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ABSTRACT Identifying daily oviposition events for
individual broiler breeders is important for bird manage-
ment. Identifying non-laying birds in a flock that might
be caused by improper nutrition or diseases can guide
diet changes or disease treatments for these individuals.
Oviposition depends on follicle maturation and egg for-
mation, and follicle maturation can be variable. As such,
the day and time of oviposition events of individual birds
in a free-run flock can be hard to predict. Based on a pre-
cision feeding (PF) system that can record the feeding
activity of individual birds, a recent study reported a
machine learning model to predict daily egg-laying
events of broiler breeders. However, there were 2 limita-
tions in that study: 1) It could only be used to identify
daily egg-laying events on a subsequent day; 2) The pre-
diction outputs that were binary labels were unable to
indicate more details among the outputs with the same
label. To improve the previous approach, the current
study aimed to predict and output the probability of
daily oviposition events occurring using a specific time
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point in 1 day. In the current study, 706 egg-laying
events recorded by nest boxes with radio frequency iden-
tification of hens and 706 randomly selected no-egg-lay-
ing events were used. The anchor point was newly
defined in the current study as a specific time point in
1 day, and 26 features around the anchor point were
created for all events (706 egg-laying events and 706 no-
egg-laying events). A feed-forward artificial neural
network (ANN) model was built for prediction. The
area under the receiver operating characteristic (ROC)
curve was 0.9409, indicating that the model had an out-
standing classification performance. The ANN model
could predict oviposition events on the current day, and
the output was a probability that could be informative
to indicate the likelihood of an oviposition event for an
individual breeder. In situations where total egg produc-
tion was known for a group, the ANN model could pre-
dict the probability of daily oviposition events occurring
of all individual birds and then rank them to choose
those most likely to have laid an egg.
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INTRODUCTION

Egg production of broiler breeders and laying hens is a
major contributor to sustainability. At flock-level, egg
production over the laying period can be presented by a
production curve that consists of a rapid increase phase,
a peak production phase, and a gradual decrease phase
(Savegnago et al., 2012). At the individual level, oviposi-
tion is the egg-laying event that occurs on a specific day.
Oviposition occurs in sequences of one or more eggs, sep-
arated by one or more pause days, when no oviposition
occurs (Robinson et al., 1991). Sequences and pauses are
determined by follicle maturation and egg formation,
and follicle maturation can be variable due to hormone
and environmental factors (van der Klein et al., 2020).
As a result, there is a lot of uncertainty in the day and
time of oviposition of individual hens. Although previous
studies investigated ovulatory cycle (Etches and
Schoch, 1984; Johnston and Gous, 2003), oviposition
interval (Yoo et al., 1986), sequence length (Lillpers and
Wilhelmson, 1993), it is challenging to determine ovipo-
sition events of cage-free individual hens.
Identifying daily oviposition events for individual

broiler breeders is important to improve bird manage-
ment. In the laying period, breeders might stop laying
due to reasons like nutrition, disease, or facility
(Long and Wilcox, 2011). Identifying breeders that have
not laid an egg can inform targeted management of
those individuals, such as changing the diet or treating a
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disease. It is difficult to identify oviposition events for
free-run breeders without a trap nest system. Thus, a
system to identify non-laying birds in a group housing
system would be desirable.

A recent study (You et al., 2020) predicted daily
oviposition events of individual broiler breeders using
a random forest classifier. It was the first study to
identify daily oviposition events at an individual level
in a precision feeding (PF) system (Zuidhof et al.,
2019) that automatically feeds individual birds and
records vast amounts of data regarding the feeding
activity of the birds. The study by You et al. (2020)
established a relationship between daily oviposition
events of individual breeders and the feeding activity
and BW change of individual breeders recorded by
the PF system. The system feeds birds according to
BW measured in real time. Body weight increases fol-
lowing feed and water intake events, and decreases
after defecation and oviposition events. Because feed
intake is driven by BW in the PF system, feed intake
is expected to increase after oviposition. However,
there were 2 limitations in the study:

i) It was based on the feeding activity and BW change of breeders in the
whole day (from 00:00 to 23:59) to predict the egg-laying events. As a
result, identifying egg-laying events for a day by the model could only
be applied on the subsequent day.

ii) The prediction outputs were binary labels (0 and 1) representing no
oviposition and oviposition, respectively. However, for predicted out-
puts with the same label, it was not possible to determine which birds
were more likely to have laid an egg.

Artificial neural network (ANN) is a supervised
learning approach, which can be used for regression
and classification. It consists of several processing
units with characteristics like self-adapting, self-orga-
nizing, and real-time learning (Ding et al., 2013).
ANN has been widely used in poultry production,
including estimation of broiler BW (Amraei et al.,
2017), total egg production of quails (Felipe et al.,
2015), and detecting drops in egg production of lay-
ing hens (Ramírez-Morales et al., 2017). The objec-
tive of the current study was to improve the previous
approach in 2 aspects: 1) To apply the model on the
current day; 2) To output more informative results.
To accomplish this, an ANN model was built to pre-
dict the probability of oviposition events occurring.
Our objective was to use the ANN model not only to
predict whether a hen laid an egg, but to rank ovipo-
sition probabilities to reconcile the number of hens
with the highest oviposition probability with daily
flock-level egg production records.
Figure 1. Picture of precision feeding stations in the trial for the
current study.
MATERIALS AND METHODS

The animal protocol for the study was approved by
the University of Alberta Animal Care and Use Commit-
tee for Livestock and followed principles established by
the Canadian Council on Animal Care Guidelines and
Policies (CCAC, 2009).
Experimental Design

In the current study, data were obtained from a flock
of broiler breeders (n = 95) raised in 2 environmentally
controlled chambers. Each chamber was equipped with
2 PF stations (Figure 1). There were 76 hens in total.
All birds were trained to use the PF station from 0 to 14
d of age, which was described by Zukiwsky et al., (2020).
From 15 d to the end of the trial (306 d), breeders were
fed by the PF system that could identify individual birds
by reading the unique radio frequency identification
(RFID) tag on their right wing. The PF system deter-
mined whether a bird would receive a meal by compar-
ing its real-time BW with a pre-assigned target BW. If
the real-time BW was greater than or equal to the target
BW of that bird, it would not be fed and was gently
ejected. If the real-time BW was less than the target
BW, the bird would have a meal in a feeding bout of up
to 60 s in the station and then be gently ejected.
Throughout the trial, water was provided ad libitum.
The RFID, time, date, real-time BW, target BW, and
feed intake (FI) for each visit were recorded by the PF
system.
Data Collection

After photo-stimulation at 22 wk of age, the egg pro-
duction of individual hens was recorded on a daily basis.
From 155 to 306 d, the temperature for chamber 1 and
chamber 2 were 22.67 § 0.95℃ (mean § standard devia-
tion) and 22.86 § 1.01℃, respectively. In the current
study, if a hen laid an egg in 1 day, it was considered as
an egg-laying event; if a hen did not lay an egg in 1 day,
it was considered as a no-egg-laying event. A traditional
trap nest box with 8 nesting sites was placed in each
pen, and it was checked every hour from 07:30 to 17:30
every day. After an egg was laid in the trap nest box, it
would be set free from the box by researchers. The exact
time of egg-laying events that occurred in the trap nest
box was not recorded. In addition to the traditional trap
nest box, an RFID nest box with 8 nesting sites was also
used to determine the exact time of each egg-laying
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event for individual hens. When a breeder entered an
RFID nesting site, its RFID was read. Inside the nesting
site, the floor was sloped. Once a breeder laid an egg, the
egg would roll down through a channel into an egg-col-
lection box beneath the nesting site. When the egg-col-
lection box received an egg, the time of receiving the egg
would be recorded. Since an egg would be received
immediately once being laid, the time of receiving the
egg could be considered as the time of oviposition. Dur-
ing the study, 706 egg-laying events occurred in the
RFID nest box, while the remaining egg-laying events
occurred in the trap nest box. The total number of no-
egg-laying events was 3,559.
Data Preprocessing

The current study used Python 3.7.0 to facilitate data
preprocessing, feature engineering, and model construc-
tion. All 706 egg-laying events recorded by the RFID
nest box from 171 to 306 d were used. The number of
egg-laying events during each hour was counted, and
the distribution of egg-laying events during each hour is
shown in Figure 2. All egg-laying events occurred
between 05:00 and 18:00. The same number (n = 706) of
no-egg-laying events was randomly selected from all
recorded no-egg-laying events. In the current study, the
anchor point was newly defined as a specific time point,
corresponding to oviposition time (known for 706 egg-
laying events), around which features were created.
Anchor points for 706 no-egg-laying events were ran-
domly assigned to correspond to the oviposition times of
the 706 known oviposition events. As a result, the time
distribution was identical for egg-laying and no-egg-lay-
ing event anchor points.

Features were created to describe each observation
(egg-laying event or no-egg-laying event). Three periods,
including 24 h before the anchor point (ended at the
anchor point), 6 h before the anchor point (ended at the
anchor point), and 6 h after the anchor point (started at
anchor point), were used to create features. Since all
breeders were fed by the PF system, BW gain (BWG)
Figure 2. The distribution of egg-laying events during each hour
over a 24 h period. The total number of egg-laying events from 171 to
306 d was 706.
for a period of time could be calculated by the equation
below:

BWG ¼ BWn �BW1 ð1Þ
where BWn represented the nth real-time BW in the
period that was recorded by the PF system, and BW1
represented the first real-time BW in the period that
was recorded by the PF system. The equation could be
expanded to:

¼ ðBWn �BWn�1Þ þ ðBWn�1 �BWn�2Þ þ . . .

þ ðBW2 �BW1Þ ð2Þ

¼ DBWn�ðn�1Þ þ DBWðn�1Þ�ðn�2Þ þ . . .þ DBW2�1 ð3Þ
where BWn represented the nth real-time BW in the
period recorded by the PF system. DBWn-(n-1) repre-
sented the BW change between two consecutive
(nth and n-1th) real-time BW in the period recorded by
the PF system. These BW changes could be classified
into two groups: BW increase and BW decrease, so the
equation could be transformed to:

BWG ¼
X

BW increaseþ
X

BW decrease ð4Þ

Generally, any BW change between 2 consecutive
real-time BW records could be caused by 4 activities,
including FI, water intake (WI), excretion and meta-
bolic loss (EM), and oviposition. Oviposition occurred
at the anchor point that was not included in these three
periods (24 h before the anchor time, 6 h before the
anchor time, and 6 h after the anchor time). Thus, only
FI, WI, and EM contributed to BW change. FI and WI
could result in BW increase, and EM could result in BW
decrease. The equation for these three periods could be
transformed to:

BWG ¼ FIþWIþ EM ð5Þ
FI referred to the total amount of feed eaten by an

individual in each period. According to the equations
above, WI could be estimated by subtracting FI from
the sum of BW increases, and EM could be estimated by
the sum of BW decreases. There were 8 features for each
period. BWG, FI, the estimated WI, and the estimated
EM were 4 features for each period. For each period, the
mean and standard deviation of the difference between
target BW and real-time BW were used as two features.
The number of meals and the number of no-meal visits
were used as two features. Thus, there were 24 features
for these 3 periods. Apart from the 24 features, another
2 features regarding the anchor point were created: the
period between 2 consecutive visits over the anchor
point and the BW change of 2 consecutive visits over the
anchor point. All 26 features are shown in Table 1.
Algorithm

The ANN model was implemented by the deep learn-
ing framework Keras package (Chollet, 2015). The ANN



Table 1. Features created for each event (egg-laying event or no-egg-laying event).

No. Feature Description

1 FI_24 Feed intake recorded by the precision feeding system in the 24 h before the anchor point 1.
2 WI_24 Estimated water intake2 in the 24 h before the anchor point
3 EM_24 Estimated excretion and metabolic loss3 in the 24 h before the anchor point.
4 DBW_Mean_24 Mean of differences of DecisionBW4 and TargetBW in the 24 h before the anchor point.
5 DBW_STD_24 Standard deviation of differences of DecisionBW and TargetBW in the 24 h before the anchor point.
6 BWG_24 Difference of the last DecisionBW and the first DecisionBW in the 24 h before the anchor point.
7 Meals_24 The number of meals in the 24 h before the anchor point.
8 No_meals_24 The number of no-meal visits in the 24 h before the anchor point.
9 FI_Pre_6 Feed intake recorded by the precision feeding system in the 6 h before the anchor point.
10 WI_Pre_6 Estimated water intake in the 6 h before the anchor point.
11 EM_Pre_6 Estimated excretion and metabolic loss in the 6 h before the anchor point.
12 DBW_Mean_Pre_6 Mean of differences of DecisionBW and TargetBW in the 6 h before the anchor point.
13 DBW_STD_Pre_6 Standard deviation of differences of DecisionBW and TargetBW in the 6 h before the anchor point.
14 BWG_Pre_6 Difference of the last DecisionBW and the first DecisionBW in the 6 h before the anchor point.
15 Meals_Pre_6 The number of meals in the 6 h before the anchor point.
16 No_meals_Pre_6 The number of no-meal visits in the 6 h before the anchor point.
17 FI_Post_6 Feed intake recorded by the precision feeding system in the 6 h after egg-laying.
18 WI_Post_6 Estimated water intake in the 6 h after the anchor point.
19 EM_Post_6 Estimated excretion and metabolic loss in the 6 h after the anchor point.
20 DBW_Mean_Post_6 Mean of differences of DecisionBW and TargetBW in the 6 h after the anchor point.
21 DBW_STD_Post_6 Standard deviation of differences of DecisionBW and TargetBW in the 6 h after the anchor point.
22 BWG_Post_6 Difference of the last DecisionBW and the first DecisionBW in the 6 h after the anchor point.
23 Meals_Post_6 The number of meals in the 6 h after the anchor point.
24 No_meals_Post_6 The number of no-meal visits in the 6 h after the anchor point.
25 Time_gap The period of two consecutive visits over the anchor point.
26 BW_drop The BW change of two consecutive visits over the anchor point.

1Anchor point was newly defined as a specific time point in one day for predicting oviposition events, and features around the anchor point were cre-
ated. For 706 egg-laying events, the anchor point referred to the time of oviposition recorded by the RFID nest box. For 706 no-egg-laying events, the
anchor point was randomly selected in the assigned hour.

2Estimated water intake in a period was calculated by subtracting the feed intake from the sum of all BW increases between two consecutive visits in
the period.

3Estimated excretion and metabolic loss in a period was the sum of all BW decreases between two consecutive visits in the period.
4DecisionBW: the real-time BW recorded by the precision feeding system for making decisions on whether birds would be fed.
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structure was based on a feed-forward network shown in
Figure 3, and a multilayer perceptron including 1 input
layer, 1 hidden layer, and 1 output layer was con-
structed. Each layer could contain several neurons that
were computational units. When training the ANN
model, the input data were the 26 created features
Figure 3. The structure of the feed-forward neural network in the
current study. Ovals represented neurons. Arrows represented connec-
tions. Rounded rectangles represented layers. The neural network con-
sisted of a group of neurons at each layer. Each neuron was fully
connected to all neurons in the next layer. Neurons could forward pass
the information to the neuron along the arrow. There were 3 layers in
the neural network: an input layer, a hidden layer, and an output layer.
The input layer accepted input data. The hidden layer processed input
data. The output layer generated output results.
and the output data were binary labels (1 representing
egg-laying and 0 representing no-egg-laying). A dropout
layer that randomly ignores neurons connected to the
prior layer was added between the hidden layer and
the output layer to prevent overfitting. Hyper-parame-
ters of ANN were optimized by the grid search method
with sklearn.model_selection.GridSearchCV function
(Buitinck et al., 2013). The overall accuracy was used as
the metric to evaluate the prediction, and a 5-fold cross-
validation approach was used in optimization. The opti-
mized hyperparameters were used to build the final
ANN model. The processed data were randomly split
into 3 parts: 60% (846 observations) for training, 20%
(283 observations) for validation, and 20% (283 observa-
tions) for testing.
Model Evaluation

The ANN model was evaluated by the receiver operat-
ing characteristic (ROC) curve and the area under the
ROC curve (AUC). The ROC curve was able to show
the trade-off between the recall (Y-axis) and false posi-
tive rate (FPR; X-axis) across a variety of thresholds
(Hajian-Tilaki, 2013). The recall and FPR were calcu-
lated by the equations below:

Recall ¼ TP
TPþ FN

ð6Þ
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FPR ¼ FP
FPþ TN

ð7Þ

where TP (true positive) represented predicted egg-lay-
ing events for actual egg-laying events; FP (false posi-
tive) represented predicted egg-laying events for actual
no-egg-laying events; FN (false negative) represented
predicted no-egg-laying events for actual egg-laying
events; TN (true negative) represented predicted no-
egg-laying events for actual no-egg-laying events. The
upper left corner (coordinate [x = 0, y = 1]) where the
FPR and recall were 0% and 100%, respectively, repre-
sented a perfect classification performance. AUC, which
summarized the information of the ROC curve, was a
measure of the discriminatory capacity of a diagnostic
test (Kumar and Indrayan, 2011). The maximum value
of AUC was 1, which indicated a perfect test. If the
AUC value was 0.5, it indicated no discriminative test.
As a result, a higher AUC value represented a larger
area beneath the ROC curve, which meant a better clas-
sification performance. Eventually, the probability of all
testing samples was predicted by the ANN model.
RESULTS AND DISCUSSION

The optimized hyperparameters are shown in Table 2.
With these hyperparameters, the loss of the model on
both the training dataset and the validation dataset
decreased to about 0.2 with 80 epochs (the number of
epochs meant the times that the ANN model worked
through the entire training dataset), and the accuracy of
both concurrently increased to about 0.9 (Figure 4).
Figure 5 shows the ROC curve and the AUC of the
model. The ROC curve was far away from the diagonal
line extending from the lower left corner to the upper
right corner, and it was close to the upper left corner
where the recall was 100% and the FPR was 0%, indicat-
ing an almost perfect test result. The closer the ROC
curve approached to the upper left corner, the better the
test result was (Marzban, 2004). AUC was 0.9409, which
Table 2. The optimized hyperparameters for ANN.1

Hyperparameter Value

Number of neurons in the input layer 64
Activation function in the input layer “relu”2

Number of neurons in the hidden layer 32
Activation function in the hidden layer “relu”
Dropout rate 0.25
Optimizer “Adam”3

Learning rate of optimizer 0.0001
Batch size 50
Epoch 80
Loss function “binary_crossentropy”4

1ANN: artificial neural network implemented by the deep learning
framework Keras package in Python, and hyper-parameters of ANN were
optimized by the grid search method with sklearn.model_selection.Grid-
SearchCV function.

2“relu”: rectified linear unit that was one of the most commonly used
activation functions in artificial neural network.

3“Adam”: adaptive moment estimation that was a method for efficient
stochastic optimization.

4“binary_crossentrophy”: the loss function for binary classification
problems.
meant a 94.09% chance to correctly distinguish an egg-
laying event from a no-egg-laying event. If the AUC
value was greater than 0.9, it indicated an outstanding
test (Mandrekar, 2010). Thus, the classification perfor-
mance of the ANN model was outstanding.
To date, one other published study has reported pre-

dicting daily egg-laying events of individual birds by a
random forest classifier (You et al., 2020). In that study,
features regarding the feeding activity and BW change
of individual birds were extracted from a dataset col-
lected by a PF system. However, a limitation in the
study was that prediction outputs could just be known
on the subsequent day because the features in the 24 h
(from 00:00 to 23:59) were needed as input variables for
the prediction model. The current study aimed to build
a prediction model that could be applied before the end
of the current day. In the current study, features were
also created based on the feeding activity and BW
change recorded by a PF system. However, features
were created from different periods unlike the previous
study. Three periods around a specific time point
(anchor point) in the day were used to create features,
including 24 h before the anchor point, 6 h before the
anchor point, and 6 h after the anchor point. Since it
took about 24 h to form an egg, the feeding activity and
BW change in the period of 24 h before the anchor point
of egg-laying events might be different from that of no-
egg-laying events. A target BW was preassigned in the
PF system, and a breeder could have a meal if its real-
time BW was lower than its target BW. In the 6 h period
before oviposition, a breeder that would lay an egg
might be less likely to access the feeder in the PF station
than a breeder that would not lay. In contrast, in the 6 h
period after oviposition, a breeder that laid an egg was
more likely to receive feed due to BW loss resulting from
having laid an egg compared to a breeder that did not
lay. Thus, these three periods were important to create
features. There were 8 features in each of the 3 periods.
In each period, BWG over the period consisted of several
BW changes between 2 consecutive real-time BW. BWG
could be partitioned into 2 parts: the sum of BW
changes greater than 0 and the sum of BW changes less
than 0. The sum of BW changes greater than 0 could be
caused by FI and WI, and the sum of BW changes less
than 0 could just be caused by EM as oviposition did not
occur in the period. Since the FI was recorded by the PF
system, WI could be estimated by subtracting FI from
the sum of BW changes greater than 0. The sum of BW
changes less than 0 could be considered as the estimated
EM. Since BWG, FI, estimated WI, and estimated EM
over the period might be associated with oviposition,
they were used as 4 features. The more frequently hens
visited the PF station, the more accurate estimated WI
and estimated EM would be. Thus, the number of meals
and the number of no-meal visits were used as 2 features.
Considering the birds were fed according to the target
BW curves, the difference between real-time BW and
target BW could indicate the change of BW and sub-
stantial BW changes might be associated with oviposi-
tion. Thus, the mean and the standard deviation of the



Figure 4. Loss (a) and accuracy (b) of the trained artificial neural network (ANN) model with 80 epochs in the current study. The loss function
for the ANN model was binary_cross_entropy that was for binary classification problems. Accuracy was calculated according to the equation: ,
where TP, TN, FP, and FN meant true positive, true negative, false positive, and false negative, respectively.

Figure 5. Receiver operating characteristic (ROC) curve and area
under the curve of the artificial neural network model. In the figure, the
recall was calculated by the equation: , where TP meant true positive
and FN meant false negative. False positive rate (FPR) in the figure
was calculated by the equation: , where FP meant false positive and
TN meant true negative.

Figure 6. The distribution of predicted probability for testing sam-
ples by the artificial neural network. The total number of testing sam-
ples was 283.
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difference were used as 2 features. Apart from the 24 fea-
tures, another 2 features regarding the anchor point
were created. The time interval between 2 consecutive
visits across the anchor point was created because a
long-time interval might occur if a breeder laid an egg
between the 2 visits. Similarly, the BW change between
two consecutive visits across the anchor point was cre-
ated because a substantial BW change might occur if a
breeder laid an egg between the 2 visits. Since all fea-
tures were around the anchor point in one day, predic-
tion outputs could be achieved in advance before the
day was over.

For binary classification, machine learning algorithms
could generate a probability between 0 and 1, and then
a default decision threshold (0.5) for the probability was
used to further generate a label as an output
(Freeman and Moisen, 2008). If the probability was
higher than or equal to 0.5, it was recognized as 1 (egg-
laying); otherwise, it was 0 (no-egg-laying). In the cur-
rent study, when training the ANN model, outputs were
binary labels; when using the ANN model, prediction
outputs were a probability between 0 and 1, rather than
a binary label. ANN was a nonlinear model that pro-
vided a direct estimation of the posterior probabilities
for classification problems without prior probabilities
and other underlying assumptions (Zhang, 2000). Input
variables were received by the input layer, and then
computation on these input variables was performed by
the hidden layer. A single hidden layer was used in the
ANN model in the current study since the dataset was
relatively small. The sigmoid function (a smooth nonlin-
ear function) was used as the activation function in the
output layer. Since the output of the sigmoid function
was between 0 and 1, the ANN model finally generated a
value between 0 and 1 as the probability of daily oviposi-
tion events occurring. You et al. (2020) used a random
forest classifier that was a highly robust and accurate
machine learning approach for binary classification.
However, the random forest classifier was not a good



Table 3. Evaluation results1 of the artificial neural network model on the testing set (283 samples included) presented by confusion
matrix.2

Predicted oviposition event3 (d)
Precision4 Recall5 Overall accuracy6

Egg-laying No-egg-laying

Actual oviposition event (d) Egg-laying 125 18 0.9191 0.8741 0.8975
No-egg-laying 11 129 0.8776 0.9214

1The original results generated by the artificial neural network model were probability. The binary results presented in the confusion matrix was based
on a probability threshold of 0.5 that classified probabilities into two groups: egg-laying group and no-egg-laying group.

2True positive (TP) represented predicted egg-laying events for actual egg-laying events; False positive (FP) represented predicted egg-laying events
for actual no-egg-laying events; False negative (FN) represented predicted no-egg-laying events for actual egg-laying events; True negative (TN) repre-
sented predicted no-egg-laying events for actual no-egg-laying events.

3Oviposition event indicated whether a bird laid an egg or not in one day. Predicted oviposition event was predicted by the artificial neural network
model.

4Precision (egg-laying) = TP / (TP + FP); precision (no-egg-laying) = TN / (TN + FN), based on the testing set.
5Recall (egg-laying) = TP / (TP + FN); recall (no-egg-laying) = TN / (TN + FP), based on the testing set.
6Overall accuracy = (TP + TN) / (TP + TN + FP + FN), based on the testing set.
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choice for generating the probability of classes. Since the
probability estimated by the random forest classifier
was the average proportion of a class observations in the
leaf nodes of all the trees (Khan et al., 2016), abnormal
probability might be estimated when the growth of trees
was not limited so that there was only one class in the
leaf nodes. The probability could indicate confidence in
classification and evaluate the possibility of misclassifi-
cation (Li et al., 2017). In the current study, the proba-
bility of daily oviposition events occurring was predicted
by the ANN model. Compared with binary labels used
in the previous study, the probability of daily oviposi-
tion events occurring would be informative because it
could indicate how likely oviposition of an individual
breeder occurred in the day. A higher probability value
indicated that oviposition was more likely to occur. The
distribution of the probability of all 283 testing samples
showed 2 heavy tails in Figure 6. For most samples, the
probability of daily oviposition events occurring was in
the range from 0.0 to 0.1 or in the range from 0.9 to 1.0,
which indicated that the ANN model could reliably dis-
tinguish egg-laying events from no-egg-laying events.
Table 3 shows the evaluation results of 283 testing sam-
ples presented by confusion matrix and the binary labels
of these testing samples were generated based on a prob-
ability threshold of 0.5. Overall accuracy of the ANN
model was 0.8975, which was higher than that of the
random forest classification model (0.8482) in the previ-
ous study (You et al., 2020).

Previous studies reported using machine learning
models to detect drops in flock-level egg production
curves (Morales et al., 2016; Ramírez-Morales et al.,
2017). Compared with these studies, the current study
could identify non-laying birds and facilitate monitoring
of health and other issues at an individual bird level. It
would be more beneficial than previous studies because
the ANN model in the current study could help to find
the individual birds with problems, rather than just to
detect flock-level issues. A possible application scenario
of using the ANN model was to identify the breeders
that have laid an egg in the pen. If the number of col-
lected eggs was n, there were n breeders that have laid
an egg in the pen. All breeders in the pen could be
ranked by the predicted probability of oviposition events
occurring from high to low and then the top n breeders
in the rank could be considered as the breeders that
have laid an egg. To apply the ANN model, anchor
points should be randomly selected between 05:00 and
18:00 because the ANN model was built based on the
dataset in which anchor points were between 05:00 and
18:00. Additional analysis showed that using noon as an
anchor point yielded the best oviposition prediction
accuracy (data not shown).
CONCLUSION

The current study aimed to improve a previous
approach that could only be used to identify daily
egg-laying events on the subsequent day and the pre-
diction outputs were binary labels. An ANN model
was proposed to predict the probability of daily ovi-
position events based on 26 features around a specific
anchor time point corresponding to oviposition time.
The AUC value of the ANN model was 0.9409, indi-
cating the ANN model had an outstanding classifica-
tion performance. The ANN model could be used to
predict oviposition events before the end of each day,
and the prediction outputs were informative probabil-
ities that indicated the likelihood of oviposition by
individual hens within each day. In situations where
the total egg production for a flock of breeders in one
day was known, the probability of daily oviposition
events occurring of all individual birds could be pre-
dicted and then ranked to choose those most likely to
have laid an egg.
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