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A B S T R A C T   

The non-invasive quantification of iron stores via Quantitative Susceptibility Mapping (QSM) could play an 
important role in the diagnosis and the differential diagnosis of atypical Parkinsonisms. However, the suscep
tibility (χ) values measured via QSM depend on echo time (TE). This effect relates to the microstructural or
ganization within the voxel, whose composition can be altered by the disease. Moreover, pathological iron 
deposition in a brain area may not be spatially uniform, and conventional Region of Interest (ROI)-based analysis 
may fail in detecting alterations. Therefore, in this work we evaluated the impact of echo time on the diagnostic 
accuracy of QSM on a population of patients with Multiple System Atrophy (MSA) of either Parkinsonian (MSAp) 
or cerebellar (MSAc) phenotypes. In addition, we tested the potential of histogram analysis to improve QSM 
classification accuracy. 

We enrolled 32 patients (19 MSAp and 13 MSAc) and 16 healthy controls, who underwent a 7T MRI session 
including a gradient-recalled multi-echo sequence for χ mapping. Nine histogram features were extracted from 
the χ maps computed for each TE in atlas-based ROIs covering deep brain nuclei, and compared among groups. 

Alterations of susceptibility distribution were found in the Putamen, Substantia Nigra, Globus Pallidus and 
Caudate Nucleus for MSAp and in the Substantia Nigra and Dentate Nucleus for MSAc. Increased iron deposition 
was observed in a larger number of ROIs for the two shortest TEs and the standard deviation, the 75th and the 
90th percentile were the most informative features yielding excellent diagnostic accuracy with area under the 
ROC curve > 0.9. 

In conclusion, short TEs may enhance QSM diagnostic performances, as they can capture variations in rapidly- 
decaying contributions of high χ sources. The analysis of histogram features allowed to reveal fine heteroge
neities in the spatial distribution of susceptibility alteration, otherwise undetected by a simple evaluation of ROI 
χ mean values.   

1. Introduction 

Multiple System Atrophy (MSA) is a rare neurodegenerative disorder 
characterized by a combination of autonomic dysfunctions 

(cardiovascular autonomic failure and urogenital dysfunctions) plus 
cerebellar syndrome and/or Parkinsonism. The current diagnostic 
criteria define three degrees of certainty for diagnosis (possible, prob
able and definite) and two phenotypes, Parkinsonian (MSAp) or 
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cerebellar (MSAc), according to the predominant features at the time of 
evaluation (Gilman et al., 2008). Even though it is still a matter of debate 
whether iron accumulation is a cause or a consequence of the neuro
degenerative process (Berg and Hochstrasser, 2006), increased iron 
deposition has been documented in many deep gray matter nuclei of 
MSA patients. Histopathological studies, indeed, reported iron deposi
tion in the posterolateral putamen (Dickson et al., 1999), in substantia 
nigra pars compacta, globus pallidus (Jellinger, 2003), caudate nucleus 
(Dexter et al., 1991) and dentate nucleus (Matsusue et al., 2009). 

Iron store could represent an important biomarker for the diagnosis 
and the differential diagnosis of neurodegenerative diseases and Quan
titative Susceptibility Mapping (QSM) is a powerful tool for its non- 
invasive and quantitative assessment in vivo via Magnetic Resonance 
Imaging (MRI) (de Rochefort et al., 2010; Deistung et al., 2016; Haacke 
et al., 2015; Liu et al., 2015; Reichenbach et al., 2015; Shmueli et al., 
2009; Wang and Liu, 2015). QSM derives the magnetic susceptibility of 
the tissues, which correlates with iron concentration (Langkammer 
et al., 2012), from the phase of a T2*-weighted Gradient Recalled Echo 
(GRE) signal. The provided information is quantitative and spatially 
specific, as the non-local distortions induced by susceptibility sources on 
the magnitude of T2*-weighted signals are removed. For these reasons, 
QSM is gaining increasing importance in the study of neurodegenerative 
disorders (Düzel et al., 2021; Ravanfar et al., 2021), including Parkin
son’s disease (Acosta-Cabronero et al., 2017; Guan et al., 2019; Lang
kammer et al., 2016; Lotfipour et al., 2012) and atypical Parkinsonisms 
(Azuma et al., 2019; Wang et al., 2019). Concerning MSA, previous 
studies reported altered susceptibility in putamina, substantia nigra, red 
nuclei, subthalamic nuclei and, for MSAc, in dentate nuclei (Ito et al., 
2017; Mazzucchi et al., 2019; Sjöström et al., 2017; Sugiyama et al., 
2019), yielding good diagnostic accuracy in discriminating MSA pa
tients to both healthy controls and other Parkinsonisms. 

Recent works reported that measured susceptibility values depend 
on several experimental factors. First of all, susceptibility anisotropy 
impairs QSM accuracy in white matter, where the highly organized 
microstructure of myelin sheath introduces a dependence of measured 
susceptibility on the orientation of fibers with respect to the external 
magnetic field (Lancione et al., 2017; Li et al., 2012; Liu et al., 2011; 
Wharton and Bowtell, 2015). In addition, the dependence of QSM on 
acquisition parameters such as coverage (Elkady et al., 2016; Karsa 
et al., 2018), spatial resolution (Karsa et al., 2018; Zhou et al., 2017) and 
Echo Time (TE) (Biondetti et al., 2020; Cronin et al., 2017; Lancione 
et al., 2019; Sood et al., 2017) was demonstrated. The dependence on TE 
is due to the non-linear time-evolution of the phase signal, possibly 
reflecting the presence of multiple signal components caused by sub- 
voxel compartmentalization and microstructures (Sati et al., 2013; 
Sood et al., 2017; Wharton and Bowtell, 2012; Xu et al., 2018). A pre
vious study at 3T reported that it can yield variations of QSM values in 
intact tissues up to approximately 100 parts per billions (ppb) and 
beyond 1000 ppb for cerebral microbleeds (Cronin et al., 2017). On 
these premises, as pathological processes can affect sub-voxel compo
sition, we hypothesize that χ maps computed at different TEs may pro
vide different and complementary diagnostic information. An 
assessment of the influence of TE on the diagnostic accuracy of QSM is 
currently missing. 

The vast majority of QSM studies targeting the deep gray matter 
nuclei are based on the measurement of mean susceptibility in 
manually-drawn or automatically-selected regions of interest (ROI). 
However, the iron deposition in nuclei affected by the disease might not 
be uniform, as also reported by histological studies (e.g. in MSA the 
putamen is mainly involved in its posterolateral portion (Dickson et al., 
1999)). In these cases, the mean value would provide a partial and 
inaccurate estimate of iron distribution. Histogram analysis performed 
on the whole nucleus may provide a more comprehensive overview of 
the susceptibility distribution and the underlying iron deposition 
pattern, reflecting its spatial heterogeneity (Zhang et al., 2022). 

The goal of the present study was twofold. First, we aimed to assess 

the impact of TE-dependency of QSM on the accuracy of differential 
diagnosis in a cohort of MSA patients of both Parkinsonian and cere
bellar variants and a population of healthy controls. Second, we 
explored the potential of histogram analysis in enhancing the diagnostic 
performance of QSM. To these purposes, we enrolled a cohort of patients 
with MSA and a population of healthy controls and acquired multi-echo 
GRE data on a 7T MRI system. We reconstructed a susceptibility map for 
each TE of the multi-echo GRE sequence separately and performed 
histogram analysis on a set of ROIs selected from published atlases 
covering ten deep gray matter nuclei. 

2. Methods 

2.1. Study group 

We enrolled patients with a diagnosis of possible or probable MSA 
referring to the Movement Disorders and Autonomic Disorders centers 
of the University of Bologna, Italy, and to the Parkinson and Movement 
Disorder Unit of IRCCS Mondino Foundation in Pavia, Italy during 
2019–2020. Diagnosis of MSA was independently confirmed by three 
movement disorder specialized neurologists (PC, GCB, CP) according to 
current consensus criteria (Gilman et al., 2008). The MSA phenotype 
was defined as MSAp or MSAc on the basis of the predominant motor 
involvement at the time of the last clinical evaluation. The absence of 
non-supporting features for MSA were mandatory for inclusion in the 
study. Disease duration was defined as the time interval between the 
onset of the first MSA-related symptom and enrollment in this study. 

We recruited 32 patients with MSA: 19 MSAp (11 females, 65 ± 8 
[51–76] years old, 4 possible and 15 probable MSAp, disease duration =
5.3 ± 2.2 [3–9] years) and 13 MSAc patients (5 females, 60 ± 7 [48–72] 
years old, all probable MSAc, disease duration = 6.0 ± 3.0 [3–13] 
years). In addition, a population of 16 healthy controls (HC) and com
parable age and sex distribution (6 females, 60 ± 10 [43–76] years old) 
was enrolled. The study was performed in accordance with the Decla
ration of Helsinki and approved by the Independent Ethics Committee of 
the local health service of Bologna (CE number: 18056, 212/2018/OSS/ 
AUSLBO) and of Pavia (CE number: p-20180049076); all participants 
gave their written informed consent. 

2.2. MRI acquisition hardware 

All subjects underwent an ultra-high field MRI examination at the 
IMAGO7 Foundation in Pisa, Italy, using a GE Healthcare Discovery 
MR950 7T MRI system (GE Healthcare, Milwaukee, WI, USA). The pa
tients were scanned within one month from the clinical evaluation. The 
scanner was equipped with a two-channel transmitter/32-channel 
receiver head coil (Nova Medical, Wilmington, MA, USA) and a gradient 
system with maximum amplitude = 50 mT/m and slew rate = 200 T/m/ 
s. 

2.3. MRI imaging protocol 

The MRI protocol included a 3D Gradient Recalled Multi-Echo 
sequence (Susceptibility Weighted Angiography – SWAN, GE Health
care) for the quantitative assessment of iron deposition. The sequence 
was prescribed axially with whole-brain coverage. The acquisition pa
rameters were set as follows: TR = 54.1 ms; four equally spaced echoes: 
TE = 7.38, 16.36, 25.34, 34.32 ms; FA = 15◦; in-plane FOV = 173 × 173 
mm2; axial coverage = 165.6 mm; acquired matrix size = 432 × 288 ×
138; reconstructed voxel size = 0.6 × 0.6 × 1.2 mm3; parallel imaging 
ASSET (Array Coil Spatial Sensitivity Encoding) acceleration factor = 2. 
Both the real and imaginary parts of the images obtained at each echo 
were saved and converted into magnitude and phase data. 
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2.4. Qualitative data inspection 

The T2*-weighted images obtained from the magnitude of the 3D 
GRE signal were evaluated by a neuroradiologist and graded based on 
the severity of motion artifacts into three categories: “none/mild” cor
responding to non-visible or little motion artifact, “moderate” for 
detectable motion and “severe” for extreme motion artifacts. Images 
affected by “severe” motion artifacts were excluded from the analysis. 

2.5. Data processing 

Susceptibility maps were computed via the following procedure. The 
raw phase images of individual echoes were unwrapped using a 
Laplacian-based algorithm (Li et al., 2012; Schofield and Zhu, 2003). A 
brain mask was generated using Brain Extraction Toolbox (bet) (Smith, 
2002) in FSL 5.0.9 (FMRIB Software Library, Oxford Centre for Func
tional MRI of the Brain, Oxford, UK) on the T2*-weighted magnitude 
image averaged across echoes and then used for the removal of the 
background field via V-SHARP (Schweser et al., 2011). QSM images 
were obtained by applying the iLSQR (Li et al., 2015; Li et al., 2011) 
method separately to each individual echo. We used Laplacian-based 
phase unwrapping, V-SHARP and iLSQR implementations from STI 
Suite (MATLAB toolbox, available at https://people.eecs.berkeley. 
edu/~chunlei.liu/software.html from UC Berkeley, Berkeley, CA, 
USA). The susceptibility maps were visually inspected to ensure 
adequate image quality. 

A study-specific template was also created using skull-stripped T2*- 
weighted magnitude images averaged across TEs of all subjects with 
Greedy-SyN approach and cross-correlation similarity metric (Avants 
et al., 2008) setting the parameters of antsMultivar
iateTemplateConstruction2 as follows: six template-construction itera
tions, 0.1 gradient step size, maximum 1000 × 500 × 250 × 100 multi- 
resolution iterations per registration, shrink factors 12 × 8 × 4 × 2, 
smoothing factors 4 × 3 × 2 × 1. The susceptibility maps of each echo 
were warped to the template space by applying the corresponding 
transformation. Then, they were averaged to create a study-specific 
QSM template. 

2.6. QSM ROI-based analysis 

Regions of interest were selected from the PD25 atlas (Xiao et al., 
2017), from the probabilistic CIT168 atlas (Pauli et al., 2018) and from 
the probabilistic DN atlas (He et al., 2017). The selected ROIs were the 
following, each divided into left (L) and right (R) regions: Red Nucleus 
(RN), Subthalamic Nucleus (STN), Caudate Nucleus (CN), Putamen (Pu), 
Globus Pallidus externus (GPe) and internus (GPi), Thalamus (Th) from 
the PD25 atlas, Substantia Nigra pars compacta (SNc) and reticulata 
(SNr) from probabilistic CIT168 atlas, and Dentate Nucleus (DN) from 
DN atlas. Probabilistic ROIs were converted to binary masks by choosing 
a threshold of 0.5, in order to cover the whole anatomical regions 
without exceeding their borders and ensuring no overlap between SNr 
and SNc. The T2*-weighted template was non-linearly warped to the 
T2*-weighted version of the multi-contrast PD25 atlas via antsRegis
tration using cross-correlation similarity metric and nearest neighbor 
interpolation. By applying the inverse transformation, the ROIs from the 
PD25 atlas were warped to the study-specific template. To improve 
registration accuracy, the CIT168 atlas and DN atlas were warped from 
the MNI to the T1-weighted version of PD25 atlas and then to the study- 
specific template, after concatenating the two transforms in order to 
perform them in a single step. 

For each ROI and for each subject in the study-specific template 
space we extracted the following histogram features for each TE: mean 
value, standard deviation, 10th/25th/50th/75th/90th percentile, kurtosis 
and skewness. These are all the histogram features commonly examined 
in histogram analysis (Fujima et al., 2019, 2015; Zhang et al., 2022), 
except for the maximum and the minimum value which are extremely 

sensitive to noise and outliers. The histogram features were computed 
using the corresponding built-in function in MATLAB which employed 
the whole sample, making the calculation independent of histogram 
binning operations. QSM values were not referenced to any specific 
region (Acosta-Cabronero et al., 2016) to avoid assumptions on brain 
areas spared by MSA and were age- and sex-adjusted via linear regres
sion (Thomas et al., 2021). Susceptibility measures were then expressed 
in parts per million (ppm). 

2.7. Statistical analysis 

Statistical analysis was performed in MATLAB (MathWorks, Natick, 
MA, USA). Sex distributions of the three populations (MSAc, MSAp and 
HC) were compared pair-wise via chi-square test, while age comparisons 
were carried out using Kruskall-Wallis omnibus test and post-hoc Dunn’s 
test. The threshold of statistical significance was set to p < 0.05 after 
Dunn-Sidak correction for multiple comparisons. Non-parametric sta
tistical tests were employed to analyze QSM data: the feature values 
among the three groups were compared with Kruskal-Wallis omnibus 
test, followed by Dunn’s test and Dunn-Sidak correction for post-hoc 
analysis. Diagnostic accuracy was evaluated via the Area Under the 
Curve (AUC) of the Receiver Operating Characteristic (ROC) curve. 

3. Results 

After visual inspection and rating of the T2*-weighted magnitude 
images by a neuroradiologist, four subjects (1 MSAp, 3 MSAc) were 
excluded from QSM analysis due to severe motion artifacts. The 
remaining population of patients was demographically distributed as 
follows: 18 MSAp (10 females, 65 ± 8 [51–76] years old, disease 
duration = 5.4 ± 2.1 [3–9] years, 4 possible and 14 probable MSAp) and 
10 MSAc patients (4 females, 60 ± 7 [52–72] years old, disease duration 
= 5.8 ± 3.1 [3–13] years, all probable MSAc). Other clinical features of 
MSA patients are reported in Supplementary Table S1. The susceptibility 
maps obtained for each TE are reported in Fig. 1 for two exemplary 
subjects. 

No statistically significant differences between the distribution of the 
demographic features of sex and age were reported between healthy 
controls, MSAc and MSAp patients. 

Nine histogram features (mean, standard deviation, 10th/25th/50th/ 
75th/90th percentile, kurtosis and skewness) were computed for each 
subject, TE and ROI. These covered ten nuclei divided into left and right 
sides which are displayed in Fig. 2 overlaid onto the study-specific 
template. 

We compared the distribution of the histogram features between the 
MSAc and MSAp patients and healthy controls for each ROI and each TE. 
The obtained p-values are reported in Fig. 3. Statistical significance was 
reached for several ROIs and features, e.g., for the mean, the 75th 

percentile, and above all for the standard deviation and the 90th 

percentile computed at the first (TE01) and the second TE (TE02), 
respectively, for which up to fourteen ROIs reported significant differ
ence among groups. These findings indicate a distributed pattern of 
pathological iron deposition. The tests performed at shortest TEs (i.e., 
TE01 and TE02) yielded higher levels of statistical significance, 
detecting group differences that were not observed with longer TEs. 

In Fig. 4, we reported the mean susceptibility values computed at 
TE01 in all the ROIs for all subjects, divided into the three groups. In the 
post-hoc analysis, MSAp patients showed higher susceptibility in Pu 
bilaterally with respect to MSAc and HC, and higher susceptibility in GPi 
and GPe bilaterally with respect to HC. Increased iron deposition was 
also reported in left SNc for both phenotypes with respect to HC and 
higher susceptibility was observed in DN bilaterally for MSAc with 
respect to MSAp. The 90th percentile and the standard deviation 
detected significant susceptibility differences between groups also in 
other ROIs, such as CN, SNr and right SNc (Supplementary Figs. S1 and 
S2). However, when the same features were extracted from 
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susceptibility maps computed at longer TEs, χ differences between 
groups were reduced and did not reach statistical significance. Fig. 5 
displays the dependence on TE of an exemplary feature, i.e., mean 
susceptibility, in each ROI for the three groups. While short echo times, 
such as TE01 and TE02, allowed group discrimination, at longer TEs the 
measured values for each population were similar: at TE01 and TE02, we 
reported statistically significant group differences in 11 and 10 ROIs 
respectively, but only in 4 ROIs at TE03 and 1 at TE04. This finding 
indicates that the TE-dependence of the histogram features differs in the 
three populations. 

The diagnostic accuracy provided by each histogram feature at each 
TE was evaluated via ROC analysis. In Fig. 6, the AUC is reported as a 
measurement of diagnostic accuracy. Generally, the AUC tended to be 
higher for short TEs (i.e., TE01 and TE02), for which excellent diagnostic 
accuracy (up to 0.92) was achieved. The mean, the standard deviation, 
the 75th and the 90th percentile yielded the highest accuracy overall. In 
the discrimination of MSAp and HC, the 75th percentile of the suscep
tibility distribution in left GPe at TE02 showed the highest AUC of 0.917, 
with a specificity of 0.938 and a sensitivity of 0.889. When considering 
MSAc and HC, the highest AUC of 0.925 was found for the standard 

Fig. 1. Susceptibility maps computed for each TE for two representative subjects. Panel A shows a control subject with “none/mild” motion artifacts while panel B 
shows a patient with “moderate” motion artifacts. 

Fig. 2. The top row shows the ROIs used in the QSM analysis overlaid onto the study-specific template, which was computed from the across-TEs average of the T2*- 
weighted magnitude image of each subject. In the bottom row the corresponding susceptibility maps computed from the first TE averaged over all the subjects in the 
template space is displayed. 
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deviation of TE02 in left DN with a specificity of 0.813 and a sensitivity 
of 0.900. In the classification of the two phenotypes of MSA, the stan
dard deviation of TE02 in right DN yielded the highest AUC of 0.922 
with a specificity of 0.944 and a sensitivity of 0.800. Instead, the simple 
mean-based analysis yielded lower AUC values: specifically, in 
discriminating MSAp from HC, MSAc from HC, and MSAp from MSAc, 
the highest AUC were 0.906 (left GPe at TE02), 0.775 (left SNc at TE01) 
and 0.828 (right Pu at TE01), respectively. The ROC curves computed 

for these features are shown in Fig. 6. 

4. Discussion 

In this study we computed susceptibility maps on a population of 
patients with MSA of both cerebellar and Parkinsonian phenotypes and a 
population of healthy controls in order to investigate the diagnostic 
value of QSM. Specifically, we performed an ROI-based analysis 

Fig. 3. The gray-level in each plot indicates the p-values obtained by comparing a specific histogram feature of QSM data among the three groups (HC, MSAc and 
MSAp) via Kruskal-Wallis test for each TE (indicated as TE01, TE02, TE03 and TE04) and each ROI. Overall, the features reaching the highest statistical significance 
in group discrimination are the mean, the standard deviation, the 75th and the 90th percentile. Smaller p-values are obtained with short TEs which enable to detect 
statistically significant differences even in ROIs that do not exhibit differences when long TEs are used. 

Fig. 4. Each plot shows the sex- and age-adjusted mean QSM values in each ROI for all subjects (HC in blue, MSAp in red and MSAc in green) as scattered dots 
overlaid on the corresponding boxplot. These values were extracted from maps computed from the first TE (TE01 = 7.38 ms), which shows the highest number of 
significant alterations. The bottom and top edges of each box indicate the first and the third quartile respectively of the susceptibility distribution across subjects and 
the central black line indicates the median across subjects in the corresponding group. The level of significance of the Kruskal-Wallis test is reported by the asterisks 
below the corresponding ROI, while post-hoc Dunn’s tests reaching significance after Dunn-Sidak correction for multiple comparison are indicated by the asterisks 
above the boxplots (* p < 0.05, ** p < 0.01, *** p < 0.001). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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targeting deep gray matter structures and explored the effect of TE on 
classification accuracy and the diagnostic potential of a set of histogram 
features. 

We found alterations of the susceptibility distribution in several re
gions for both phenotypes, including Pu, SN, GP and CN for MSAp and 

SN and DN for MSAc, highlighting a distributed pattern of iron load 
alteration. These findings are in agreement with histopathological re
ports (Dickson et al., 1999; Jellinger, 2003; Matsusue et al., 2009) and 
previous neuroimaging studies which reported higher susceptibility in 
Pu and SN for MSAp patients (Sjöström et al., 2017) and in SN and DN 

Fig. 5. Dependence on TE of the group differences in mean susceptibility. Each plot displays the mean susceptibility in one ROI for the three groups: HC (blue line), 
MSAp (red line) and MSAc (green line). The shaded area represents the standard error of the mean, and the asterisks indicate the TEs at which the difference in mean 
susceptibility across groups reaches significance in the Kruskal-Wallis omnibus test (* p < 0.05, ** p < 0.01, *** p < 0.001). At longer TEs the measured values for 
each population tends to converge, preventing groups discrimination. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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for MSAc patients (Sugiyama et al., 2019) compared to healthy controls. 
Interestingly, we observed significantly increased iron deposition in 
MSA patients in a higher number of ROIs at short echo times, i.e., the 
first two TEs. These ROIs also included nuclei not previously reported in 
other QSM studies on MSA, such as GP and CN, but in agreement with 
post-mortem findings (Dexter et al., 1991; Jellinger, 2003). We attrib
uted this result to the increased sensitivity yielded by short TEs and, 
especially for CN, histogram features other than the mean. 

The dependence of the diagnostic accuracy of QSM on TE is attrib
utable to the non-linear time-evolution of the phase signal. Previous 

studies observed this phenomenon in several brain tissues, involving 
both white and gray matter structures, and both cortical and subcortical 
regions (Cronin et al., 2017; Sood et al., 2017), due to a mechanism 
involving tissue microstructure and intra-voxel compartmentalization 
(Sati et al., 2013; Sood et al., 2017; Wharton and Bowtell, 2012; Xu 
et al., 2018). Modeling the complex gray matter microstructure is 
remarkably challenging, but, even in white matter, the multi-component 
simulations of phase evolution could only partially explain the vari
ability of measured susceptibility across TEs (Cronin et al., 2017). Even 
though QSM provides reproducible measurements of tissue 

Fig. 6. In panels A-C the diagnostic accuracy for each group pair (HC vs MSAp, HC vs MSAc and MSAp vs MSAc) is displayed. Colors represent the values of the area 
under the ROC curve (AUC) for each TE, for each ROI and for each histogram feature. It can be noticed that AUC values are higher for short TEs. In panel D, we 
reported the ROC curve computed for the combinations of TE, ROI and histogram feature yielding the highest AUC for each comparison between groups. The dots 
represent the optimal cut-off values of each curve. 
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susceptibility for matching TEs at the same field strength (Lancione 
et al., 2019; Rua et al., 2020; Spincemaille et al., 2020) when scanning 
parameters such as coverage (Elkady et al., 2016; Karsa et al., 2018) and 
spatial resolution (Karsa et al., 2018; Zhou et al., 2017) are fixed and the 
subject’s head is accurately positioned along the same orientation 
(Cronin and Bowtell, 2018; Lancione et al., 2017; Li et al., 2012), the 
choice of these experimental factors can affect differently the suscepti
bility values measured in distinct populations. In fact, the net magnitude 
and phase signal from a voxel with inhomogeneous composition 
sampled at a certain TE contain information on the subcompartments 
whose relaxation time T2* is not much shorter than TE. In the case of 
MSA, the rapidly-decaying contribution of strong susceptibility sources, 
such as iron, which is present to a different extent in patients and con
trols, vanished for long TEs, preventing the detection of differences 
between the groups. Hence, when designing a clinical protocol involving 
single-echo QSM, TE should be chosen carefully, depending on the target 
ROI. Not only its average T2* measured in healthy controls should be 
taken into account, but also the shorter T2* of sub-voxels compounds 
that may originate from pathological processes. These values will also 
depend on the magnetic field strength and on 3T scanners they will be 
generally longer than the ones presented here at 7T (Lancione et al., 
2019). It is worth pointing out that in this work we investigated indi
vidual echoes of a multi-echo sequence. While all TEs were acquired 
with the same bandwidth in our protocol, the results on single-echo 
acquisitions may differ due to the selection of the optimal bandwidth 
for the particular TE. On the other hand, each TE of multi-echo QSM 
sequences may be reconstructed and analyzed independently in order to 
get an insight into the tissue microstructures. One possible confounding 
factor in the evaluation of the diagnostic performance concerns the 
different Signal- and Contrast-to-Noise Ratio (SNR; CNR) of the maps 
obtained at different TEs. Longer TEs may be less informative due to 
lower image quality or extreme phase wrapping while short TEs may 
suffer from low CNR. However, the TEs analyzed in this study are 
neither extremely long nor short: TE01 = 7.38 ms and TE04 = 34.32 ms 
are respectively longer and shorter than the first echo usually acquired 
in multi-echo GRE images at 7T (Rua et al., 2020), while TE03 = 25.34 
ms is close to the optimal TE typically used at 7T to maximize the 
contrast between gray and white matter. Moreover, to rule out the 
possibility that the variability of diagnostic accuracy is due to higher 
SNR rather than TE, we repeated the group comparison analysis by using 
the susceptibility map obtained by averaging all TEs. The results are 
reported in Supplementary Fig. S3. It can be observed that, despite 
having higher SNR and CNR than single-echo maps (Denk and Rauscher, 
2010), the average QSM shows lower sensitivity in detecting group 
differences than the first two TEs. 

In addition to the mean susceptibility, other histogram features 
yielded excellent diagnostic accuracy in discriminating patients from 
controls and between phenotypes, with values of AUC above 0.9. In 
particular, the standard deviation, the 75th and the 90th percentile were 
the most informative features. This may reflect the non-uniform alter
ation of the spatial distribution of iron deposition in some regions, as 
shown in Supplementary Fig. S4. For example, in patients with MSAp the 
putamina showed increased susceptibility in their posterolateral portion 
rather than the anterior part (Ito et al., 2017). This effect may be 
detected more easily by analyzing histogram features relating to the tails 
of the distribution, rather than the mean, in agreement with a previous 
study that reported the highest diagnostic accuracy in differentiating 
patients with Parkinson’s disease from healthy controls for the 10th/ 
75th/90th percentiles and the skewness of the distribution (Zhang et al., 
2022). Also, in ROIs presenting inner subdivisions that are difficult to 
identify especially in patients, such as the trilaminar structure of sub
stantia nigra in Parkinson’s disease, histogram analysis performed on 
the whole-volume of the ROI may help in separating the contributions of 
different structures (Kim et al., 2018; Li et al., 2019). Future studies 
should focus on the potential of radiomics second-order textures (Cheng 
et al., 2019; Li et al., 2019; Xiao et al., 2019) and on the application of 

advanced multivariate methods based on multivoxel pattern analysis. 
These approaches may reveal fine-grained textures of iron loads and 
enhance the classification power of QSM in the early differential diag
nosis of neurodegenerative disorders. 

The relatively small population included in the current study, due to 
the low prevalence of MSA, may represent a limitation. However, the 
high level of statistical significance of the results here reported supports 
the reliability of findings. A larger cohort of subjects would enable the 
analysis of subgroups of patients based on the presence or the absence of 
additional clinical manifestations of interest, as well as the application 
of machine learning algorithms for feature selection and cross- 
validation that could improve the diagnostic accuracy by combining 
the information coming from different features and ROIs (Cheng et al., 
2019; Xiao et al., 2019). As definite confirmation of the diagnosis of 
MSA is obtained via ex-vivo examination, one possible limitation of this 
study is related to the risk of misdiagnosis, as patients were clinically 
evaluated without post-mortem pathological confirmation. However, 
the diagnosis performed at the time of the enrollment in the study was 
clinically confirmed by neurologists in the follow-up evaluations for all 
patients. The ROIs employed in this study were selected from published 
atlases and automatically registered to the study-specific template, in 
order to avoid subjective biases affecting manual segmentation. Visual 
inspection by one experienced neuroradiologist excluded the presence of 
registration errors that could have affected the results of this study. 
Similarly, the adopted choice of using unreferenced QSM values (which 
are therefore referred to the average susceptibility in the acquired vol
ume) should not have influenced our results, as the use of reference 
region provides negligible corrections (Acosta-Cabronero et al., 2016). 

In conclusion, we demonstrated that the use of short TEs enhances 
the diagnostic performance of QSM, improving its capability in detect
ing altered iron deposition in deep gray matter nuclei. Notably, it 
allowed the detection of significant susceptibility increase in previously 
unreported ROIs. Hence, a targeted choice of TE can increase QSM 
importance in the diagnosis and differential diagnosis of neurodegen
erative diseases. Finally, the analysis of histogram features other than 
the mean may detect subtle differences in the pattern of susceptibility 
increase, reflecting not just the overall iron accumulation but also het
erogeneities in its spatial distribution within a brain region. 
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