival 

time in patients with glioblastomas in tissue (blue line) and serum (red line) with ROC values 

of 0.846 (0.647–1.000) and 0.958 (0.870–1.000), respectively (left). The scatter plots show 

class differences between short survival time and long survival time based on  

cross-validated predictive OPLS-DA scores (tcv[1]p) for tissue (center) and serum (right). 

(Lower panel) ROC curves based on the cross-validated score values from the final  

OPLS-DA model for the discrimination of short survival time compared to long survival 

time in patients with oligodendrogliomas in tissue (blue line) and serum (red line). AUROCC 

values for survival in oligodendroglioma were calculated to 1 (1.000–1.000) for both tissue 

and serum (left). The scatter plots show class differences between short survival time and 

long survival time based on cross-validated predictive OPLS-DA scores (tcv[1]p) for tissue 

(center) and serum (right). 

3. Discussion 

3.1. Metabolomic Differences Associated with Diagnoses and Grading 

The present study is one of the first to demonstrate metabolomic pattern differences in tumor tissue 

between different neuroepithelial tumors as well as the potential prognostic information obtained 

utilizing mass spectrometric methods. In addition, it is the first study to demonstrate the metabolomic 

pattern differences in corresponding serum samples from the very same patients. Previously, Cueller-Baena 

demonstrated differences between different pediatric brain tumors by High-Resolution Proton Magnetic 

Angle Spinning Spectroscopy (HR-MAS) [19]. Using H-MRS, Law et al. demonstrated that MR 

spectroscopy could be of value to predict the grading of glial tumors [21]. Also using HR-MAS NMR, Erb 
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et al. could distinguish different grades of oligodendrogliomas [18]. By mass spectrometric methods 

Chinnaiyan et al. have shown that the metabolomic profile in tissue differs between different grades of 

glioma [22], a finding supported by the paper from Nakamizo et al. reporting differences in CSF related 

to the grade of astrocytoma/GBM [17]. 

From a biological point of view, it could appear quite obvious that there should be a difference in the 

metabolism of different primary brain tumors [23]. In our study, there is a significant difference between 

GBM and oligodendrogliomas, especially in tissue but interestingly also in serum. In tissue, a pattern 

based on 12 resolved features and in serum 13 resolved features were included in the multivariate model. 

Whether this difference is related to the tumor grade itself or to the histological type cannot be concluded 

from our analyses. However, when analyzing oligodendrogliomas a distinct metabolic pattern was 

detected related to grade, i.e., grade II and III. This finding could indicate that changes in the metabolome 

are correlated to not only the histology type but also to the grade of the tumors. 

3.2. The Metabolome as Prognostic Factor 

Grading of the tumors should according to the aims of the WHO classification be related to the 

prognosis [2]. However, for many histopathological entities there are large variations in survival.  

For example, in GBM the survival can vary between 0.4 to 142 months in larger series [4] and for  

low-grade gliomas from 0.2 to 16 years [5]. In a clinical setting, this is unsatisfactory. Quon et al. have 

by repeated MRS in glioma patients undergoing surgery and radiotherapy demonstrated that changes in 

choline could provide prognostic information [24]. In a microdialysis study, our group has previously 

investigated the metabolomic alterations in GBM during the early course of radiotherapy [25]. In that 

study, significant changes in metabolic patterns were disclosed. Majos et al. analyzed MRS spectra in 

patients with high-grade astrocytomas (grade III and GBM) and found prognostic information [26]. 

Although they did not identify any specific metabolites, their study points to the possibility of utilizing 

a metabolic signature or pattern for prognostication. Our analysis showed that were associations between 

the metabolome and time of survival in tumor and serum of both GBM and oligodendrogliomas and that 

there was a break-point for a high prognostic value based on changes in the metabolome for patients 

with GBM living shorter than four months, and longer than three years. A prognosis of less than four 

months survival might indicate that an aggressive treatment should be avoided, while a prognosis better 

than three years may support a more active approach. For oligodendrogliomas, the corresponding  

break-points were two and three years, respectively. If further verifications of these findings are 

successful in separate sample cohorts, this methodology might possess a potential means to extract latent 

variables holding prognostic information regarding glioma survival. 

3.3. Metabolic Pathways and Specific Metabolites of Interest 

In general, we have found it hard to corroborate our findings to the existing literature due to the lack 

of metabolomics data regarding gliomas. Although there are an increasing number of publications based 

on MRS and NMR reporting on single or a few metabolites, there are few studies on metabolomics 

utilizing mass spectrometric methods in brain tumors. By utilizing the IPA® pathway analysis platform, 

we could identify a number of potential pathways, including amino and fatty acid metabolism, or 

metabolic entities that the detected metabolites of interest are involved in. Since the high grade of 
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complexity in tumor metabolism possesses a major challenge when it comes to mechanistic 

interpretations, we found it difficult to draw any major mechanistic conclusions based on the pathway 

analysis in this limited material Nevertheless, some of the putatively identified metabolites found in our 

study can be interpreted in a biological context and are discussed below. 

Mannitol was found at higher levels in GBM compared to oligodendroglioma and in oligodendroglioma 

grade III compared to oligodendroglioma grade II. In clinical practice mannitol is used temporarily 

during surgery to reduce brain edema. Almost all patients, except for a few with low-grade tumors, 

received 200–300 mL mannitol approximately 1–2 h before resection of the tumor. Mannitol is a large 

molecule that normally does not pass the blood–brain barrier, therefore, it is not surprising that we found 

higher levels of mannitol in the high-grade tumors where a more or less defect blood–brain barrier is to 

be expected. Peeling et al. have previously demonstrated that mannitol was found in glioma tissue only 

when the tumors analyzed showed a contrast enhancement on MR indicating a disruption of the  

blood-brain barrier [27]. 

Creatinine was also found as significantly altered between GBM and oligodendroglioma. It is a 

breakdown product of creatine phosphate, which can be used as a reserve of high-energy phosphates for 

the brain, anaerobically phosphorylating ADP to ATP [28]. Creatine phosphate is likely to be consumed 

to a higher extent by the more aggressive tumors leading to lower levels of the creatine phosphate 

breakdown product, creatinine. This could explain why we see lower levels of creatinine in tissue from 

GBM tumors as compared to oligodendroglioma. 

We also found that levels of GABA in tumor were lower in GBM compared to oligodendroglioma. 

GABA is an important inhibitory neurotransmitter. The number of publications reporting on GABA in 

glioma is sparse and provides conflicting information. One study by Faria et al. showed that GABA was 

detectable in low-grade astrocytomas and normal brain, however they failed to detect GABA in high 

grade tumors [29], while another study by Biachi et al. found increased levels of GABA in GBM as 

compared to normal brain using microdialysis [30]. Another neurotransmitter, glutamate, is a substrate 

for GABA and an intermediate in the glutamine conversion to oxaloacetate in the amino acid, nucleotide 

and lipid synthesis [31]. Glutamate takes part in the energy supply, and has an important role as an 

excitotoxic substance promoting glioma invasiveness [32,33]. Several studies have demonstrated, by 

NMS in tissue or in the extracellular space by microdialysis, that the glutamate concentration is higher 

in more malignant gliomas, or in gliomas compared to normal brain [34–36]. In this study, we did not 

find any significant differences in glutamate levels, however, we had no possibility to compare low-grade 

astrocytomas with GBM. 

Glycerol-3-phosphate is the backbone of triglycerides and glycerophospholipids and is also involved 

in the fatty acid oxidation cycle generating NADH. Accordingly, we found that the glycerol-3-phosphate 

level was lower in GBM compared to oligodendrogliomas as well as lower in short surviving patients, 

which would be expected in highly proliferating tumors. 

Myo-inositol is an interesting metabolite. Previous studies have reported that low levels of myo-inositol 

are associated with higher aggressiveness of the glioma phenotype [37,38]. Kinoshita et al. and Faria  

et al. also found that inositol was lower in GBM as compared to astrocytoma grade II and III, while 

Wright and fellows found that the myo-inositol level in GBM where similar to the level in astrocytoma 

grade III but lower than in grade II [29,36,39]. We can confirm those findings in our study where we 

found that the level of myo-inositol was significantly lower in GBM as compared to oligodendrogliomas 
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and that long survival patients from both tumor types have higher levels of myo-inositol than patients 

that die shortly after diagnosis. Myo-inositol is an activator of protein C kinase [37]. The activation of 

PKC contribute to tumor cell survival and proliferation and has shown to be involved in the progression 

of malignant gliomas [40]. 

When comparing metabolic profiles in patients that lived long after diagnosis compared to patients 

that died shortly after diagnosis we found glycine to be of interest. Glycine has been detected by MRS 

at higher concentrations in high grade gliomas and therefore been suggested as a possible diagnostic 

marker [41]. In our study, glycine were higher in patients that died shortly after diagnosed with 

oligodendroglioma supporting that higher concentrations of glycine is associated with a worse prognosis. 

Unfortunately, no correlation of glycine with survival in GBM could be found in our material. 

3.4. Multivariate Metabolic Patterns and Latent Biomarkers 

Analyzing the metabolome is a complex and difficult task. We believe that one should keep the 

discussion of metabolic differences between different histopathological types of tumors apart and 

separate from the discussion of metabolism within a specific type of tumor. Merging all gliomas into 

one group only taking the grade into account may result in confusing conclusions. It is also important 

that the differences disclosed are based on a multivariate analysis, which does not necessarily mean that 

specific metabolites in the statistical model are of prime importance by themselves, but rather the 

combined pattern together with other defined metabolites. We consider the main findings of the study to 

be that there is evidence suggesting that metabolic patterns in both tumor and serum contain information 

that potentially can be used as diagnostic or even as prognostic latent biomarkers in gliomas. Although 

very interesting, we also realize the need to verify these findings in separate materials with higher sample 

numbers in order to get a correct measure of the predictive ability as well as a clearer picture of the 

clinical value of the extracted latent biomarkers. 

4. Method 

4.1. Samples 

Snap-frozen tumor tissue from 81 gliomas was included in the study. The series was consecutively 

collected from patients that underwent open resection and day-time surgery during 2004 to 2008.  

Fifty-seven patients were diagnosed according to the WHO classification with GBM, 4 patients were 

diagnosed with grade II and III astrocytomas and 20 patients with oligodendroglioma of WHO grade II 

and III. All samples were retrospectively reviewed and classified according to WHO 2007 [1]. Tissue 

for diagnostic analyses was always collected first and only if the amount of tissue was enough, samples 

for research were collected. The collected tissue was snap-frozen in 2 mL polypropylene vials (Sarstedt 

AG & Co, Nümbrecht, Germany) in liquid nitrogen at the surgical theatre immediately following 

resection from the patient. Serum samples from the same patients were collected in 10 mL plain glass 

blood-tubes (BD Vacutainer®) spun down, fractionated and frozen in 2 mL polypropylene vials (Sarstedt 

AG & Co.) at −20 °C within 45 min. Serum was collected from ten additional patients diagnosed with 

GBM and from five more patients with oligodendrogliomas. The four patients diagnosed with 
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astrocytoma grade II and III were excluded from further analyses due to the low number making 

statistical analyses unreliable. All collected samples were transferred to −80 °C within one week. 

All patients included gave their informed consent to participate and the study was approved by the 

Ethics committee of Umeå University. 

4.2. Sample Preparation and GC-TOFMS Analysis 

One milliliter extraction solution consisting of chloroform (20%), methanol (60%) and water (20%) 

with 11 IS (7 ng/μL) was added to 15 mg of tissue. Tissue samples were kept frozen on dry ice until the 

extraction solutions were added. Two tungsten beads were placed in each sample tube and the tissue 

samples were milled for 2 min, 30 Hz using a MM301 vibration Mill (Retsch GmbH & Co. KG, Haan, 

Germany) before centrifuged for 15 min, 4 °C, 14 000 rpm. 200 μL of the collected supernatant was 

transferred to GC vials and evaporated to dryness. The serum samples were thawed in room temperature 

for 30 min before addition of 900 μL extraction solution consisting of methanol (90%) and water (10%) 

with 11 IS (7 ng/μL) to 100 μL serum. The serum samples were extracted using the same approach as 

for the tissue samples, except for the tungsten beads. The samples were then methoxymated with 30 μL 

of methoxyamine solution in pyridine (15 μg/μL) and left standing at room temperature for 16 h before 

trimethylsilylation with 30 μL of MSTFA. After 1 h, 30 μL of heptane (containing 0.5 μg of methyl 

stearate) was added. One microliter of derivatized sample was injected splitless by an Agilent 7683 

Series autosampler (Agilent, Atlanta, GA, USA) in randomized order into an Agilent 6980 GC equipped 

with a 10 m × 0.18 mm i.d. fused-silica capillary column chemically bonded with 0.18 μm DB5-MS 

stationary phase (J&W Scientific, Folsom, CA, USA). The injector temperature was set to 270 °C. 

Helium was used as carrier gas at a constant flow rate of 1 mL/min through the column. The purge time 

was set to 60 s at a purge flow rate of 20 mL/min and an equilibration time of 1 min for every analysis. 

Initially, the column temperature was kept to 70 °C for 2 min and then increased to 320 °C at 30 °C/min, 

where it was kept for 2 min. The column effluent was introduced into the ion source of a Pegasus III 

TOFMS (Leco Corp., St Joseph, MI, USA). The transfer line temperature was set to 250 °C and the ion 

source temperature to 200 °C. Ions were generated by a 70 eV electron beam at a current of 2.0 mA. 

Masses were acquired from m/z 50 to 800 at a rate of 30 spectra/s, and the acceleration voltage was 

turned on after a solvent delay of 165 s. The stable isotope-labeled internal standard compounds (IS) 

[13C5]-proline, [2H4]-succinic acid, [13C5,15N]-glutamic acid, [1,2,3-13C3]-myristic acid, [2H7]-cholesterol 

and [13C4]-disodium α-ketoglutarate were purchased from Cambridge Isotope Laboratories (Andover, 

MA). [13C12]-sucrose, [13C4]-palmitic acid and [2H4]- butanediamine 2HCl were from Campro 

(Veenendaal, The Netherlands). [13C6]-glucose was from Aldrich (Steinheim, Germany) and 

[2H6]-salicylic acid was from Icon (Summit, NJ, USA). Stock solutions of the IS were prepared either in 

purified and deionized water (Milli-Q, Millipore, Billerica, MA, USA) or in methanol (J.T. Baker, 

Deventer, The Netherlands) at a concentration, 0.5 μg/μL. Methyl stearate was purchased from Sigma 

(St. Louis, USA). N-Methyl-N-trimethylsilyltrifluoroacetamide (MSTFA) with 1% trimethylchlorosilane 

(TMCS) and pyridine (silylation grade) were purchased from Pierce Chemical Co. Heptane was 

purchased from Fischer Scientific (Loughborough, UK). 
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4.3. Data Processing 

To be able to relatively quantify and provide a putative identity for all detected individual features, 

the acquired GC-TOFMS data were processed by applying HMCR [42,43]. HMCR uses a multivariate 

approach for generating pure chromatographic signatures together with corresponding mass spectra for 

all detected feature peaks. In this way multiple sample comparisons based on the whole metabolic profile 

will be greatly facilitated. For this, NetCDF files of the raw acquired GC-TOFMS data were exported to 

MATLAB 7.11.0 (R2010b) (Mathworks, Natick, MA, USA) where baseline correction, alignment,  

time-window settings were carried out before applying HMCR time-window wise to resolve the 

individual feature peaks. All data processing including HMCR was done using in-house developed 

scripts. For the tissue data, the chromatograms were divided into 64 time windows from which 197 

chromatographic peaks (features) were resolved resulting in a data matrix (X) were each row represents 

one patient and each column represents one feature, e.g. metabolite. Similarly, for the serum data, the 

chromatograms were divided into 67 time windows from which 230 chromatographic peaks were 

resolved. For each feature in each sample the area under the chromatographic peak, the relative 

concentration, was calculated. All peak areas were normalized using the peak areas from the 11 internal 

standards. The detected features’ mass spectral profile and retention indices were compared to spectra 

in an in-house spectral library of metabolite standards and the NIST library 2.0 (as of 31 January 2001) 

to provide a putative identity for each individual feature. This was followed by a manual inspection and 

curation of the data to further resolve co-eluting compounds and to correct for split peaks. 

4.4. Pattern Recognition and Statistical Analysis 

Pattern recognition utilizes multivariate projection methods to extract and verify co-varying patterns 

or signatures of variables that are significant for explaining systematic variation in experimental data. In 

metabolomics, pattern recognition works to compress the variable space, i.e., the detected and relatively 

quantified metabolic features, into a few latent variables, e.g., principal components, explaining the 

majority of the systematic variation in the data. In this way interpretation of changes in metabolic 

signatures as well as detection of robust and relevant sample patterns caused by those signature changes 

are largely facilitated. In this work, processed metabolomics data from tissue and serum samples were 

analyzed separately using different pattern recognition approaches. In a first step, principal component 

analysis (PCA) [44] was applied to get an unsupervised overview of the variation in the data and to 

detect deviating samples, so-called outliers. For further multivariate sample comparisons with the aim 

to look for differences between pre-defined sample classes, orthogonal partial least squares-discriminant 

analysis (OPLS-DA) [45] was used. OPLS is a supervised multivariate regression method allowing a 

separation of the variation into predictive variation (related to the response(s) of interest) and orthogonal 

variation (variation unrelated to the response(s) of interest). This has been shown to facilitate the 

interpretation of complex multivariate data and the interactions therein. The combined data processing 

and pattern recognition procedure can be overviewed in Figure 3. Initially, the diagnostic potential of 

the metabolic profiles in terms of discriminating between GBMs and oligodendrogliomas was evaluated. 

The low grade astrocytomas (grade II and III) were excluded from further evaluation due to the low 

number of samples making statistical analysis unfeasible. Then differences in tumor grade were 
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investigated comparing samples from oligodendroglioma patients with grade II and grade III tumors, 

respectively. Finally, metabolic patterns associated with survival time were investigated in glioblastomas 

and oligodendrogliomas separately. From the calculated OPLS-DA models, model weight values (w*), 

i.e., variable contribution values for the pre-defined sample class separations, were extracted and only 

variables related to the class separation were included in the final OPLS-DA models (w*average ± 2 SD). 

Furthermore, a Mann–Whitney U-test was used to calculate a probability value (p-value) for each 

included metabolite in relation to the class separations of interest. All models were validated using  

cross-validation and p-values for the cross-validated model were calculated using CV-ANOVA [46].  

A seven-fold cross-validation procedure was applied using 1/7 of the data as the test set, while the 

remaining 6/7 of the data were modeled and then repeating this seven times. Furthermore, for all  

OPLS-DA models the number of latent variables (OPLS components) (A), the variation described in the 

metabolite data (R2X), the between class variation described (R2Y) and the between class variation 

predicted based on cross-validation (Q2) were reported. When comparing time of survival in GBM, 

patients that died shortly after diagnosis (≤4 months) were compared to patients that lived long after 

diagnosis (≥3 years). For oligodendrogliomas, patients that died within 2 years after diagnosis (short 

survival) were compared to patients that lived for more than 3 years (long survival). Survival groups 

were selected based on retrospective data from our institution with an expected 4 months survival in 

GBM of 65% and 3 year survival of only 8%. In oligodendroglioma grade II, 2- and 3-year survival is 

expected to be 78% and 75%, respectively. For patients with oligodendroglioma grade III expected 

survival of 2 and 3 years is 50% and 50%, respectively. However, in our consecutively collected 

material, we did not have enough patients within any clinically relevant time limits. Instead, we had two 

almost equally sized groups of patients; one group that died within two years of diagnosis and the other 

group that lived longer than 3 years, which is why those limits were the most inherent to get reliable 

statistics. All pattern recognition analysis, including cross-validation and CV-ANOVA, was performed 

in SIMCA (version SIMCA-P + 13.0; Umetrics, Umeå, Sweden). Model plots were created using 

SIMCA or GraphPad Prism (5.04; GraphPad Software Inc., La Jolla, CA, USA) in combination with 

Adobe Illustrator CS5 (15.0.0; Adobe Systems Inc., San Jose, CA, USA). To summarize the results, 

Receiver Operating Characteristic (ROC) curves were calculated for the detected significant metabolic 

patterns associated with survival. This way of utilizing ROC curves for metabolic patterns as compared 

to the conventional way using single markers is novel and makes it possible to evaluate the diagnostic 

and prognostic potential of metabolic patterns or signatures in a way that is familiar to the clinical 

community. The ROC calculations were performed in ROCCET: ROC Curve Explorer & Tester 

(www.roccet.ca) [47]. 

4.5. Pathway Analysis 

Resolved features with a putative identity surviving the criteria for significance described previously 

were subjected to pathway analysis, using IPA® (Ingenuity Systems, Inc, Reawood City, CA, USA). Top 

canonical pathways and biological functions were investigated. Detected metabolites in pathways 

relevant for tumor biology were selected for further evaluation and discussion. 
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Figure 3. Overview of the metabolomic workflow. (Upper panel. Left) Raw gas 

chromatography-time of flight mass spectrometry (GC-TOFMS) data for the analyzed 

samples makes up a three dimensional matrix with the Time axis being retention time or 

index for each metabolite linked to the elution from the chromatographic system, the mass 

to charge (m/z) axis being the mass over charge ration for the molecular fragments detected 

by the mass spectrometer and the Samples axis being the analyzed samples. (Middle) To 

obtain pure chromatographic and spectral profiles for relative quantification and 

identification of metabolites the raw GC-TOFMS data was processed by hierarchical 

multivariate curve resolution (HMCR), which is a multivariate deconvolution technique 

especially developed to resolve complex GC-MS based metabolomics data from multiple 

samples to make it suitable for multiple sample comparisons by means of e.g. pattern 

recognition approaches. (Right) The area under each resolved metabolite peak makes up the 

variables of the resulting data matrix (X) used as input for further pattern recognition and 

statistical analysis. Each column of X represents one resolved metabolite peak over all 

samples (rows of X). Chemometric bioinformatics based pattern recognition is applied to, 

X.; e.g. for investigating the difference between two sample classes (turquoise and grey in 

X). (Lower panel. Left) The sample variation of X is projected in the model scores allowing 

interpretation of sample distribution patterns. Each symbol in the scores plot represents one 

sample described by all variables/metabolites (columns of X). As an example, the pink 

sample symbol relates to the pink row of X. (Right) The variable/metabolite variation is 

projected in the model loadings allowing interpretation of sample distribution patterns and 

explanation of variable contribution to patterns in seen in scores. Each symbol in the loading 

plot represents on variable/metabolite. As an example, the blue symbol relates to the blue 

column of X as well as the blue resolved metabolite profile in the upper middle frame. 
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