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ABSTRACT

The advent of high-throughput sequencing technolo-
gies made it possible to obtain large volumes of ge-
netic information, quickly and inexpensively. Thus,
many efforts are devoted to unveiling the biologi-
cal roles of genomic elements, being the distinc-
tion between protein-coding and long non-coding
RNAs one of the most important tasks. We describe
RNAsamba, a tool to predict the coding potential of
RNA molecules from sequence information using a
neural network-based that models both the whole se-
quence and the ORF to identify patterns that distin-
guish coding from non-coding transcripts. We eval-
uated RNAsamba’s classification performance using
transcripts coming from humans and several other
model organisms and show that it recurrently out-
performs other state-of-the-art methods. Our results
also show that RNAsamba can identify coding sig-
nals in partial-length ORFs and UTR sequences, evi-
dencing that its algorithm is not dependent on com-
plete transcript sequences. Furthermore, RNAsamba
can also predict small ORFs, traditionally identi-
fied with ribosome profiling experiments. We believe
that RNAsamba will enable faster and more accu-
rate biological findings from genomic data of species
that are being sequenced for the first time. A user-
friendly web interface, the documentation containing
instructions for local installation and usage, and the
source code of RNAsamba can be found at https:
//rnasamba.lge.ibi.unicamp.br/.

INTRODUCTION

High-throughput sequencing technology has enabled the
sequencing of genomes and transcriptomes of a myriad of
species, yielding large quantities of genetic information (1).
Hence, great effort is dedicated to characterize the obtained

data, mainly by the identification of functional genomic el-
ements such as messenger RNAs (mRNAs) and long non-
coding RNAs (lncRNAs).

Due to their role of carriers of protein synthesis informa-
tion, mRNAs have been studied for several decades and are
well represented in genetic databases. In contrast, lncRNAs,
which are defined as transcripts >200 nucleotides that are
not translated into proteins (2), have been known for much
less time and only recently their role as regulators of gene
expression and their link to genetic diseases has been un-
veiled.

One of the main goals of the functional annotation of
genomes and transcriptomes is the identification of mRNAs
and lncRNAs. Over the last two decades, a massive effort
was conducted by the ENCODE and GENCODE projects
to identify and characterize all functional elements of the
human and mouse genomes, including mRNAs and lncR-
NAs, using a range of different sequencing data and manual
curation procedures (3,4). For non-model organisms, how-
ever, the annotation of such elements usually depends solely
on computational inferences.

In the vast majority of genome annotation projects, the
characterization of genomic elements relies on the compar-
ison of sequences or structures with databases of biologi-
cal sequences, which is very time-consuming (5) and poses
limitations for both the annotation of mRNAs and lncR-
NAs. As only a fraction of the genetic diversity existing
in nature is known and available in databases, many new
protein-coding genes are not identified because their pro-
tein product is not found among existing data (6). On the
other side, as lncRNAs are not under the same evolutionary
constraints as mRNAs, they display lower sequence con-
servation than protein-coding transcripts (7,8), resulting in
failure to find homologous sequences in database searches
(9,10).

Even though mRNAs and lncRNAs usually share many
molecular features (11,12), they display contrasting se-
quence properties that can be used to create statistical mod-
els capable of computing the coding potential of any given
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transcript without the limitations of database-based an-
notation pipelines. Most of these approaches employ ma-
chine learning algorithms to differentiate coding and non-
coding transcripts based on a series of human-designed se-
quence features such as ORF length and integrity (13,14),
GC-content (11), 3-base periodicity (15), k-mer frequencies
(16,17) and hexamer usage bias (18). However, the usage of
these features may introduce bias to the classification, caus-
ing, for instance, the models to misclassify lncRNAs pos-
sessing long ORFs and coding transcripts containing short
or truncated ORFs.

The power of multi-layered neural networks to identify
deep patterns has made them the de facto standard in many
machine learning applications, such as image and text anal-
ysis, and have been extensively employed in bioinformat-
ics to provide new biological insights (19). Contrasting to
conventional machine learning algorithms, deep learning
approaches do not necessarily depend on human-designed
features and can be used to capture concealed sequence sig-
nals that are fundamentally different between mRNAs and
lncRNAs.

Here we describe RNAsamba, a tool that uses a novel
neural network architecture to tackle the mRNA/lncRNA
classification problem relying solely on sequence informa-
tion. We show that our method outperforms previous tools
in a variety of metrics, can be used to classify transcripts
from a range of different species and is robust to limita-
tions commonly found in real world data, such as truncated
ORFs.

BACKGROUND

Sequence modeling with neural networks

Recurrent neural networks (RNNs) are a type of neural
network in which each node takes the output of a previ-
ous node as input, forming a directed graph. This archi-
tecture confers RNNs the property of remembering previ-
ous states, making them ideal to deal with sequential data
such as nucleotide sequences (19). One well documented
drawback of traditional RNNs is the issue of long-range
dependencies, which hinders the training of networks with
sequences longer than a few hundred elements and makes it
difficult to train RNNs with long sequences (20). To tackle
this problem, the recently introduced IGLOO (21) architec-
ture looks at sequences as a whole rather than sequentially
like in the recurrent paradigm. To do so, IGLOO creates
representations of sequences via the multiplication of se-
quence patches by learnable weights (Figure 1A).

In an IGLOO layer, input sequences are of shape (L,
M), where L is the length of the sequence and M is fea-
ture size, i.e. the size of the representation of the element
at a given position. IGLOO uses an initial 1-D convolu-
tional layer and max pooling to transform the input into
a (L, M*)-shaped array, which can be scaled to accom-
modate for the overall size of the network. Then, IGLOO
iteratively collects K patches, each containing 4 random
matrix slices, which are multiplied by a matrix of learn-
able weights, resulting in a K-sized representation of the se-
quence. Intuitively, the weight learns relationships between
non-necessarily contiguous slices of the sequence represen-

tation. Using K of those weights allows the network to
find a new sequence representation composed of K different
non-local relationships. This representation can then be fed
to a dense layer for classification.

By taking global snapshots of the sequence, IGLOO net-
works can be used to process very long sequences, making
them particularly interesting for nucleotide sequence data.
Furthermore, IGLOO layers can be easily parallelized and
run significantly faster than RNN variants, such as GRUs
and LSTMs, for a similar number of trainable parameters.

Coding potential computation approaches

Current coding potential assessment tools fall into one of
two categories: the ones that depend on information other
than the transcript sequence alone and the ones that only
use sequence-derived information (22).

The methods that fall into the first category use exter-
nal data along with sequence-derived information to clas-
sify transcripts into mRNAs or lncRNAs. For instance,
COME (23) uses a variety of sequence conservation, ge-
nomic context and experiment-based features; lncScore and
lncRScan-SVM (24) use splicing information; CPC (25) and
LncADeep (22) search the translated transcript sequences
in protein databases to identify conserved domains. Even
though the usage of external information may improve the
detection of coding signals, it introduces dependencies on
reliable annotations, which are usually not available for
non-model organisms, and on a time-consuming database
searches.

Methods within the second category, on the other hand,
only use intrinsic sequence information to distinguish be-
tween mRNAs and lncRNAs. They can be further divided
into two groups, depending on the approach used to assess
transcript features. The first group comprises algorithms
that extract explicitly defined features from nucleotide se-
quences and feed them to classic machine learning algo-
rithms. Examples of methods belonging to this group in-
clude CPAT (26), CPC2 (27) and FEELnc (28). The sec-
ond group encompasses tools, such as lncRNAnet (29) and
mRNN (30), which model transcript sequences using neu-
ral networks, and thus are not strictly dependent on human-
engineered features.

ALGORITHM

Starting from the initial nucleotide sequence, RNAsamba
computes the coding potential of a given transcript by com-
bining information coming from two different sources (Fig-
ure 1B): the Whole Sequence Branch (B1) and the Longest
ORF Branch (B2). B1 contains whole sequence represen-
tations of the transcript and can capture protein-coding
signatures irrespective of the identification of the ORF. In
contrast, B2 carries information extracted from the longest
identified ORF and the putative protein translated from it.
By taking into account these two sources of sequence in-
formation, RNAsamba builds a thorough representation of
the transcript, improving the classification performance of
the algorithm.
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Figure 1. (A) In an IGLOO layer, the input sequence is initially processed by an 1D convolutional layer and down-sampled using the max pooling approach.
From the resulting matrix, K patches consisting of four random slices are drawn from the matrix and then multiplied by matrix of K learnable weights,
producing a high-level representation of the sequence input. (B) From the RNA sequence RNAsamba derives two branches. In the Whole Sequence
Branch (B1), the whole transcript nucleotide sequence is fed to two IGLOO layers to create high-level representations of the transcript (N1 and N2). In the
Longest ORF Branch (B2), four layers are derived from the extracted ORF sequence: an IGLOO representation of the putative protein (P1), nucleotide
k-mer frequencies (F1), amino acid frequencies (A1) and the ORF length (O1). The two branches are weighted by the � parameter and then used to
compute the final classification of the transcript.

ORF extraction

To obtain ORF information to feed to B2, RNAsamba
scans each of the three reading frames looking for fragments
that initiate with a start codon (ATG) and finish either with
a stop codon (TAG, TAA or TGA) or at the end of the tran-
script. The longest fragment among the ones found in all
reading frames is then extracted, regardless of finishing with
a stop codon or not. In case no start codon is found, B2
will carry no information and the classification will solely
depend on B1.

Sequence pre-processing and encoding

RNAsamba generates high-level representations of both
nucleotide and amino acid sequences using IGLOO units.
As these units require fixed length sequences as input, tran-
script and protein sequences are truncated to a maximum
length of 3000 nucleotides and 1000 amino acids, respec-
tively. Even though these thresholds were arbitrarily chosen,
we observed that, while using them, the algorithm exhibits
faster training times and can capture enough information
to correctly classify very long transcripts (Supplementary
Table S1). We believe that this is because the region that
contributes the most to classification is located right after
the start codon (30). The sequences are then converted into

numeric representations as follows:

Nucleotide : ATG ACT · · · → (1, 2, 4, 1, 3, 2, · · ·)

Aminoacid : MTG QLV · · · → (19, 10, 5, 11, 1, 7, · · ·)
Finally, nucleotide and protein sequences shorter than

the maximum length threshold are then zero-padded to
3000 and 1000 elements, respectively.

Whole Sequence Branch (B1)

To obtain high-level representations of the transcript, the
whole nucleotide sequence is inputted into two indepen-
dent stacked IGLOO units, N1 and N2, with K1 (K1 =
900) patches and distinct kernel sizes in their initial convo-
lutional layers. The outputs of these units are then concate-
nated and fed to a dense layer resulting in B1.

Longest ORF Branch (B2)

B2 is the result of the combination of four different layers
that carry different properties of the ORF sequence. Layer
P1 contains a representation of the protein sequence and is
obtained by inputting the amino acid sequence of the pu-
tative protein into an stacked IGLOO layer with K2 (K2 =
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600) patches; layer F1 is comprised of the relative frequen-
cies of nucleotide k-mers (k ⊂ {2, 3, 4}) in the ORF; layer
A1 contains the relative amino acid frequency of the trans-
lated ORF; layer O1 consists of the length of the longest
identified ORF. B2 is obtained by feeding P1, F1, A1 and
O1 to four independent dense layers, concatenating the out-
puts into a single matrix that is then fed a final dense layer.

Branch weightening

The branches B1 and B2 gather different information from
the transcript: while B1 captures patterns from the whole
transcript sequence, B2 picks up information specific to
the ORF. Therefore, we include an attention mechanism,
the � parameter, to weight information coming from these
two branches. This mechanism is important, for instance,
to correctly classify transcripts with unusual ORF length,
such as non-coding transcripts with long ORFs or trun-
cated protein-coding RNAs.

α = softmax (O1 · W1 + W2)

Y = α · B1 + (1 − α) · B2

Where W1 and W2 are trainable matrices and � is a ma-
trix that is used to weight B1 and B2 in the final layer (Y).
While training the algorithm end-to-end, the weights in W1
and W2 are optimized to maximize classification accuracy.

To obtain the coding score, Y is fed to a dense layer with a
softmax activation that computes the probabilities for each
class (31). Training is performed by minimizing the categor-
ical cross-entropy using the Adam optimizer (32).

Training and classification routines

During training, sequences are pre-processed into numeri-
cal information and propagated through the neural network
in batches, gradually adjusting the learnable weights to im-
prove the model’s classification performance. For the infer-
ence, input transcripts go through the same pre-processing
steps but, instead of being used to update the network, their
numerical representation is processed by the trained model
to compute their coding potential.

IMPLEMENTATION

RNAsamba is written in Python and Rust and uses popu-
lar state-of-the-art deep learning libraries, TensorFlow (33)
and Keras. We provide an installation and execution manual
to make the process of training new models and classifying
transcripts easy for the end user. For training new models,
RNAsamba supports changing the number of epochs (the
number of times each sample is visited) and batch size (the
number of samples that are propagated through the net-
work in each iteration). It also allows the user to enable early
stopping, which is useful to avoid overfitting. For inference,
our implementation allows the input of multiple weights
files that are combined in an ensemble classification, also
helping to reduce model variance.

RESULTS

RNAsamba can accurately distinguish mRNAs from lncR-
NAs in several datasets

To evaluate the ability of RNAsamba’s algorithm to learn
how to discriminate coding sequences from non-coding
ones, we compared it with five state-of-the-art coding po-
tential predictors that solely rely on intrinsic sequence infor-
mation: CPAT, CPC2, FEELnc, lncRNAnet and mRNN.
To keep the comparison as unbiased as possible, the bench-
mark was performed using four independent datasets con-
sisting of coding and non-coding human transcripts previ-
ously used in the literature. These datasets exhibit differing
characteristics regarding gene composition, balance, and
transcript and ORF length distributions (Supplementary
Table S2 and Supplementary Figure S1). In this evaluation,
we found that RNAsamba largely outperforms the other
predictors in almost every metric across all the datasets
(Figure 2A and Supplementary Table S3).

As the comparison was performed with built-in mod-
els trained with different data, it cannot be used to eval-
uate the performance of models trained with the same set
of mRNAs and lncRNAs. Therefore, we performed a sec-
ond benchmark in which we trained new models using the
train set corresponding to each the test dataset. In this eval-
uation, RNAsamba also displayed superior classification
quality (Supplementary Table S4), being only outperformed
by mRNN in the mRNN-Challenge dataset.

RNAsamba’s model generalizes to different species

As human genes have been carefully annotated through-
out the years, we believe RNAsamba’s main value is the
accurate identification of mRNAs and lncRNAs in novel
genomes. Thus, in order to evaluate if RNAsamba’s built-
in model, trained with human RNA sequences, generalizes
well to other species, we evaluated its performance in mul-
tiple test datasets, each containing both mRNAs and ncR-
NAs from one of five different species: Mus musculus, Danio
rerio, Drosophila melanogaster, Caenorhabditis elegans and
Arabidopsis thaliana (Supplementary Table S5 and Supple-
mentary Figure S2). We also compared the performance of
RNAsamba to five other algorithms pre-trained with hu-
man transcripts.

RNAsamba exhibits good classification performance in
every species, irrespective of the evolutionary distance to
humans, showing that a model learned from human se-
quence data can be generalized to different organisms.
When compared to other software, RNAsamba recurrently
is placed among the best tools, showing slightly worse re-
sults only in D. rerio and D. melanogaster, where it displays
a reduction in precision (Figure 2B and Supplementary Ta-
ble S6). Notably, mRNN exhibits a significant decrease in
classification performance when compared to its results in
human data, evidencing that its algorithm may not handle
well RNA sequences from different species.

In a second benchmark, where every tool was trained
with the same train data (CPC2’s train dataset), RNAsamba
also exhibited excellent classification performance (Sup-
plementary Table S7). In this evaluation, we observed
that RNAsamba’s performance in the D. rerio and D.
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Figure 2. Classification benchmark of six different coding potential calculators. (A) Classifiers performance in four independent test datasets containing
human transcripts. CPC2 is outside of the displayed range in the mRNN-Challenge test dataset (75.35%). (B) Classifiers performance in five different
species. Values correspond to the area under the precision-recall curve. Pre-trained models provided by the authors of each tool were used.

melanogaster test data improved, showing that its model is
not inherently worse for these species.

As the precision of every software was worse in the D.
rerio and D melanogaster data when compared to the data
of other species (Supplementary Tables S6 and S7), we hy-
pothesized that this discrepancy could be partly due to pro-
teins being misannotated as lncRNAs in the datasets. To test
this hypothesis, we reannotated lncRNAs that RNAsamba
classified as protein-coding (401 and 1185 transcripts for
D. rerio and D. melanogaster, respectively) by comparing
these sequences to established protein databases (UniRef90,
CDD and Pfam). Surprisingly, a large fraction (83.5% and
67.8% for D. rerio and D. melanogaster, respectively) of
these lncRNAs had significant hits to protein sequences or
protein domains in at least one of databases (Supplemen-
tary Data). For D. rerio, we identified several complete and
highly conserved kinases and immunoglobulin domains.
For D. melanogaster, several putative casein kinases, impor-
tant to signal transduction regulation, were identified. Even
though our annotation process lacks careful validation and
is not sufficient to confidently assign protein-coding proper-
ties to these transcripts, our results suggest that RNAsamba
can be used as a line of evidence to identify misannotations
in published genomes.

RNAsamba can identify truncated coding sequences

Since it constitutes the coding portion of the RNA, the
ORF is generally used as the main source of information to
detect potential protein-coding transcripts. Because of that,
most mRNA/lncRNA classifiers use human-engineered
features extracted from the coding portion of the transcript,
such as the ORF length and coverage. This dependence on
a detectable in-frame ORF to identify coding sequences im-
pairs the function of these algorithms to annotate the ma-
jority of transcriptome datasets, which contain a large frac-
tion of partial-length transcripts (9,34,35).

As the B1 branch of RNAsamba captures sequence in-
formation that is independent of the ORF, it can detect
protein-coding signatures even in the absence of a start
codon. Thus, we tested the algorithm’s performance in the
identification of truncated mouse and A. thaliana mRNA
transcripts, in which both the start and stop codon are ab-
sent. To avoid biases caused by the detection of a fragment
of the true ORF, we also evaluated RNAsamba’s perfor-
mance in separate sets of truncated mouse and A. thaliana
transcripts that possess no in-frame start codon inside the
ORF, meaning that the model would have to capture ORF-
independent coding marks to identify mRNAs. For this test,
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Figure 3. Evaluation of the ability of different tools to detect the coding
potential of mouse ORFs with varying degrees of fragmentation.

we trained RNAsamba with both complete and truncated
human sequences, aiming to provide users with model that
is more capable of identifying mRNAs by looking at the
whole sequence context.

Inspection of the fraction of identified mRNAs ob-
tained from each stratum of truncated ORFs revealed that
RNAsamba can identify a substantial fraction of the mR-
NAs even when most of the ORF is absent (Figure 3 and
Supplementary Figure S3). We also noted a negative as-
sociation between the amount of available ORF informa-
tion and the median value of the � parameter, showing that
RNAsamba favors B1 as ORF-derived data becomes sparse
(Supplementary Figure S4).

When contrasted to three ORF-dependent algorithms,
CPAT, CPC2 and FEELnc, RNAsamba displayed much
better performance at identifying partial coding sequences.
The discrepancy between RNAsamba and these algorithms
is much more pronounced in the case of the truncated
transcripts without in-frame start codons, as CPAT, CPC2
and FEELnc are incapable of finding fragments of the
true ORF, making their predictions mostly unreliable. Even
though FEELnc depends on the detection of the transcript
ORF, it uses a relaxed definition of ORFs that makes it
more capable of finding coding sequences when the canon-
ical signals––start and stop codons––are absent (28). When
compared to other algorithms that don’t strictly rely on
ORF sequences, RNAsamba displays better classification
performance than lncRNAnet, but generally worse than the
mRNN model. We suspect that mRNN’s good performance
in this specific kind of data is possibly due to the use of arti-
ficially introduced reading frame shifts during the data aug-
mentation process (30).

RNAsamba can detect a translation-related sequence residing
outside of the ORF

The Kozak consensus sequence, which spawns from the −6
to the +4 positions of mRNAs, is a recurring sequence in
coding transcripts (36) and plays a major role in the initia-
tion of the translation process (37), evidencing that portions
of untranslated regions can affect translation efficiency. As
RNAsamba uses whole-sequence information to process
RNA sequence data, we investigated whether its algorithm
is sensitive to changes in the Kozak sequence region.

Thus, for each of 1000 randomly chosen mouse mRNAs,
we derived two sets containing 100 computer-generated
transcripts each. In the control set, new sequences were cre-
ated by replacing the Kozak sequence region of the mRNA
by fragments generated by sampling nucleotides from a uni-
form probability distribution. In contrast, nucleotides of the
computer-generated fragments of the second set were sam-
pled according to the probability distribution of the Kozak
consensus sequence (Supplementary Figure S5).

We found that Kozak-derived sequences lead to an over-
all increase of transcripts’ coding score. In the majority of
the tested transcripts (77.71%), this score was significantly
larger (FDR-adjusted P-value ≤ 0.05) in fragments gen-
erated from the Kozak consensus probability distribution,
indicating that RNAsamba is able to detect an important
signal that contributes to mRNA translation even though
it mostly resides outside of the ORF. Accordingly, we ob-
served that there is a significant (P-value ≈ 0.01) negative
correlation between the coding score of a given sequence
and the Hamming distance between its computer-generated
portion and the Kozak sequence consensus.

We also investigated whether the effect of the Kozak
sequence on the coding score is diminished in longer se-
quences, since they intrinsically carry larger amounts of in-
formation to be processed by the RNAsamba algorithm.
We noticed that for transcripts longer than a well-defined
threshold, around 3160 base pairs (bp), there is no de-
tectable variation among the coding scores of the control
and the Kozak-derived groups (Supplementary Figure S6),
suggesting that the effect of this short signal is no longer
detectable as the algorithm processes larger chunks of in-
formation.

RNAsamba can be used to identify mRNAs that encode mi-
cropeptides

In recent years, the advent of ribosome profiling (Ribo-Seq)
has greatly contributed to our understanding of the trans-
lation dynamics in the cell. Unlike traditional RNA-Seq
technologies, which generate sequencing data from RNA
molecules irrespective of their coding potential, Ribo-Seq
targets transcripts that are being actively translated (38).
Therefore, this technology has made it possible to uncover
micropeptides that are translated from transcripts that were
previously thought to be non-coding (39). These peptides
are much shorter than most known proteins, being trans-
lated from small ORFs (sORFs) containing 100 or less
codons, but play important functional roles in multiple or-
ganisms (40,41).

Assuming a random codon distribution, the probability
of a stop codon appearing within 100 codons of a start
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codon is approximately 99.2%, meaning that the genome
contains a large quantity of short ORFs that arise by pure
chance and carry no biological meaning. Because the ORF
information of micropeptide transcripts is limited, the dis-
tinction between true sORFs and random short ORFs is
challenging for computational methods. As RNAsamba
uses whole-sequence information and is able to identify cod-
ing signatures outside of the ORF (as shown the the section
above), we evaluated whether it can be used to identify cod-
ing transcripts with sORFs.

The assessment of the classification performance of
RNAsamba and other classifiers in sORF data was con-
ducted using test datasets containing both sORF mRNAs
and lncRNAs with untranslated ORFs from five differ-
ent species (human, M. musculus, D. rerio, D. melanogaster
and Saccharomyces cerevisiae) (Supplementary Table S8).
We observed that RNAsamba can reliably distinguish true
sORFs from lncRNAs, outperforming other tools in most
datasets (Figure 4 and Supplementary Table S9). In agree-
ment with our previous results, RNAsamba’s performance
is slightly worse in the D. rerio and D. melanogaster datasets,
which we suspect is partly due to protein-coding transcripts
being misannotated as lncRNAs.

These results led us to believe that RNAsamba can be
used to validate Ribo-Seq results or to identify sORFs in
the absence of ribosome profiling data. This second applica-
tion is especially useful for the annotation of novel genomes,
where more specialized sequencing data is usually scarce.

RNAsamba is faster than neural network-based alternatives

Neural networks models are becoming increasingly popu-
lar due to their ability to learn non-intuitive patterns, which
would otherwise be ignored by humans, from large quanti-
ties of data. This learning power is, however, accompanied
by an enormous increase in the number of trainable param-
eters when compared to traditional machine learning tech-
niques, greatly increasing training time (19). We felt that
the available neural network-based coding-potential calcu-
lators impose a barrier for most users, as they do not pos-
sess GPU hardware to increase performance. By using mod-
ern libraries and IGLOO layers we sought to develop an
algorithm that makes it feasible to train new models even
with traditional CPUs. Using the FEELnc dataset, we com-
pared RNAsamba to lncRNAnet and mRNN with respect
to memory usage and wall time during inference and train-
ing.

Regarding peak memory usage, we found that during in-
ference RNAsamba uses less resources than lncRNAnet
and slightly more than mRNN. While training, due to its
larger number of trainable parameters, RNAsamba uses
twice as much memory as mRNN (Figure 5A and Sup-
plementary Table S10). In both situations RNAsamba’s
peak memory usage did not exceed reasonable amounts and
could be executed in regular notebooks.

LncRNAnet and mRNN employ traditional RNN
variations––LSTM in lncRNAnet and GRU in
mRNN––that were previously shown to be slower
than IGLOO (21). Indeed, we found that RNAsamba’s
inference in a CPU is, on average, 32.0 and 11.1 times faster
than lncRNAnet and mRNN, respectively. Regarding

training, RNAsamba is 41.7 faster than mRNN in a CPU.
RNAsamba’s speed improvements are also significant when
using a GPU (Figure 5B and Supplementary Table S10).
Jointly, these results show that RNAsamba is much faster
than other neural network-based alternatives, making it
more accessible to most users.

We also compared RNAsamba’s inference performance
in the FEELnc dataset to that of tools that employ tradi-
tional machine learning algorithms and compute a reduced
number of features. We observed that RNAsamba (31.02 s
in CPU and 26.03 s in GPU) is slightly slower than both
CPAT (19.90 s) and CPC2 (23.09 s) but is much faster than
FEELnc (1664.05 s). However, it is important to note that
FEELnc trains a new model before each inference, increas-
ing the time it takes to classify a given set of sequences.

To evaluate whether RNAsamba is scalable to very large
datasets, we tested its memory usage and speed in the GEN-
CODE 32 human genome annotation (4), which contains
100 291 mRNAs and 48 351 lncRNAs. We found that, at
this scale RNAsamba’s inference is fast, showing that it can
be used to promptly predict mRNAs and lncRNAs even
in very large datasets, as long as the computer has enough
memory to store the sequence features (Supplementary Ta-
ble S11). As for training, even though it is feasible to use
a whole transcriptome to train a new model in a powerful
computer, we note that using a smaller subset of sequences
is enough to train very accurate models and filtering se-
quences by length, for instance, can improve the model clas-
sification performance (30).

Ablation studies

RNAsamba’s hyperparameters (number and size of hidden
layers, number of IGLOO patches etc.) and features (k-mer
and amino acid frequencies, ORF length etc.) were tuned
through extensive manual and automated search. We inves-
tigated the effect of altering some of the properties of the
RNAsamba algorithm to its overall performance.

Changing the maximum sequence length. As IGLOO lay-
ers require fixed-length inputs, we arbitrarily chose to trun-
cate nucleotide and amino acid sequences at the positions
3000 and 1000, respectively. To check whether this choice
negatively affected RNAsamba’s classification performance
by not providing it with important sequence information,
we developed two alternative versions of the model that
truncate nucleotide and amino acid sequences at 4500/1500
and 6000/2000. We verified that raising the input sequences
maximum length increased both the train and test times,
without improving the model’s accuracy. Reducing the max-
imum lengths to 2400/800 resulted in a slight drop in clas-
sification performance (Table 1).

Removing the B1 branch. The removal of B1 reduces forces
RNAsamba to rely only on information that is extracted
from the identified ORF. We found that this ablation re-
duces RNAsamba’s classification performance by a small
amount in the FEELnc dataset, showing that B2 carries
enough information to correctly classify full-length tran-
scripts. However, we note that B1 is crucial for the classi-
fication of truncated transcripts, which may have partial or
no ORF at all (Supplementary Figure S4).
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Figure 4. Classification benchmark of six different coding potential calculators in short ORF (sORF) datasets from five different species. Values correspond
to the area under the precision-recall curve.

A B

Figure 5. Computational performance of RNAsamba, lncRNAnet and mRNN in the FEELnc dataset. (A) Peak memory usage during inference and
training. (B) Average inference and training wall time of five independent executions of each algorithm. LncRNAnet does not provide an interface to
train new models, thus its training times were not measured. CPU computations were performed with two Intel® Xeon® E5-2420 v2 CPUs and GPU
computations were performed with a NVIDIA® Tesla® K80. Inference execution time was measured with the hyperfine tool.

Table 1. Ablation studies of the RNAsamba model

Architecture Maximum length (nt/aa) Branches Training (s) Inference (s) Accuracy

IGLOO 3000/1000 B1, B2 394.04 30.11 0.9325
IGLOO 2400/800 B1, B2 358.85 28.92 0.9300
IGLOO 4500/1500 B1, B2 493.41 37.20 0.9318
IGLOO 6000/2000 B1, B2 518.54 42.36 0.9321
IGLOO 3000/1000 B1 154.09 17.95 0.7901
IGLOO 3000/1000 B2 264.70 23.20 0.9237
IGLOO 3000/1000 B1, B2 (−P1) 251.44 24.39 0.9315
IGLOO 3000/1000 B1, B2 (−F1) 361.08 24.87 0.9210
IGLOO 3000/1000 B1, B2 (−A1) 390.67 28.78 0.9200
IGLOO 3000/1000 B1, B2 (−O1) 398.09 31.01 0.9322
GRU 3000/1000 B1, B2 4659.29 214.12 0.9054
LSTM 3000/1000 B1, B2 5197.71 479.05 0.9061

Default parameters are highlighted in bold. Reported train times, test times and accuracy values correspond to the average of five independent runs.
Computations were performed with two Intel® Xeon® E5-2420 v2 CPUs. Execution time was measured with the hyperfine tool.



NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 1 9

Removing the B2 branch. By removing the B2 branch, we
deprived RNAsamba’s algorithm of ORF-derived features,
forcing it to leverage whole-sequence information to distin-
guish between mRNAs and lncRNAs. We observed that this
ablation reduced the accuracy of the network by 15.79%
(Table 1), leading us to the conclusion that features the algo-
rithm derives from the ORF contain key information that is
not extracted from the nucleotide sequence by the IGLOO
layer alone. We also observed that removing each of the lay-
ers of B2 (P1, F1, A1 and O1) individually led to small drops
in accuracy, evidencing that there is partly redundant infor-
mation among them.

Replacing IGLOO with GRU and LSTM. The Gated Re-
current Unit (GRU) (42) and the Long Short-Term Mem-
ory (LSTM) (43) are established RNN architectures, com-
monly used in deep-learning tasks that deal with sequences.
Recently, IGLOO has been shown to outperform both
GRU and LSTM in terms of run time and accuracy on some
standard benchmark problems such as the copy-memory
and the addition tasks (21). To evaluate whether this holds
true in the mRNA/lncRNA classification paradigm, we
developed alternative versions of our algorithm in which
IGLOO was substituted by GRU or LSTM layers with 256
units. We found that the model using IGLOO is more accu-
rate and significantly faster, for both training and classifica-
tion, than the GRU and LSTM variants (Table 1). We note,
however, that as IGLOO creates sequences representation
from slices taken from random locations of the transcript,
sequence fragments cannot be mapped to specific network
weights. Therefore, RNAsamba cannot be used to evaluate
the contribution of individual regions to the overall coding
score in an unsupervised manner.

CONCLUSION

In this study, we presented RNAsamba, a new deep
learning-based tool to predict the coding potential of RNA
transcripts relying solely in sequence information. Com-
pared to other algorithms, RNAsamba exhibits better clas-
sification performance in multiple human datasets and gen-
eralizes very well to other species, without relying on com-
putationally expensive data augmentation.

We believe that RNAsamba’s algorithm introduces two
major contributions: (1) the usage of the IGLOO ar-
chitecture to learn from sequence data and (2) the in-
tegration of whole transcript and ORF-derived informa-
tion into a single coding score. By using IGLOO layers,
RNAsamba can learn non-intuitive coding patterns, as we
demonstrated with the Kozak consensus, without relying
on biased human-designed features. This architecture also
makes RNAsamba significantly faster than RNN-based al-
gorithms, making it more appealing to most users. Through
the usage of its two branches, RNAsamba can identify mR-
NAs with short or incomplete ORFs, which usually are
misclassified by most algorithms. Based on this, we believe
that RNAsamba is a useful tool for the annotation of novel
genomes and transcriptomes, improving the quality of cod-
ing and non-coding gene prediction.

With RNAsamba, we sought to offer a fast and easy-
to-use tool to most researchers, developed using modern

and well documented libraries. Also, we provide a Docker
image, a convenient web server (https://rnasamba.lge.ibi.
unicamp.br/) and an intuitive command-line interface to
promptly execute training and inference tasks. By doing
so, we believe that RNAsamba provides researchers with
a state-of-the-art coding potential calculator that allows
fast and accurate predictions of mRNAs and lncRNAs, en-
abling more precise biological insights from the genomes of
newly sequenced species.

MATERIALS AND METHODS

Full-length transcripts datasets

To keep the comparisons unbiased, the train and test
datasets used in the benchmarks were all obtained from pre-
vious publications (27,28,30). Links for download of the
datasets used in these benchmarks can be found in the Sup-
plementary Data.

CPC2’s train set consists of a set of mRNAs with high-
quality coding sequences annotated by the CCDS project
(44) selected from the RefSeq database (45) and lncRNAs
randomly selected from GENCODE. CPC2 includes test
sets for several species (human, Mus musculus, Danio rerio,
Drosophila melanogaster, Caenorhabditis elegans and Ara-
bidopsis thaliana) and they were built using non-redundant
mRNA sequences obtained from RefSeq and lncRNAs re-
trieved from Ensembl and Ensembl Plants. Sequences that
were present in the training set were excluded from the test
sets.

For the FEELnc dataset, human transcripts were ob-
tained from GENCODE 24 and the gene biotypes were
used to select mRNAs (‘protein coding’) and lncRNAs
(‘lincRNA’ and ‘antisense’). To avoid biases, a single tran-
script was selected per locus.

mRNN’s dataset is comprised of a subset of human
transcripts obtained from GENCODE 25. In addition to
the regular test set, mRNN dataset includes a challenge
test (mRNN-Challenge) set that contains mRNAs with
short ORFs (≤50 codons in the in GENCODE annotation)
and lncRNAs with long untranslated ORFs (≥50 codons).
Transcripts associated with loci present in any of the test
sets were excluded from the training data.

Finally, sORF datasets were built from mRNAs and
lncRNAs from five different species (human, Mus muscu-
lus, Danio rerio, Drosophila melanogaster, Caenorhabditis
elegans and Arabidopsis thaliana). Sequences were retrieved
from RefSeq and Ensembl and mRNAs and lncRNAs that
were filtered to retain only the ORF fragments that were
<303 nucleotides.

Classification performance evaluation

We assessed the performance of RNAsamba and five other
sequence-dependent classification software: CPAT (1.2.4),
CPC2, FEELnc (version 0.1.1), lncRNAnet and mRNN.
We calculated the performance metrics with the scikit-learn
Python package (46). For these computations, mRNAs
were considered the positive class and ncRNAs the nega-
tive class.

For the performance evaluation in the human, M. mus-
culus, D. rerio, D. melanogaster, C. elegans and A. thaliana

https://rnasamba.lge.ibi.unicamp.br/
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datasets we took two approaches: (i) classification with pre-
trained models and (ii) classification with models trained
with the train dataset that corresponds with the test data.
For the first approach, we used the models that are built-
in with each tool. RNAsamba was trained with a non-
redundant set containing the sequences of all four human
train datasets; mRNN was loaded with weights provided
in the w14u3.pkl file. For the second approach, new models
were trained for each tool using default parameters. CPAT’s
hexamer frequency tables were generated from each train set
using the companion make hexamer tab.py script. LncR-
NAscore was excluded from benchmarks that used newly
trained models because it does not provide an interface for
training. The classification benchmark in sORF datasets
from human, M. musculus, D. rerio, D. melanogaster and
S. cerevisiae was performed using built-in models.

Annotation of new putative protein-coding transcripts

To evaluate whether D. rerio and D. melanogaster lncR-
NAs classified as protein-coding by RNAsamba can be pu-
tatively assigned to protein families, we compared these
sequences to a series of protein-related databases. Tran-
script nucleotide sequences were matched to proteins in the
UniRef90 database (release 2019 10) (47) using the easy-
search command from MMseqs2 (version 10.6d92c) (48).
Nucleotide sequences were also used as queries to search
for conserved protein domains in the CDD database (ver-
sion 3.17) (49) using RPS-BLAST (version 2.9.0) (50). Fi-
nally, translated ORFs were compared to the Pfam protein
family database (version 32.0) (51) using the hmmscan com-
mand from the HMMER suite (version 3.2.1) (52). For all
searches, only hits with E-value ≤ 0.001 were considered.

Truncated ORFs dataset

To generate the test for the analysis of truncated tran-
scripts, mouse and A. thaliana ORF sequences were re-
trieved from Ensembl (release 94) and Ensembl Plants (re-
lease 43) (53), respectively, and sequences <300 nucleotides
were discarded. Next, ORFs that exhibited an in-frame start
codon and the ones that didn’t were separated into differ-
ent sets. The start and stop codons were removed from the
sequences of both sets, guaranteeing that the true begin-
ning and end of the ORFs would not be detected by the
classifiers. Subsequently, each set was used to generate five
subsets consisting of 1000 randomly sampled sequences. Fi-
nally, the sequences from each dataset were sliced at random
positions to generate sets of fragmented ORFs with fixed
relative lengths (20%, 30%, 50%, 70% and 90% of the total
ORF length).

For the performance evaluation, we used a RNAsamba
model trained with a set containing the CPC2, FEELnc and
mRNN human train and test sets as well as fragmented
ORFs extracted from 50 000 of those sequences. We used
the easy-search command from MMseqs2 to identify and
remove sequences from the train set that displayed >90%
identity and covered >90% of the length of any of the test
sequences. CPAT, CPC2 FEELnc, lncRNAnet and mRNN
were executed using pre-trained models. mRNN was loaded
with weights provided in the w14u3.pkl file.

Kozak sequence analysis

The 100 different 10 bp fragments in the Kozak sequence set
and the control set were generated, respectively, from the
Kozak sequence probability distribution (Supplementary
Figure S5A) and a uniform distribution, in which all four
nucleotides are equally probable to be drawn in each posi-
tion (except for the start codon). The distance between the
generated fragments and the Kozak sequence was obtained
by computing their Hamming distances to two sequences
derived from the Kozak consensus (GCC[AG]CCATGG)
and choosing the lowest value.

We randomly selected 1000 sequences among mouse mR-
NAs, retrieved from Ensembl (release 94), whose 5′ UTR
contained at least 6 nucleotides. Then, the region spawning
the positions −6 to +1 of each mRNA was replaced by the
10 bp fragments of the Kozak sequence set and control set,
producing two sets of hybrid transcripts containing both
biological and computer-generated sequences (Supplemen-
tary Figure S5B).

For each mRNA, we used one-tailed Mann–Whitney U
tests to evaluate differences between the coding scores of se-
quences in the two sets. We used the Benjamini–Hochberg
procedure to compute the false discovery rates (FDR).
Kendall’s tau coefficient was used to measure the degree of
association between coding scores and Hamming distance
to the Kozak sequence consensus.

Ablation studies

The models generated in the ablation studies were trained
for 10 epochs using the FEELnc human train set and all
the benchmarks were performed on the FEELnc human test
set.
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