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Abstract: Heparanase (Hpse) is an endo-β-D-glucuronidase capable of cleaving heparan sulfate
side chains. Its upregulated expression is implicated in tumor growth, metastasis and angiogenesis,
thus making it an attractive target in cancer therapeutics. Currently, a few small molecule inhibitors
have been reported to inhibit Hpse, with promising oral administration and pharmacokinetic (PK)
properties. In the present study, a ligand-based pharmacophore model was generated from a dataset
of well-known active small molecule Hpse inhibitors which were observed to display favorable
PK properties. The compounds from the InterBioScreen database of natural (69,034) and synthetic
(195,469) molecules were first filtered for their drug-likeness and the pharmacophore model was
used to screen the drug-like database. The compounds acquired from screening were subjected to
molecular docking with Heparanase, where two molecules used in pharmacophore generation were
used as reference. From the docking analysis, 33 compounds displayed higher docking scores than
the reference and favorable interactions with the catalytic residues. Complex interactions were further
evaluated by molecular dynamics simulations to assess their stability over a period of 50 ns. Further-
more, the binding free energies of the 33 compounds revealed 2 natural and 2 synthetic compounds,
with better binding affinities than reference molecules, and were, therefore, deemed as hits. The hit
compounds presented from this in silico investigation could act as potent Heparanase inhibitors and
further serve as lead scaffolds to develop compounds targeting Heparanase upregulation in cancer.

Keywords: Heparanase; pharmacophore modeling; virtual screening; molecular docking; molecular
dynamics simulations; binding free energy calculations; MM/PBSA

1. Introduction

The extracellular matrix (ECM) plays a major role in providing a physical scaffold for
all the tissues and also helps to maintain the biochemical processes important for tissue
homeostasis [1]. The supramolecular proteins (collagen, laminin, elastin, fibronectin) inter-
act with the ubiquitous macromolecules heparan sulfate proteoglycans (HSPGs) in the cell
surface and ECM, to maintain the cellular framework [2]. Heparanase (Hpse) (EC 3.2.1.166)
is a principal endo-β-D-glucuronidase that catalyzes the cleavage of glycosaminoglycan
heparan sulfate (HS) side chains of HSPGs into smaller fragments of 10–20 sugar units,
thus modulating the HS function [3]. The mammalian Hpse enzyme was isolated from the
placenta and later from platelets and its activity contributes to disassembly and remodel-
ing of ECM and basement membrane [2,4]. Notably, these events result in upregulation
of cell migration, invasion and release of HS-bound angiogenesis factors [2]. Markedly
upregulated Hpse levels trigger the MMP-9, hepatocyte growth factor (HGF) and vascular
endothelial growth factor (VEGF) expression, thereby leading to cancer progression [5–7].
The upregulation of Hpse expression levels has also been reported in numerous solid
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and hematological malignancies, including ovarian, pancreatic, brain, bladder, prostate,
colon, liver, breast, sarcoma and myeloma [8,9]. Moreover, Hpse overexpression is also
linked with aggressiveness of a variety of tumor cell types, and as observed clinically, its
expression is also associated with increased tumor size, tumor progression enhancement,
metastasis and poor prognosis [10]. These actions lead to pathological ailments, such
as tissue inflammation and angiogenesis, therefore making Hpse a druggable target for
developing anticancer therapeutics.

The pharmacological inhibition of Hpse overexpression has been accomplished through
some HS mimetics, including Muparfostat (PI-88), Roneparstat (SST0001), Pixatimod
(PG545) and Necuparanib (M402), which have entered clinical trials as Hpse inhibitors [11,12].
PI-88 (Figure S1) is a combination of sulfated di- to hexasaccharides and it progressed to the
Phase III of clinical trials for hepatocellular carcinoma. However, it demonstrated hemato-
logic side effects when administered along with Docetaxel [13,14]. Roneparstat (Figure S1),
with an IC50 value in the nanomolar range, is an N-acetylated glycol-split heparin and is
in clinical trial for advanced multiple myeloma [15,16]. Pixatimod (Figure S1) is a fully
sulfated hexasaccharide and a dual inhibitor of Hpse and angiogenesis, presently in Phase I
of clinical trials for advanced solid tumors [17,18]. Necuparanib is a glycol-split HS mimetic
and is currently in Phase-I/II clinical trials for metastatic pancreatic cancer when combined
with gemcitabine and nab-paclitaxel [19,20]. Apart from the HS mimetic inhibitors, Zhao
and co-workers identified a semisynthetic and highly sulfated oligosaccharide carbohydrate,
JG3, from marine oligomannurarate [21]. JG3 inhibits both angiogenesis and metastasis
and additionally blocks tumor growth. However, JG3 displays poor anticoagulant activity,
and therefore, demonstrates low toxicity than other polyanionic compounds [1]. Another
such marine-derived inhibitors for Hpse are a family of poly sulfated polygalactans origi-
nating from red algae and exhibiting anti-metastatic activity by inhibition of tumor-derived
Hpse [22]. RK-682 (3-hexadecanoyl-5-hydroxymethyltetronic acid) (Figure S1), isolated
from the mycelia of Streptomyces sp. 88–682, also displays an inhibitory activity for Hpse
and the derivative 4-benzyl-RK-682 was also found to possess Hpse inhibitory activity (IC50
= 17 µM) [23,24]. Apart from the above-mentioned inhibitors, nucleic acid-based inhibitors
such as Defibrotide have also been used to modulate the Hpse anti-cancer effect [1,25]. Defi-
brotide (Figure S1) is an orally bioavailable Hpse inhibitor, isolated from porcine intestinal
mucosa, decreasing Hpse expression in multiple myeloma cell lines [26]. The developed
Hpse inhibitors are predominantly carbohydrate-based compounds possessing heparin-like
properties. However, these mimetics bind to heparin binding domains (HBD) flanking
the Hpse active site, and therefore, are not specific for Hpse. Moreover, they interact with
distinct heparin-binding proteins with off-target effects and unknown consequences [2]. Fur-
ther disadvantages include their heterogeneous structures, which adds to their ambiguity
as viable drugs for human use [2].

The discovery of small molecule Hpse inhibitors is desirable because of their effi-
cient optimization for oral administration and promising pharmacokinetic properties,
thereby resulting in an improved patient therapeutic compliance [27]. The polysulfonated
naphthylurea-based small molecule, Suramin (Figure S1), inhibits melanoma Hpse and B16
melanoma cell invasion [28,29]. However, Suramin demonstrated adrenal insufficiency,
neurotoxicity and renal toxicity along with anticoagulant-mediated blood dyscrasias,
and therefore, failed to advance into clinical trials [1]. Additionally, several synthetic
small molecules of various scaffolds have been reviewed in exclusive details by Mohan
et al. [1], classifying them into benzazoles [27,30–32], thiazoles [33], oxazines [34–40], quino-
lines [41,42], glucans [41] and triazolo-thiadiazoles [2]. Apart from the inhibitors, Aspirin,
which is a non-steroidal anti-inflammatory drug, was also found to inhibit Hpse by inter-
acting with Glu225 in its catalytic site and observed to inhibit Hpse-mediated cancer cell
migration, VEGF release and angiogenesis, both in vitro and in vivo [43].

Presently, a smaller quantity of small molecule inhibitors with promising pharma-
cokinetic properties are reported in literature for Hpse inhibition and the available HS
mimetic inhibitors have failed at various stages of clinical trials. The search for new small
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molecule inhibitors with novel chemical scaffolds and the aforesaid perspectives prompted
us to investigate natural as well as synthetic molecules as potential therapeutics targeted
against Hpse. To attain this objective, we have carried out a ligand-based common-feature
pharmacophore modeling study exploiting the shared chemical features of a few potent
Hpse inhibitors, stated above. Accordingly, using the developed model as a query, we
screened for compounds mapping our model, from a well-known InterBioScreen (IBS)
database. We additionally checked their drug-likeness and performed molecular docking
with the structure of Hpse. The acquired docked complexes were escalated further for eval-
uating their stability in physiological conditions. Subsequently, we subjected the simulated
complexes to binding free energy calculations and confirmed two molecules each from
natural and synthetic sources with better binding affinity than the reference compounds
as hits.

2. Results

In the present in silico investigation, a ligand-based pharmacophore modeling ap-
proach employing a series of computational techniques have been applied for the identifica-
tion of potential Hpse inhibitors. The schematic representation of the study is summarized
as below (Figure 1).

Figure 1. Flowchart depicting the working methodology in the current study used for the identification of potential
Heparanase inhibitors.
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2.1. Common Feature Pharmacophore Model

The Feature Mapping protocol availed prior to model generation revealed the crucial
ring aromatic (RA), hydrogen bond acceptor (HBA) and hydrophobic (HYP) features from
four structurally diverse and well-known Hpse inhibitors as a training set (Figure 2),
required for Hpse inhibition. Accordingly, the Common Feature Pharmacophore Generation
module using the HipHop algorithm resulted in 10 model hypotheses with 5 or 6 features
each. The rank of the generated models ranged from 65.96–71.08 (Table 1). For the
evaluation of the ranks, features and alignment of inhibitors with the generated hypotheses,
Hypo1 with the highest rank 71.08 was selected as the most reliable pharmacophore model.
The model selected from the above step encompasses two RA, two HBA and two HYP
features (Figure 3). The chosen model, Hypo1 was escalated for further validation by the
Güner-Henry (GH) approach.

Figure 2. Two-dimensional (2D) structures of four active compounds used as training set for pharma-
cophore hypotheses generation. The inhibitory activity value (IC50) for each compound is shown in
parentheses (µM).

Table 1. Composition of the common-feature pharmacophore hypotheses generated by HipHop algorithm.

Sr. No. Features a Rank b Direct Hit c Partial Hit d Max Fit e

1 RA, RA, HBA, HBA, HYP, HYP 71.08 1111 0000 6
2 RA, RA, HBA, HBA, HYP, HYP 70.28 1111 0000 6
3 RA, RA, HBA, HBA, HYP, HYP 70.28 1111 0000 6
4 RA, RA, HBA, HBA, HYP, HYP 69.48 1111 0000 6
5 RA, HBA, HYP, HYP, HYPA 66.18 1111 0000 5
6 HBA, HYP, HYP, HYPA, HYPA 66.09 1111 0000 5
7 RA, HBA, HYP, HYP, HYPA 66.04 1111 0000 5
8 RA, HBA, HYP, HYP, HYPA 66.00 1111 0000 5
9 RA, RA, HBA, HYP, HYP 65.96 1111 0000 5

10 RA, RA, HBA, HYP, HYP 65.96 1111 0000 5
a Features: RA: ring aromatic; HBA: hydrogen bond acceptor; HYP: hydrophobic; HYPA: hydrophobic aromatic. b Rank: The best
hypothesis demonstrates the highest rank. The higher the rank score, the lower the likelihood of chance correlation. c Direct Hit: Value (1)
signifies that the training set molecules mapped well to all chemical features of the hypothesis. d Partial Hit: Value (0) signifies that there
was no partial mapping of the training set molecules with the hypothesis. e Max Fit: The maximum number of features in the hypothesis.
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Figure 3. (A) The 3D representation of the selected pharmacophore model, Hypo1, containing two
hydrophobic (HYP: cyan), two ring aromatic (RA: brown) and two hydrogen bond acceptor (HBA:
green) features. (B) The interfeature distance (Å) among the features of Hypo1.

2.2. Decoy Set Validation of the Pharmacophore Model

The selected model, Hypo1, was assessed for its robustness in retrieving active Hpse
molecules from a mixed database of active and decoy compounds. This decoy set vali-
dation was initiated by the DS Ligand Pharmacophore Mapping module, which retrieved
the four inhibitors used in pharmacophore generation from a given external database of
100 compounds (4 active + 96 decoys). Accordingly, the goodness of fit (GF) score was
calculated as 0.72, which was found near the ideal model range value of 1 (Table 2) [44,45].
The value of the GF score confirmed that our model is robust for further predicting active
and potent Hpse compounds from an external database reasonably well.

Table 2. Decoy set validation of Hypo1 from an external database composed of active and inactive
Heparanase inhibitors.

Sr. No. Parameters Values

1 Total number of compounds in the database (D) 100
2 Total number of active compounds in the database (A) 4

3 Total number of hits retrieved by pharmacophore model
from the database (Ht) 6

4 Total number of active compounds in the hit list (Ha) 4
5 % Yield of active ((Ha/Ht) × 100) 66.66%
6 % Ratio of actives ((Ha/A) × 100) 100%
7 False negatives (A-Ha) 0
8 False positives (Ht-Ha) 2
9 Goodness of fit score (GF) 0.72
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2.3. Drug-Likeness Evaluation and Virtual Screening of InterBioScreen Database

In the present in silico investigation, natural (69,034) and synthetic (195,469) com-
pounds from the IBS database (Figure 1) were chosen for pharmacophore-based virtual
screening. Prior to screening, a drug-like database of 186,993 compounds was prepared by
Lipinski’s rule of five (Ro5) from the above natural and synthetic compounds. Subsequently,
the validated Hypo1 was used as a query to screen this drug-like database, mapping a total
of 2778 compounds with the pharmacophoric features. The drug-like compounds derived
from this virtual screening strategy were escalated for molecular docking with the Hpse
molecular structure.

2.4. Molecular Docking of Drug-Like Compounds with Heparanase

The process of molecular docking depends on the prediction of the binding mode
and the interaction with the catalytic site of a protein [46]. A total of 2778 compounds
procured from virtual screening were subjected to docking with the GS3 Hpse model
structure. Preceding this docking process, the GOLD software authenticity was checked
by re-docking the bound ligand, resulting in an acceptable root mean square deviation
(RMSD) of 0.78 Å (Figure S2). Following the GOLD docking validation, the mapped
compounds were docked with the Hpse molecular structure using the same coordinates
utilized for bound ligand. Experimental studies revealed that molecules 1 and 2 (Figure 2)
were reported to inhibit Hpse with the lowest inhibitory concentration. Therefore, to filter
the true Hpse binding compounds, we considered both molecules as reference compounds
and their docking scores as cutoff. Our docking analyses revealed that molecule 1 (REF1)
displayed a Goldscore of 55.30 and a Chemscore of −27.79, while molecule 2 (REF2)
demonstrated a Goldscore of 67.43 and a Chemscore of −24.35 (Table S1). Further using
these scores as cutoff, 15 natural and 18 synthetic compounds with higher docking scores
and favorable interactions with the active site residues (Asp62, Asn64, Thr97, Glu225,
Asn227, Lys231, Gln270, Arg272, Glu343, Gly349, Gly350, Ala388 and Tyr391) were selected
(Table S1). These interactions were characterized by numerous bonds including hydrogen,
hydrophobic and van der Waals. Finally, the above 33 complexes obtained from docking
were escalated to molecular dynamics simulations for evaluating their stability.

2.5. Molecular Dynamics Simulation Analysis

The docked complexes of the 33 compounds with Hpse were taken as initial coordi-
nates to check their stability at the atomistic level via molecular dynamics (MD) simulations.
In total, 33 systems were prepared and subjected to simulation production run of 50 ns
each, along with 2 simulation systems for REF inhibitors. Finally, the resulting MD sim-
ulation systems were ranked according to their binding free energies (BFE) with Hpse,
via Molecular Mechanics Poisson–Boltzmann Surface Area (MM/PBSA) methodology
(Table S1). The MM/PBSA results revealed that REF1 and REF2 displayed with BFE value
of −74.61 kJ/mol and −83.51 kJ/mol, respectively. Using the energy values of REF com-
pounds as standard for the selection of potential inhibitors, we obtained four compounds
with better BFE values, and therefore, these were considered as hit molecules (Table 3 and
Table S2). Additionally, the stability of the selected hits was studied in terms of backbone
RMSD, hydrogen bonds and potential energy plots. Furthermore, the binding interaction
of the selected hits and REF compounds with the Hpse active site residues was scrutinized
from the average structure taken from the last 5 ns of stable MD trajectories.

2.5.1. Analysis of Stability and Binding Free Energy

The backbone RMSD of simulated complexes was used to assess the stability and the
systems were observed to be stable for the entire simulation period of 50 ns (Figure 4A,B).
The hits acquired from the natural and synthetic IBS database presented with a convergent
RMSD below 0.3 nm (Table 3). Concurrently, the BFE ∆Gbind values were calculated by
generating 50 frames from the entire simulation run and plotted accordingly (Figure 4C,D).
The hits from natural compounds Hit1 (STOCK1N-70463) and Hit2 (STOCK1N-48729) from
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the IBS database displayed a BFE value of −104.579 kJ/mol and −83.751 kJ/mol, respec-
tively (Table 3 and Table S2, Figure 4C). Additionally, the hits from synthetic compounds
Hit1 (STOCK1S-95244) and Hit2 (STOCK1S-71515) from the IBS database demonstrated
a BFE value of −96.193 kJ/mol and −86.806 kJ/mol, respectively (Table 3 and Table S2,
Figure 4D). The BFE values of our hits were observed to be comparably better than the BFE
values of the REF compounds stated above. Hence, from this analysis, it can be perceived
that our natural and synthetic hits have better affinity towards Hpse. Moreover, the entire
energy of all systems was observed to remain stable as seen from the potential energy
plots for all complexes (Figure S3A,B). In addition to the RMSD, BFE and potential energy,
the analysis of hydrogen bonds over the 50 ns simulation period suggested that our hits
demonstrate a higher number of bonds throughout the simulation run (Figure S3C,D,
Table 3).

Table 3. Molecular docking and molecular dynamics simulation analyses for reference (REF) inhibitors and selected
potential hits from InterBioScreen (IBS) database against Heparanase.

Ligands
(IBS ID/REF No.)

Docking Scores MD Analyses

Goldscore Chemscore RMSD
(Backbone)

Hydrogen Bond
(Å)

Binding Free
Energy

(kJ/mol)

Natural Compound Hits

Hit1
(STOCK1N-70463) 68.95 −32.00 0.16 2.16 −104.579 ± 20.649

Hit2
(STOCK1N-48729) 67.79 −30.66 0.15 0.98 −83.751 ± 26.469

Synthetic Compound Hits

Hit1
(STOCK1S-95244) 74.92 −30.70 0.16 0.37 −96.193 ± 23.866

Hit2
(STOCK1S-71515) 67.53 −33.38 0.14 1.17 −86.806 ± 26.536

Reference Inhibitors

REF1 55.30 −24.35 0.14 0.25 −74.612 ± 20.900

REF2 67.43 −24.35 0.15 1.13 −83.519 ± 31.504

2.5.2. Binding Mode and Molecular Interactions with Heparanase Active Site

The binding mode and interaction of our hits was scrutinized in detail by calculating
the average structure from the last 5 ns of simulation run for each Hpse compound complex.

The inhibitor REF1 was observed to display one hydrogen bond with catalytic residue
Glu225. In addition, REF1 formed hydrophobic bonds with residues Tyr298 (π-π T-shaped),
Val384 (alkyl) and Tyr391 (π-alkyl). REF1 also formed bonds with Thr60, Asp62, Gly95,
Gly96, Thr97, Ser228, Arg272, His296, Glu343, Gln383 and Ala388, characterized by van
der Waals interactions (Figure S4A,C, Table 4). The binding of inhibitor REF2 was rendered
by hydrogen bonds with residue Gly349 and hydrophobic bonds with residues- Arg272
(π-cation) and Tyr391 (π-π T-shaped). The Hpse catalytic residues Thr97, Gln270, Pro271,
Tyr348, Gly350, Gln383, Gly389 and Asn390 form van der Waals interactions with REF2
(Figure S4B,D, Table 4).
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Figure 4. Molecular dynamics simulation analysis plots of Heparanase with the reference (REF) and
Hits displaying (A,B) the backbone root mean square deviation (RMSD) and (C,D) the binding free
energy (∆Gbind) values. The left (A,C) and right (B,D) columns represent the analysis for natural and
synthetic compound hits, respectively.

The average structure of Hit1, acquired from natural compounds, revealed that Hit1
demonstrated hydrogen bonds with Gln270, Asn227, Gly349 and Gly350 and hydrophobic
interactions with Glu225 (π-anion), Arg272 (π-cation), Tyr348 (π-π T-shaped) and Tyr391
(π-sigma). Moreover, residues Thr97, Ser228, Lys274, Thr275, Tyr298 and Gln383 hold Hit1
in the Hpse catalytic pocket via van der Waals interactions (Figure 5A,C, Table 4). The
identified Hit2 obtained from natural compounds was observed to interact with Asn227,
Tyr298 and Gly349 via hydrogen bonds. Hit2 additionally formed bonds with Arg272
(π-cation) and Tyr348 (π-π T-shaped) via hydrophobic interactions. Residues Thr97, Gln270
and Lys274 hold Hit2 in the Hpse active site via van der Waals bonds (Figure 5B,D, Table 4).

The representative structure of Hit1 attained from virtual screening of synthetic com-
pounds displayed hydrogen bonds with Hpse catalytic residues Asn227, Ser228 and Lys274.
Hit1, moreover, formed π-alkyl hydrophobic bonds with Lys231, Lys232, Lys274 and
Met278 and van der Waals interactions with Gln270 and Thr275 (Figure 6A,C, Table 4).
Furthermore, Hit2 obtained from synthetic compounds exhibited hydrogen bonds with
Gln270 and hydrophobic bonds with Gly349 (amide π-stacked) and Tyr391 (π-alkyl). Addi-
tionally, Hit2 was supported by Thr97, Lys231, Pro271, His297, Tyr348, Gly350 and Gln383
via van der Waals interactions (Figure 6B,D, Table 4).

Overall, from the MD simulation analyses explained above, our identified hits display
stability throughout the 50 ns of simulation run and also demonstrate comparably better
binding affinities than REF inhibitors as observed from their BFE values. Moreover, the
proposed hits in this study demonstrate intermolecular interactions with the key residues
of Hpse catalytic site. Therefore, we anticipate that our hits can be deemed a good fit for
Hpse inhibition.



Int. J. Mol. Sci. 2021, 22, 5311 9 of 22

Table 4. Molecular interactions of the compounds (reference and hits) with Heparanase active site residues obtained from stable molecular dynamics simulation trajectories.

Complex Name
Hydrogen Bond Interactions

van der Waals Interactions π-π/π-alkyl Interactions
Amino Acid Amino Acid Atom Ligand Atom Distance (<3.05 Å)

Natural Compound Hits

Heparanase
+

Natural
Compounds

Hit1

Asn227 HD22 O13 3.02
Thr97, Ser228, Gly269,

Arg272, Lys274, Thr275,
Tyr298, Tyr348, Gln383

Glu225, Tyr391
Gln270 HN O13 2.08

Gly349 HN O18 1.90

Gly350 HN O18 2.29

Hit2

Asn227 HD21 O29 2.07 Thr97, Gln270, Lys274,
Thr275, Gly350

Arg272, Tyr348Tyr298 HH O16 1.80

Gly349 HN O19 2.61

Synthetic Compound Hits

Heparanase
+

Synthetic
Compounds

Hit1

Asn227 O H35 1.85

Gln270, Arg272, Thr275 Lys231, Lys232, Met278Ser228 HG N6 2.68

Lys274 HZ2 O15 2.68

Hit2 Gln270 HE21 O15 2.60
Thr97, Lys231, Pro271,
His297, Tyr298, Tyr348,

Gly350, Gln383
Gly349, Tyr391

Reference (REF) Inhibitors

Heparanase
+

Reference
Inhibitors

REF1 Glu225 OE2 H66 1.74

Thr60, Asp62, Gly95, Gly96,
Thr97, Ser228, Arg272,

His296, Glu343,
Gln383, Ala388

Tyr298, Val384, Tyr391

REF2 Gln349 HN O23 2.39
Thr97, Gln270, Pro271,
Tyr348, Gly350, Gln383,

Gly389, Asn390
Arg272, Tyr391
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Figure 5. The 3D and 2D intermolecular interactions of natural compound hits (Hit1: A,C; Hit2: B,D) with the active site
residues of Heparanase.

Figure 6. The 3D and 2D intermolecular interactions of synthetic compound hits (Hit1: A,C; Hit2: B,D) with the active site
residues of Heparanase.
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3. Discussion

Human Hpse is an endoglucuronidase that cleaves HS side chains, an indispensable
component of the ECM. This event leads to remodeling of the ECM, causing a release of
growth factors and cytokines bound to HS. The release of growth factors further promotes
pathological processes, including angiogenesis, migration of immune cells, inflammation
and metastasis. Quintessentially, all cancers examined to date have been reported to
upregulate Hpse activity, instigating tumor growth and metastasis with poor patient sur-
vival [47]. Therefore, Hpse has emerged as a valid druggable target for developing effective
anti-cancer therapeutics. The advent of Hpse inhibitors has resulted in the development
of carbohydrate-based molecules with heparin-mimicking properties [11,25,48]. These
heparin mimics bind to heparin-binding domains flanking the Hpse catalytic site, thereby
inhibiting HS cleavage. Four such heparin mimetics, Roneparstat, Necuparanib, Mupafos-
tat and Pixatimod, are presently in clinical trials for different cancerous ailments. However,
mimetic inhibitors result in off-target effects and are not Hpse-specific, causing them to bind
with heparin-binding protein domains [2]. Such mimics, additionally, are heterogeneous in
their structures (both in composition and chain length), further adding to their vagueness
as viable Hpse drugs for human use. These effects limit their standardization, product
characterization, biological data interpretation, and may also affect their delivery route [27].
The discovery and development of small molecule Hpse inhibitors is particularly desirable
owing to their satisfactory pharmacokinetic properties and optimization, leading to oral
administration. Although remarkable progress has been made in the development of small
molecule Hpse inhibitors, no drugs able to modulate its activity has reached the clinical
setting. Taking into account the aforementioned viewpoints, we pursued our research
objective to identify both natural as well as synthetic small molecules as Hpse inhibitors by
applying Catalyst/HipHop-based common-feature pharmacophore modeling.

The Catalyst pharmacophore modeling program queries interactions of compounds
with the target protein on the basis of two hypothesis generation methods, including
HypoGen and HipHop [49,50]. The HypoGen method illuminates the correlation between the
chemical binding features of the compounds and their biological activities. The HipHop
method, on the other hand, focuses on the chemical features which are common to the
dataset of the most active compounds with a narrow activity range [51]. This hypothesis
generation method produces pharmacophore models independent of the in vitro biological
activity of the training set compounds [52,53]. Therefore, the objective of the present study
was to acquire the active Hpse inhibitors with unique scaffolds encompassing acetic acid,
benzamide, urea and benzazolyl derivatives for developing a pharmacophore model to
inhibit the upregulation of Hpse (Figure 2).

The chemical features of the aforementioned active inhibitors were exploited by the
Catalyst/HipHop program, which generated 10 pharmacophore hypotheses with distinct
ranks and features (Table 1). Among the 10 generated models, the best 3D pharmacophore
model with a ranking score of 71.08 was selected, composed of two ring aromatic, two
hydrogen bond acceptor and two hydrophobic as quintessential features, required for Hpse
inhibition (Figure 3). Our findings were also in accordance with a previously published
study by Gozalbes et al., where a four-point pharmacophore model was developed con-
sisting of hydrogen bond donor, acceptor and hydrophobic features as most essential for
Hpse inhibition [42]. Gozalbes et al. and team successfully identified the anti-malarial
drug, Amodiaquine displaying Hpse inhibitory activity employing their pharmacophore
model [41]. Therefore, we argue that our pharmacophore model, generated with similar
features as previous studies, gives reliable results for retrieving compounds that display a
better binding affinity towards Hpse. The chosen Hpse pharmacophore model with the
highest rank score was further validated by the decoy set validation method, generating
a GF score of 0.72, which is near the ideal model range value of 1 (Table 2) [53–55]. The
validated model was, thus, considered to be robust for retrieving molecules from an exter-
nal database, and therefore, the resultant model was allowed to screen the InterBioScreen
database composed of natural (69,034) and synthetic (195,469) compounds (Figure 1). Prior
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to virtual screening, the total number of molecules from both the subsets was reduced
to 59,649 (natural) and 127,345 (synthetic) drug-like compounds via Lipinski’s Ro5 filtra-
tion. The screening of both the subgroups resulted in 717 (natural) and 2061 (synthetic)
compounds, which were further subjected to molecular docking with the Hpse molecular
structure. The crystal structure of human Hpse complexed with a tetrasaccharide inhibitor
dp4 (PDB ID: 5E9C) [56] provided vital insights into the architecture of the Hpse binding
cleft. Hpse is produced as a preproenzyme, and after proteolytic activation, two distinct
subunits, including the N-terminal 8 kDa (residues Gln36-Glu109) and C-terminal 50 kDa
(residues Lys158-Ile543), produced a mature form of Hpse [4,27,57]. The catalytic site
of Hpse is characterized by a narrow channel, with active site residues, Glu225 (proton
donor) and Glu343 (proton acceptor) placed in the middle of the channel [58]. The inhibitor
binding site is characterized on one side by the heparin binding domain 2 (HBD2; residues
270–280) and on the other side by heparin binding domain 1 (HBD1; residues 158–171)
accommodating the terminal iduronic acid of inhibitor dp4 in PDB ID: 5E9C. The model of
Hpse built recently by Madia et al. was utilized for our molecular docking studies to devise
a putative binding mode for our drug-like compounds with Hpse [27]. This model was
built by adding the connecting GS3 ((Gly-Ser) × 3) peptide using MODELER 9.16 software,
in which the 8 kDa and 50 kDa subunits are connected, and is, therefore, referred to as the
catalytically active form of Hpse. Molecular docking with Hpse resulted in 15 (natural) and
18 (synthetic) compounds demonstrating higher Goldscores and lower Chemscores than
the reference inhibitors (Table S1). The above 33 compounds also demonstrated interactions
with the key residues of the Hpse binding pocket. Therefore, the acquired 33 compounds
were evaluated in physiological conditions by molecular dynamics simulations, and their
binding free energies were computed by MM/PBSA calculations (Table S1). The calculated
energies were compared with the energy values of the reference inhibitors. REF1 and REF2
displayed BFE values of −74.612 kJ/mol and −83.519 kJ/mol, respectively (Table 3 and
Table S1). The MM/PBSA calculations revealed better BFE values for two of our identified
hits with Hit1 and Hit2 from natural compounds, demonstrating −104.579 kJ/mol and
−83.751 kJ/mol, respectively (Table 3 and Table S2). The BFE calculations for hits obtained
from synthetic compounds revealed Hit1 and Hit2, with considerably better values of
−96.193 kJ/mol and −86.806 kJ/mol, respectively (Table 3 and Table S2). The BFE scores
by MM/PBSA enable the entropic distribution of the total ∆Gbind energy into identifi-
able contributions. These individual contributions are characterized by van der Waals,
electrostatic, polar solvation and SASA energy. As observed from the BFE distribution
analysis, the van der Waals and electrostatic forces provided the maximum driving force
for binding of our hits with Hpse. Additionally, the contribution of van der Waals inter-
action in binding of Hit1 from natural (−169.280 ± 18.050 kJ/mol) as well as synthetic
(−163.420 ± 16.897 kJ/mol) sources was observed to be near the contributing range of
van der Waals interaction in binding of REF2 (−173.780 ± 16.684 kJ/mol) (Table S2). The
entropic distribution of the total BFE suggests that our hits also contribute comparably
better in terms of SASA energy and electrostatic energy (Table S2).

The hits achieved from natural and synthetic compounds were further scrutinized
for their molecular interactions with Hpse catalytic site residues. Literature reviews on
the residues targeting Hpse via hydrogen bonds revealed Glu225, Asn227, Lys231, Gln270,
Arg272, Lys274, Glu343, Gly349, Gly350 and Ala388 as vital for Hpse inhibition [27,57–59].
Accordingly, our obtained hits were observed to target Gln270, Asn227, Lys274, Gly349 and
Gly350 via hydrogen bonds (Table 4, Figure 5A,B and Figure 6A,B). Further assessment
of the literature revealed that the previously reported inhibitors with effective biological
activity against Hpse targeted residues Ser163, Glu225, Asn227, Lys231, Gln270, Arg272,
Lys274, His296, Tyr298, Glu343, Tyr348, Gly349, Gly350, Gly351, Glu383, Ala388, Gly389
and Tyr391 via hydrophobic and/or van der Waals interactions [23,27,57–59]. Consequently,
our hits also demonstrated interactions with the above residues characterized by van der
Waals- and π-mediated bonds (Table 4, Figure 5C,D and Figure 6C,D). As perceived from
the hydrogen bond analysis plots, our hits demonstrated a higher number of bonds than the
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reference inhibitors (Figure S3C,D). Moreover, the hits were found to be stable throughout
the 50 ns of simulation, as seen from their RMSD (Figure 4A,B) and potential energy
plots (Figure S3A,B). The Hpse-hit complexes were also scrutinized at 0 ns and 50 ns to
observe the difference in their interactions with Hpse active site residues (Figure S5). It was
perceived that our hits formed higher number of van der Waals interactions at 0 ns, while
most of these interactions were lost at the end of 50 ns. Additionally, the superimposed
complex structures revealed a slight deviation in the binding pose of Hit1 from the synthetic
source at 50 ns. Despite the pose deviancy, it was noticed that Hit1 retained similar
interactions with the catalytic site residues of Hpse (Figure S5C). Correspondingly, the
alignment of identified hits with Hypo1 indicated that our hits portray the pharmacophoric
features reasonably well (Figure S6).

Additionally, to further confirm the toxicity properties of our final hit compounds,
the Toxicity Prediction (TOPKAT) module implanted in DS was utilized to evaluate three
properties. The TOPKAT module depends on the notion of Quantitative Structure-Toxicity
Relationship (QSTR) models and computes toxicity properties which include rodent car-
cinogenicity, AMES mutagenicity and skin irritancy. According to the U.S. National Tox-
icology Program (NTP), the compound’s rodent carcinogenicity property is evaluated
by testing it in both sexes of mouse. The TOPKAT results demonstrated our hits to be
non-carcinogenic in both sexes of mouse models. Furthermore, our hits were also ob-
served to be non-AMES mutagenic and non-skin irritant (Table 5). Investigation of oral
administration and pharmacokinetic (PK) properties of final hit compounds is essential to
avoid their failure in clinical trials. Therefore, the PK properties of our identified hits as
well as those of REF inhibitors were calculated and compared by the online tool pkCSM
(Table 6) (accessed on 12 May 2021, http://biosig.unimelb.edu.au/pkcsm/) [60]. Given an
input molecule, pkCSM predicts PK properties using graph-based signatures. Accordingly,
pkCSM predicts various properties encompassing molecular weight, rotatable bonds, water
solubility, intestinal absorption, BBB permeability, CYP2D6 inhibitory activity, hERG in-
hibitory prediction, total clearance and renal OCT2 substrate prediction. The pkCSM results
demonstrated that our hits display a moderate level of water solubility, thus confirming
that they have good oral bioavailability. Moreover, Caco-2 cell lines are widely employed
as an in vitro model in pre-clinical investigations for predicting the likely gastrointestinal
permeability of drugs [61]. It was observed that Hit2 from a natural source and Hit1 from a
synthetic source displayed better Caco-2 permeability than the REF inhibitors, while Hit1
from a natural source and Hit2 from a synthetic source demonstrated a permeability closer
to the acceptable range. A literature survey revealed that molecules with an intestinal
absorption (IA) level of <30% are classified as being poorly soluble. Intriguingly, all our
identified hits displayed IA levels >30%, similar to that observed for the potent Hpse REF
inhibitors. Additionally, the skin permeability property of a given compound of interest is
considered for the development of transdermal drug delivery, and it was observed that our
hits demonstrated acceptable skin permeability scores (>−2.5). The P-glycoprotein (P-gp)
is an extensively studied ATP-binding cassette (ABC) transporter regulating the uptake
and efflux of drugs, thereby helping in their absorption [62]. In the present study, our
identified hits were observed to be P-gp substrates similar to REF1, except for Hit1 from a
synthetic source and REF2. Moreover, all of our hits were predicted to be inhibitors of P-gp.
Furthermore, our hit compounds displayed low BBB permeability, thereby limiting the
chances of nervous system-related toxicity. The metabolic performance of our hits and REF
inhibitors was also assessed by CYP2D6 isoform of cytochrome P450 inhibition. The pkCSM
results predicted that our hits were observed to be non-inhibitors of CYP2D6 similar to REF
inhibitors, and thus, can be metabolized in the liver. The total clearance (TC) parameter for
the excretion of drugs exhibited that Hit1 from a natural source demonstrates an acceptable
TC value similar to REF1, while other hits displayed low TC values similar to that observed
for REF2. In addition, our hits were not found to be substrates of renal organic cation
transporter 2 (OCT2), which is an essential factor to be considered for the renal clearance
of drugs. This illustrated that our hits do not have the potential for adverse interactions
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with co-administered OCT2 inhibitors. Additionally, hERG I is an essential determinant of
normal repolarization of cardiac action potential, and its inhibition leads to cardiotoxicity.
The pkCSM results predicted that our hits do not inhibit hERG I. Finally, it was perceived
that even though REF inhibitors demonstrate good inhibitory activities against Hpse, they
do not obey all the Lipinski’s Ro5 rules. Both REF1 and REF2 display a molecular weight of
more than 500 Da and lipophilicity (LogP) on the higher level. Compared to REF inhibitors,
our hits obeyed all the rules, except for Hit1 from a synthetic source, which displayed
LogP slightly greater than the acceptable limit. The above overall properties and the low
molecular weights of our hit compounds plays an essential role in their oral absorption.
At this stage, note that there are numerous servers for predicting PK properties and the
results of different servers are not always the same.

Table 5. Toxicity properties of identified natural and synthetic compound hits generated by TOPKAT.

Hits
(IBS a ID)

Mouse Female
Carcinogenicity

Mouse Male
Carcinogenicity

AMES b

Mutagenicity
Skin

Irritancy

Natural Compound Hits

Hit1 (STOCK1N-70463) Non-Carcinogen Non-Carcinogen Non-Mutagen Non-Irritant

Hit2 (STOCK1N-48729) Non-Carcinogen Non-Carcinogen Non-Mutagen Non-Irritant

Synthetic Compound Hits

Hit1 (STOCK1S-95244) Non-Carcinogen Non-Carcinogen Non-Mutagen Non-Irritant

Hit2 (STOCK1S-71515) Non-Carcinogen Non-Carcinogen Non-Mutagen Non-Irritant
a IBS: InterBioScreen; b AMES: Salmonella typhimurium reverse mutation assay.

In addition to the aforementioned analysis, the identified natural and synthetic hits
were searched in the PubChem chemistry database (accessed on 15 April 2021, https:
//pubchem.ncbi.nlm.nih.gov/) [63] by entering their SMILES (simplified molecular-input
line-entry system) IDs [64] to check if our hits have been evaluated in the literature, against
Hpse. From the PubChem analysis, it was observed that our hits have not been assessed
against Hpse before, and hence, can be considered as valuable therapeutics against Hpse-
mediated ailments. Moreover, from the IUPAC name of our hits, it can be perceived that
Hit2 from both synthetic and natural compounds represent compounds from benzamide
origin (Table 7) and similar molecules of this source have been explored and reported before
by Xu et al. [31]. On the other hand, Hit1 from both natural and synthetic compounds
indicate molecules of acetamide and sulfonamide origin, respectively (Table 7). The small
molecules from the aforementioned origins have not been reported in the literature yet.
Overall, we anticipate that our hits may be effective drug candidates as potent therapeutics
and can be recommended for further evaluation against Hpse.

The laboratory in vitro research necessitates chemicals and other techniques, which is
a time-consuming and tedious process [65]. Therefore, we accessed the experiment-free
prediction method for assessing the inhibitory behavior of our hit compounds. Deep
learning models have progressed recently to predict the inhibitory activity of the com-
pounds. PaccMann (accessed on 12 May 2021, https://ibm.biz/paccmann-aas) is one
such web-based drug sensitivity platform designed to utilize multimodal attention-based
neural networks [66]. Moreover, PaccMann is an effective validation toolbox used for
drug repurposing approaches and has an R2 value of 0.86 along with an RMSE (root mean
square error) value of 0.89, highlighting the strong correlations between the resultant data
generated by the server and the experimentally estimated values. Accordingly, the SMILES
IDs of our hit compounds and REF inhibitors were supplied to the platform as an input
and the sensitivity against cancer cell lines was predicted in terms of their IC50 values. The
IC50 values were estimated for the ovarian (A2780), lung (A549) and breast (MCF-7) cancer
cell lines, as Hpse is overexpressed in the aforementioned particular cancers. Additionally,
the IC50 values were also predicted for Ewing’s sarcoma (SK-ES-1), multiple myeloma
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(MM1S) and hepatocellular carcinoma (HepG2) cell lines, owing to Hpse dysregulation
in the cancer subtypes. The prediction of IC50 values for all hits was observed to be low
or in the similar range as that for REF inhibitors in all cancer cell lines, except for Hit2
from a synthetic source, which was observed to predict higher IC50 values (Table S3). A
similar study was also recently performed by Thirunavukkarasu et al. [67], who utilized
the PaccMann server to successfully predict the anticancer sensitivity on 77 lung cancer
cell lines.

Table 6. In silico assessment of pharmacokinetic (PK) properties for reference (REF) inhibitors and identified hits generated
by pkCSM.

PK
Properties

Natural Compound
Hits

Synthetic Compound
Hits

Reference
Inhibitors

Cut-OffHit1
(STOCK1N-

70463)

Hit2
(STOCK1N-

48729)

Hit1
(STOCK1S-

95244)

Hit2
(STOCK1S-

71515)
REF1 REF2

Molecular
weight

447.48 474.56 489.58 489.35 500.60 598.51 ≤500 Da

LogP 4.57 4.33 5.30 4.53 7.65 6.47 <5
Rotatable Bonds 9 7 7 9 4 8 <10

HBA 6 4 8 5 3 7 ≤10
HBD 1 2 2 3 4 4 ≤5

Water solubility −5.585 −5.078 −3.182 −4.998 −2.892 −2.905

<−10
insoluble to
<0 highly

soluble
Caco-2

permeability 0.585 1.169 1.101 0.564 0.754 −0.526 >0.90

IA (human) 94.26 100 97.45 82.54 100 64.80 >30
Skin

permeability −2.688 −2.802 −2.735 −2.752 −2.735 −2.735 >−2.5

P-gp substrate Yes Yes No Yes Yes No No
P-gp I inhibitor Yes Yes Yes Yes No No No

BBB permeability −0.862 −0.854 −0.633 −1.136 −0.941 −2.352 >0.3 high to
<−1 poor

CYP2D6
inhibitor No No No No No No No

hERG I inhibitor No No No No Yes No No

Total clearance 0.544 0.152 −0.023 −0.124 0.813 −0.171 <0.3 low to
>0.7 high

Renal OCT2
substrate No No No No Yes No No

Abbreviations—HBA: Hydrogen Bond Acceptor, HBD: Hydrogen Bond Donor, IA: Intestinal Absorption, P-gp: P-glycoprotein, BBB:
Blood–Brain Barrier, hERG: human ether-a-go-go-related gene, OCT2: Organic Cation Transporter 2.
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Table 7. Molecular structures and IUPAC names of identified hits from InterBioScreen database.

Compound Name IUPAC Name Molecular Structure

Natural Compound Hits

Hit1
N-(4-(furan-2-yl)butan-2-yl)-2-((3-(4-

methoxyphenyl)-4-oxo-4H-chromen-7-
yl)oxy)acetamide

Hit2

(S)-4-(8-methoxy-11b-methyl-1,3-
dioxo-5,6-dihydro-1H-imidazo[1

‘,5′:1,2]pyrido[3,4-b]indol-
2(3H,11H,11bH)-yl)-N-

pentylbenzamide

Synthetic Compound Hits

Hit1
4-((4-(4-methoxyphenyl)phthalazin-1-

yl)amino)-N-(thiazol-2-
yl)benzenesulfonamide

Hit2

(E)-N-(1-(5-(2,5-dichlorophenyl)furan-
2-yl)-3-((3-hydroxypropyl)amino)-3-

oxoprop-1-en-2-yl)-4-
methoxybenzamide

4. Materials and Methods
4.1. Dataset Preparation and Pharmacophore Model Generation

A dataset of four well-known Hpse inhibitors, as reported in the literature [1], com-
posed of distinct scaffolds and different maximal inhibitory concentration (IC50) values,
was chosen as the training set for the generation of pharmacophore model. These four
inhibitors consisted of an acetic acid (IC50 = 0.2 µM) [33], benzamide (IC50 = 0.29 µM) [31],
urea (IC50 = 0.075 µM) [30] and symmetrical benzazolyl (IC50 = 0.18 µM) [57] derivatives
endowed with Hpse inhibitory activity. Accordingly, the 3D structures of the chosen com-
pounds were downloaded from BindingDB [68], manually checked and energy minimized
employing the Minimize Ligands module in Discovery Studio (DS) v.18 (Accelrys, San Diego,
CA, USA). Prior to model generation, the Feature Mapping protocol in DS was employed
for identifying the common chemical features in the training set compounds. The features
predicted from the above-mentioned step were used as inputs for the generation of a
model using the Common Feature Pharmacophore Generation tool of DS. This ligand-based
pharmacophore approach utilizes the HipHop algorithm to extract features common to a set
of limited active molecules [49]. The BEST/Flexible conformation generation, along with an
energy threshold of 20 kcal/mol and interfeature distance of 2.97 Å, was used to produce a
maximum of 255 conformations. A total of 10 hypotheses are generated with parameters,
including the comprised features, hypothesis rank, direct hit, partial hit and maximum
fit values.

4.2. Validation of the Generated Model

Pharmacophore validation is a crucial step in assessing the pharmacophore robustness
for retrieving active compounds from a given dataset. The best pharmacophore hypothesis
generated by HipHop was validated by the Güner-Henry (GH) scoring method, also known
as the decoy set method [69]. The GH validation was instigated by subjecting the generated
pharmacophore model to an external dataset (D) of 100 compounds with four active (A)
molecules used in pharmacophore generation. The selected pharmacophore hypothesis was
used as a 3D query employing Ligand Pharmacophore Mapping protocol of DS for acquiring
the goodness of fit (GF) score in the range of 0 (null model) and 1 (ideal model) [55].
The equation mentioned below was utilized for calculating the GF score value, where Ht
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signifies the total number of hits retrieved by the pharmacophore model and Ha denotes
the active molecules retrieved in Ht:

GF =

(
Ha

4HtA

)
(3A + Ht)×

{
1−,

Ht− Ha
D−A

}
4.3. Drug-Like Database Generation and Virtual Screening of InterBioScreen Database

The virtual screening strategy in this study used the validated pharmacophore as a
query to search the InterBioScreen (IBS) database composed of natural compounds (69,034)
as well as synthetic compounds (195,469). Prior to screening, the compounds were filtered
for their drug-like attributes on the basis of Lipinski’s Rule of Five (Ro5) and Veber’s rule by
employing the Filter by Lipinski and Veber Rules module of DS. Ro5 signifies that the potential
drug-like compound exhibits a molecular weight of 500 Da, an octanol/water partition
coefficient (log P) of less than 5, less than 5 hydrogen bond donors and 10 hydrogen bond
acceptors [70]. Additionally, Veber’s rule of less than 10 rotatable bonds was applied to
acquire drug-like compounds for further analysis [71]. The validated pharmacophore
model was subsequently used to screen these drug-like databases by engaging the Ligand
Pharmacophore Mapping protocol of DS using the FAST/Flexible fitting method. The mapped
drug-like compounds were consequently chosen for molecular docking with Hpse.

4.4. Molecular Docking of Screened Drug-Like Compounds with Hpse

Docking studies were initiated by adopting the model of human GS3 Hpse, previ-
ously developed by Madia et al. from the PDB ID: 5E9C (resolution: 1.73 Å) (accessed
on 24 November 2020, www.rcsb.org) [56], where Hpse is complexed with heparin tetrasac-
charide inhibitor dp4 [27]. The mature human Hpse (UniProtKB ID: Q9Y251) is a het-
erodimer structure encompassing two chains—N-terminal 8 kDa (residues Gln36-Glu109)
and C-terminal 50 kDa (residues Lys158-Ile543)—noncovalently assembled into a (β/α)8-
TIM barrel fold [57]. The developed model of Hpse was built in a way that the 8 kDa
and 50 kDa chains are connected by linker peptide GS3 ((Gly-Ser) × 3) and represents
the catalytically active form of human Hpse. The binding site in the Hpse model was
defined as a sphere of 16 Å by using the Define and Edit Binding Site tool of DS with X, Y
and Z co-ordinates of −22.86, 13.98 and 59.98, respectively. Prior to the docking process,
the Genetic Optimization for Ligand Docking (GOLD v5.2.2) [72] protocol was validated
by re-docking the co-crystallized benzazolyl inhibitor of the aforementioned Hpse model.
The drug-like natural and synthetic compounds obtained from virtual screening of IBS
database were minimized and prepared by employing the Minimize Ligands DS protocol.
Consequently, the compounds acquired were docked with the Hpse model by allowing
for generation of 10 conformers per ligand. The obtained conformations were clustered
to achieve the largest cluster, from which the compounds were evaluated on the basis of
two scoring criterions [73]—Goldscore (high) and Chemscore (low) [74]—as well as the
molecular interactions with the Hpse catalytic site residues (Asp62, Asn64, Thr97, Glu225,
Asn227, Lys231, Gln270, Arg272, Glu343, Gly349, Gly350, Ala388 and Tyr391).

4.5. Molecular Dynamics Simulation of Identified Natural and Synthetic Compounds

Molecular dynamics (MD) simulations are applied to understand the protein-ligand
interactions at the atomic level in order to scrutinize their conformational flexibility and
structural stability under physiological conditions [75,76]. The complexes obtained from the
process of molecular docking were subjected to MD simulations in GROningen MAchine
for Chemical Simulations (GROMACS v2018) [77] with the docked structures of compounds
with Hpse as initial coordinates. The protein and the compounds were parametrized by
CHARMm27 [78] and SwissParam [79] fast force field generation tools, respectively. All
simulation systems were immersed in a dodecahedron water box of TIP3P solvent model
and neutralized by the addition of 16 Cl- ions. Prior to system equilibration, energy mini-
mization of each simulation system was performed by the steepest descent algorithm in
order to avoid steric clashes [80]. Systems were further subjected to two-stage equilibra-
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tion process composed of NVT (constant number of particles, volume and temperature)
and NPT (constant number of particles, pressure and temperature) for 500 ps each. The
NVT ensemble uses a V-rescale thermostat [81] to equilibrate the system temperature at
300 K, while the NPT ensemble uses the Parrinello-Rahman barostat [82] to maintain the
system pressure at 1.0 bar. Systems equilibrated by the above steps were subjected to MD
simulation run of 50 ns each under periodic boundary conditions. Long-range electrostatic
interactions were calculated with Particle Mesh Ewald (PME) [83] approach with a cutoff
radius of 10 Å and the LINCS algorithm [84] restrained the bond lengths of heavy atoms.
The MD outcomes were further visualized and scrutinized in DS and visual molecular
dynamics (VMD) [85].

4.6. Binding Free Energy Calculations

Calculation of the binding affinity of small molecule inhibitors with their target
proteins represents a quintessential role to prioritize compounds before their experimental
evaluation [86]. To evaluate the binding affinities of our compounds with Hpse, the
Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) in GROMACS was
utilized by implementing the ‘g_mmpbsa’ tool [87]. For this purpose, 50 snapshots were
selected evenly for the entire simulation run of 50 ns and the binding free energy ∆Gbind
was computed as:

∆Gbind = Gcomplex

(
Gprotein + Gligand

)
5. Conclusions

A ligand-based common-feature pharmacophore model exploiting the features shared
by a set of active inhibitors revealed essential criteria required for Heparanase inhibition.
The model composed of six pharmacophoric features was validated and subsequently used
as a query to screen drug-like compounds from the InterBioScreen database. A total of 2778
drug-like compounds acquired from pharmacophore mapping were assessed by molecular
docking with Heparanase to gain insight on their binding. The 33 obtained compounds
from docking analysis exhibited higher docking scores than the reference inhibitors and
were able to inhibit Heparanase heterodimer by interacting with key active site residues.
The acquired compounds were further evaluated in physiological conditions via molecular
dynamics simulations and their binding affinities with Heparanase were computed by
MM/PBSA calculations. Analysis of binding affinity revealed two hit compounds each
from natural and synthetic databases displaying higher binding affinity than reference
inhibitors for Heparanase inhibition. Additionally, the intermolecular interaction analysis
revealed that the selected hits interact with key catalytic residues via hydrogen bonds,
thus providing support in their selection as hit molecules. Furthermore, compounds of
acetamide and sulfonamide scaffolds have not been previously reported as Hpse inhibitors.
Therefore, compounds comprising aforementioned scaffolds can be considered as a novel
source for future identification of Heparanase inhibitors. We anticipate that the identified
scaffolds of hit compounds can be considered for drug optimization against Heparanase in
the future.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22105311/s1, Figure S1. Chemical structures of carbohydrate-based, nucleic acid-based
and small molecule Heparanase inhibitors. Figure S2. Overlay of the docked pose (orange) of bound
ligand with its GS3 Heparanase model conformation (mauve). Figure S3. Molecular dynamics
simulation analysis plots of Heparanase with the reference (REF) and Hits displaying (A and B)
potential energy and (C and D) hydrogen bonds. The left (A and C) and right (B and D) columns
represent analysis for natural and synthetic compound hits, respectively. Figure S4. The 3D and 2D
intermolecular interactions of reference (REF) compounds (REF1: A and C; REF2: B and D) with
the active site residues of Heparanase. Figure S5. The superimposed complex structures and 2D
intermolecular interactions of natural and synthetic compound hits with the catalytic residues of
Heparanase at 0 ns and 50 ns. Figure S6. Alignment of identified hits with the pharmacophoric fea-
tures of Hypo1. Subsections A and B represent Hit1 and Hit2 from natural compounds, respectively,
whereas subsections C and D denote Hit1 and Hit2 from synthetic compounds of InterBioScreen
database, respectively. Table S1. The docking and binding free energy scores of drug-like natural
and synthetic compounds from the InterBioScreen (IBS) database with Heparanase. Table S2. The
entropic distribution of the total binding free energy scores for reference (REF) inhibitors and selected
potential hits from the InterBioScreen (IBS) database against Heparanase. Table S3. Assessment of
anti-cancer drug sensitivity prediction for reference (REF) inhibitors and identified hits generated
by PaccMann.
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