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In silico profiling of systemic effects 
of drugs to predict unexpected 
interactions
Sunyong Yoo   1, Kyungrin Noh2, Moonshik Shin1, Junseok Park1, Kwang-Hyung Lee1,  
Hojung Nam3 & Doheon Lee   1,2

Identifying unexpected drug interactions is an essential step in drug development. Most studies focus 
on predicting whether a drug pair interacts or is effective on a certain disease without considering the 
mechanism of action (MoA). Here, we introduce a novel method to infer effects and interactions of drug 
pairs with MoA based on the profiling of systemic effects of drugs. By investigating propagated drug 
effects from the molecular and phenotypic networks, we constructed profiles of 5,441 approved and 
investigational drugs for 3,833 phenotypes. Our analysis indicates that highly connected phenotypes 
between drug profiles represent the potential effects of drug pairs and the drug pairs with strong potential 
effects are more likely to interact. When applied to drug interactions with verified effects, both therapeutic 
and adverse effects have been successfully identified with high specificity and sensitivity. Finally, tracing 
drug interactions in molecular and phenotypic networks allows us to understand the MoA.

Most complex diseases are caused by a complicated interplay of various biological processes and dysfunctional 
systems. However, traditional drug discovery paradigm, ‘the single drug, single target’, has limitations in many 
aspects of the complex disease treatment. Single drug acting on a single target in a disease system may ignore 
complex interactions between drugs and their target proteins1. Compared to single drug treatments, it is now 
evident that drug combinations have a number of advantages such as increase of therapeutic effects, reduction of 
drug dosage and decrease of toxicity and side effects2. However, unexpected adverse effects may also occur due to 
drug-drug interactions (DDIs) resulting from various processes3. On this account, significant attention to overall 
phenotypic effects of drug interactions is necessary to discover drug combinations with increased therapeutic 
effects and reduced adverse effects. While there is a relatively large number of in vitro and in silico methods iden-
tifying phenotypic effects of a single drug4,5, only a few methods attempt to investigate phenotypic effects of drug 
interactions6,7.

Systematic in vitro approaches have been used to identify effective drug combinations by using a 
high-throughput screening technique8–10. However, large-scale experiments are needed for each possible drug 
combination, which increases cost and time exponentially with the increase of the number of drugs. Therefore, 
systematic in silico approaches have been proposed to investigate potential drug combinations by calculating 
drug similarity based on various types of drug information, including chemical structure, target proteins, ATC 
code and side effects11,12. Although these methods have good performance in predicting drug combinations, 
they require various types of annotated data and cannot predict phenotypic effects of drug combinations. 
Alternatively, some computational approaches have been developed to predict potential drug combinations 
based on network-based analysis from drug-induced gene expression profiles13–15. These methods construct a 
backbone network, e.g., functional, protein interaction or drug-target interactions, and identify drug sets with 
similar response on the network. While these methods can estimate whether a drug combination is effective on a 
certain disease, it is difficult to predict the overall effects on the human body, since a large amount of gene expres-
sion data is required to consider many phenotypes. At the same time, several DDI prediction methods, such as 
similarity-based, knowledge-based or mechanism-based methods, have been proposed16–18. Most of these meth-
ods only focus on predicting DDIs in given drug pairs without showing their potential phenotypic effects. Only 
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a few knowledge-based approaches predicted adverse effects of drugs and DDIs based on adverse drug reaction 
(ADR) reports and Electronic Health Records (EHRs)6,7. However, these methods suffer from several limitations 
in the use of spontaneous ADR reporting system, including sampling variance and reporting biases6,19,20. More 
importantly, they seldom consider the complicated mechanism of action (MoA) of drug effects and interactions 
in biological systems.

Here, we present a phenotype-based in silico method to predict effects and interactions of drug pairs based 
on the profiling of systemic effects of drugs. Recent studies have demonstrated that phenotypic effects of drugs 
can be utilized in predicting drug interactions by using them to calculate the similarity between drug pairs or as 
a core feature in machine learning11,21–23. We, therefore, hypothesized that drug pairs having similar phenotypic 
effects are more likely to interact with each other. To test this underlying hypothesis, we first generated profiles of 
systemic effects for each drug by investigating the propagated drug effects from a molecular network and mapped 
these results to a phenotypic network. Next, to identify the effects and interactions of drug pairs, the connectivity 
and closeness between phenotypes of drug profiles were calculated in the phenotypic network. By introducing 
systematic analysis on molecular and phenotypic networks, effects and interactions of drug pairs were identified 
together with the understanding of the underlying MoA. To investigate the coverage of our prediction, we applied 
our method to two sources for predicting both therapeutic indications and adverse effects of drug interactions. 
We found that predicted effects and interactions of drug pairs cover the large amounts of results which were 
reported in previous work.

To conclude, the novelty of our method is threefold: (i) to our knowledge, it is the first unbiased, 
phenotype-based in silico method which predicts drug effects and their interaction potential with quantitative 
assessment; (ii) by investigating systemic effects of drugs and their associations in molecular and phenotypic 
networks, it enables us to understand the MoA of drug interactions; and (iii) as a preliminary tool, our method 
can screen candidate drug combinations and notify us hazardous drug interactions.

Results
In silico analysis for identifying drug interactions and their phenotypic effects.  We designed 
a novel algorithm to predict phenotypic effects of drug pairs and their interaction potential by investigating 
systemic effects of drugs from molecular to phenotypic networks. For a query drug pair, the algorithm works in 
five steps (Fig. 1): (i) constructing an inferred drug phenotype vector (DPV) by calculating systemic effects of a 
drug on the molecular network and filtering effective phenotype values; (ii) constructing a known DPV based on 
published databases; (iii) creating a combined DPV based on known and inferred DPVs; (iv) mapping pheno-
types of the combined DPV on the phenotypic network; and (v) calculating phenotype-specific interaction scores 
(P-scores) and drug interaction scores (DI-scores) for a query drug pair based on their combined DPVs.

We generated DPVs which cover systemic effects, including both known and unexpected phenotypic effects, 
of individual drugs. Each DPV contains drug effects for 3,833 phenotypes defined by Medical Subject Headings 
(MeSH) and Online Mendelian Inheritance in Man (OMIM). For this, the inferred DPV was generated in three 
steps. In the first step, propagated drug effects were calculated by using the random walk with restart (RWR) 
algorithm on the molecular network (Fig. 1a). The effects of drugs are not limited to their direct targets, but they 
are further propagated to interacting proteins. Therefore, initial values of the molecular network were assigned to 
the drug targets, and their propagated effects were calculated by applying the RWR algorithm. In the second step, 
phenotype values were calculated by combining propagated drug effects based on gene-phenotype associations. 
Accordingly, phenotypes have high values when a drug directly binds to phenotype associated genes or when 
drug targets are closely located to phenotype associated genes. In the third step, an inferred DPV was constructed 
by filtering effective phenotypes from the inferred list of phenotypes, which were calculated from the second 
step (Fig. 1b). When there were a large number of drug targets or phenotype associated genes, the phenotype 
tended to get a high value. The result was caused by the imbalance of the prior knowledge of drug targets, protein 
interactions and phenotype associated genes. To show that prior knowledge has high variation, we calculated the 
coefficient of variation (CV) which is defined as the ratio of the standard deviation to the mean. The CV of genes 
per phenotype (CV = 3.58), node degree of the molecular network (CV = 2.68) and direct and indirect targets 
per drug (CV = 3.94 and 6.80, respectively) were considered to be high variances since those CV values were 
higher than one24. To overcome this problem, we filtered effective phenotype values by comparing phenotype 
values with the randomly generated DPVs. The phenotype values were converted into Boolean values (one or 
zero) based on p-values, which were calculated from the distribution of phenotype values of random DPVs. The 
list of phenotype values of a drug, determined by combining the molecular and phenotypic networks, was defined 
as the inferred DPV. The average number of phenotypes per inferred DPV was 116.1. Next, we constructed the 
known DPV by collecting drug-phenotype associations from published databases (Fig. 1c). The average num-
ber of phenotypes per known DPV was 57.4. Finally, a combined DPV was generated by integrating both the 
known and inferred DPVs, which has a large coverage of phenotypic effects including verified and unexpected 
drug-phenotype associations (Fig. 1d). Through this process, the average number of phenotypes were increased 
(27.4%) for 2,434 drugs among a total of 5,441 drugs. Consequently, we generated combined DPVs for 5,441 
approved and investigational drugs, which contain an average of 160.8 phenotypes. The distribution of the num-
ber of targets associated with drugs, genes associated with phenotypes and phenotypes associated with drugs is 
provided in Supplementary Fig. 1.

To investigate the relationship between drugs, we mapped phenotype values of combined DPVs on the phe-
notypic network (Fig. 1e). In the phenotypic network, phenotype nodes were connected when they shared some 
common properties or were related by definition25. Therefore, similar phenotypes were closely linked with shared 
properties. The average distance of the random phenotype pair was 6.5 and the average distance of the pheno-
type pair of the known drug combination was 3.4 in the phenotypic network. This indicates that the drugs are 
more likely to have similar phenotypic effects when they interact with each other. For a given query drug pair, all 
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Figure 1.  A systematic overview of the drug effect prediction. (a) Phenotype values of a drug were obtained 
by calculating propagated drug effects on the molecular network. In the molecular network, RWR algorithm 
was performed based on direct targets (star) and indirect targets (triangle), in which RWR results are shown 
as colored nodes. Based on gene-phenotype associations (dashed line), sums of gene values are mapped to 
phenotypes (square). (b) Effective phenotypes were filtered by comparing with random DPVs. Random DPVs 
of a drug were generated by randomly selecting targets while fixing the number of direct (α) and indirect (β) 
target proteins. For each drug, 1,000 random DPVs were generated, and phenotypes (ci) with an empirical p-
value lower than 0.01 were selected to construct an inferred DPV. (c) A known DPV was constructed based on 
public databases. (d) A combined DPV was created by integrating known and inferred DPVs. (e) For a query 
drug pair, all phenotype values of each combined DPV were mapped to the phenotypic network. (f) The P-score 
of a phenotype was calculated by considering phenotype pairs containing this specific phenotype among the 
whole pairs with the closeness. Closeness was calculated by the distance between phenotype pairs of each 
combined DPV in the phenotypic network. (g) Interaction potential of a drug pair was quantified by the sum of 
the P-scores. The DI-score was calculated by normalizing interaction potential values with the geometric mean 
of the values obtained by calculating each interaction potential against itself.
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phenotype terms in both combined DPVs were considered as candidate phenotypic effects of the drug pair. To 
filter out meaningless phenotypes, all candidates were ranked by P-scores, which were calculated by considering 
connectivity and closeness between phenotype pairs containing this specific phenotype among the whole pairs 
(Fig. 1f). To further predict whether the drug pair interacts, the interaction potential was quantified by aggregat-
ing all P-scores of the drug pair (Fig. 1g). If a drug pair shares a relatively higher number of similar phenotypes, 
the drug pair will have high scored phenotype terms, increasing the interaction potential. Finally, we calculated 
DI-scores which normalize the interaction potential by dividing it by the geometric mean of the values obtained 
by calculating each interaction potential against itself. We provide a web interface for all predicted drug interac-
tions and their ranked phenotypic effects, which is available at http://biosoft.kaist.ac.kr/DPV.

Systemic effects of drugs are predicted by network propagation from molecule to pheno-
type.  In this study, the prediction of systemic effects of drugs on the molecular and phenotypic networks is 
an essential step to identify phenotypic effects of drug pairs and their interaction potential. Therefore, we first 
evaluated whether DPVs can be used to predict phenotypic effects of drugs by comparing them with randomized 
target DPVs. Inferred DPVs without known DVPs were used for a fair comparison (Fig. 1b). Also, randomized 
target DPVs were constructed by applying the same development strategies used for the inferred DPV, where 
only the targets were randomly selected while fixing the number of targets. Three types of phenotypic effect infor-
mation, including therapeutic effects, side effects and potential candidate effects, were used as a gold standard, 
respectively (Table 1). We collected verified phenotypic effects from DrugBank indications for therapeutic effects, 
SIDER for side effects and CTD for potential candidate effects and used them as a gold standard positive set. To 
evaluate the prediction results, precision (p) and recall (r) values were calculated. Out of 4,990 therapeutic effects 
of 828 drugs, inferred DPVs covered 1,692 phenotypes (p = 0.033 and r = 0.339), which represents better perfor-
mance compared to randomized target DPVs (p = 3.04 × 10−4 and r = 0.010). Similarly, for side effect prediction, 
inferred DPVs covered 7,570 phenotypes (p = 0.079 and r = 0.256) among the total 29,574 phenotypes of 643 
drugs, and in potential candidate effect prediction, inferred DPVs covered 168,360 phenotypes (p = 0.381 and 
r = 0.557) among the total 302,514 phenotypes of 1,585 drugs. Overall performance represents that the prediction 
of phenotypic effects with inferred DPVs shows better performance compared to the prediction with randomized 
target DPVs.

Next, we investigated the relationship between precision and recall according to p-value threshold. The pre-
cision and recall performance of the inferred DPVs are influenced by the p-value threshold in the process of 
calculating phenotype values (Fig. 1b). Setting a high p-value increases the number of phenotype candidates 
of the drug, which causes the precision to decrease but the recall value to increase. Conversely, setting a low 
p-value decreases the number of phenotype candidates, which causes the precision to increase but the recall 
value to decrease. The relationship between precision, recall and F1 scores according to p-value can be seen in the 
Supplementary Table 1.

Unlike our method, knowledge-based approaches, including OFFSIDES, predict drug effects from ADRs 
based on statistical analysis6. However, they suffer from several limitations in the use of spontaneous ADR report-
ing system, including sampling variance and reporting biases6,19,20. To demonstrate that our prediction is not 
biased to specific phenotype terms, we calculated phenotypic similarity for all drug pairs based on Jaccard index 
(JI). The Jaccard index of phenotypic effects between drugs is high when predictions are biased toward common 
phenotypic effects. From the result, average Jaccard index of inferred DPVs (JI = 2.2 × 10−2) was 2.95 times less 
than OFFSIDES (JI = 6.5 × 10−2). Overall, these findings indicate that inferred DPVs provide a high coverage and 
unbiased results in predicting phenotypic effects of drugs.

Highly connected phenotypes represent potential phenotypic effects of drug pairs.  Our 
method predicts phenotypic effects of drug pairs by calculating the connectivity and closeness between phe-
notypes of each drug, which are potential therapeutic or adverse effects. Using known therapeutic and adverse 
effects collected from DCDB26 and TWOSIDES6 as gold and silver standards respectively, we calculated the cover-
age of our predictions. We defined a set of candidate phenotypic effects of a drug pair as a union of phenotypes in 
combined DPVs. As a result, our predictions offered a large coverage in predicting therapeutic effects (63%) and 
adverse effects (41%) of drug pairs (Supplementary Fig. 2). However, for there were too many phenotype candi-
dates, including false positives, we needed quantitative assessment to filter out meaningless phenotype candidates. 
To solve this problem, P-scores were calculated for all possible phenotypes in combined DPVs. Then we per-
formed the fold-enrichment (FE) test to evaluate the correlation between the P-score and the likelihood of having 
known phenotypic effects. All candidate phenotypic effects were ranked by the P-score and binned into groups 
of 5,000 phenotypes. As a result, as P-scores increase, the number of known phenotypic effects has markedly 
increased, especially at top 10% region (Fig. 2a). We also performed kernel density estimation (KDE) to compare 

Inferred DPV Randomized target DPV

Precision Recall Precision Recall

Therapeutic effects 0.033 (±0.006) 0.339 (±0.024) 3.04 × 10−4 (±1.0 × 10−6) 0.010 (±1.0 × 10−4)

Side effects 0.079 (±0.003) 0.256 (±0.017) 2.92 × 10−3 (±1.0 × 10−5) 0.011 (±1.0 × 10−4)

Potential candidates 0.381 (±0.019) 0.557 (±0.064) 7.34 × 10−3 (±1.0 × 10−5) 9.65 × 10−3 (±1.0 × 10−5)

Table 1.  Precision and recall values of inferred DPV and randomized target DPV in predicting therapeutic 
effects, side effects, off-label effects and potential candidate effects.

http://biosoft.kaist.ac.kr/DPV
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the density of distribution between verified and unverified phenotypic effect scores. Original distribution of ver-
ified and unverified phenotypic effect scores shows right-skewed distribution. Therefore, the log-transformed 
value of the P-score were used to better reveal the pattern of the data. As a result, the distribution of the verified 
phenotypic effect scores was more enriched on high score region than low score region, while the distribution 
of the unverified phenotypic effects showed opposite aspect (Fig. 2b). This indicates that verified phenotypic 
effects can be detected more readily if drug pairs have high P-scores. Also, the P-score shows a clear bimodal 

Figure 2.  Performance evaluation in identifying phenotypic effects of drug interactions. (a) All possible 
phenotypes are ranked and binned into groups by their P-scores. FE of hits of known phenotypes in each bin 
(y-axis) is plotted against average P-score (x-axis). Linear regression model (red) and generalized additive 
model (blue) are used to fit the distribution of FE values. Red and blue outlines indicate 95% confidence 
interval. (b) The result of KDE: The P-score distributions show the relative separation between verified (blue) 
and unverified (red) phenotypic effects of drug combinations. (c,d) Average AUC scores of ROC and PR were 
calculated to evaluate the performance of phenotypic effects prediction. The known therapeutic and adverse 
effects were used as a gold standard positive set, respectively. Additionally, average AUC scores of ROC and PR 
were calculated for phenotypes with more than 20 related targets. Average AUC scores were calculated based on 
(c) drugs and (d) phenotypes, respectively. (e) Comparison of the AUROC between our method (blue) and Iyer 
method (gray). We used a gold standard built by Iyer study which contains 1,698 DDIs for 14 diseases.
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distribution, which can be used to filter out meaningless phenotypes. Next, average area under the curve (AUC) 
scores of receiver operating characteristic (ROC) and precision-recall (PR) curves for therapeutic effects of 1,093 
drug combinations and adverse effects of 53,694 drug interactions were calculated respectively to examine the 
performance of the P-score (Fig. 2c). Additionally, in order to confirm whether the proposed method shows 
better performance when the amount of information is sufficient, 203 phenotypes with more than 20 related 
targets were selected from 3,833 phenotypes and average AUC scores of ROC and PR were calculated. As a result, 
we obtained the area under the receiver operating characteristic (AUROC) and area under the precision-recall 
curve (AUPR) scores for therapeutic effect (AUROC = 0.731 ± 0.021, AUPR = 0.624 ± 0.003) and adverse 
effect (AUROC = 0.734 ± 0.033, AUPR = 0.817 ± 0.015) predictions. In addition, when the genetic information 
associated with the phenotypes was sufficient, we were able to predict therapeutic (AUROC = 0.731 ± 0.021, 
AUPR = 0.624 ± 0.003) and adverse effects (AUROC = 0.734 ± 0.033, AUPR = 0.817 ± 0.015) with higher per-
formance. Next, we calculated the ROC and PR performance for each phenotype and averaged them to normalize 
the occurrence of phenotypes (Fig. 2d). For this, we obtained phenotype ranking for each drug pair based on 
P-scores and then calculated the ROC and PR of the phenotype based on ranking in all drug pairs. This process 
was applied on all phenotypes, and the average values of AUROC and AUPR were calculated to normalize the 
phenotype occurrence. From the result, we confirmed that when phenotype occurrence is normalized, simi-
lar performance in predicting therapeutic (AUROC = 0.713 ± 0.032, AUPR = 0.707 ± 0.026) and adverse effects 
(AUROC = 0.752 ± 0.036, AUPR = 0.717 ± 0.024) is obtained. In addition, when genetic information related 
to the phenotype was sufficient, the therapeutic (AUROC = 0.825 ± 0.009, AUPR = 0.786 ± 0.008) and adverse 
effect (AUROC = 0.861 ± 0.012, AUPR = 0.852 ± 0.011) prediction performance was greatly increased. These 
results indicate that P-scores using combined DPVs are relevant for phenotypic effect prediction. Finally, we 
compared our predictions with Iyer study, one of the knowledge-based approaches predicting adverse effects 
of drug interactions7. The AUC scores of the adverse effect prediction of drug interactions were calculated by 
using TWOSIDES as a silver standard, yet there exists biases and errors toward ADR reports. To ameliorate this 
situation, we used a gold standard built by Iyer study which contains 1,692 DDIs for 14 diseases (Supplementary 
Data 1). Although this gold standard covers a relatively small number of drug interactions and diseases, we could 
evaluate the prediction performance in more strict condition. In comparison of the AUROC scores, our method 
showed better performance than Iyer study in predicting acute renal failure, hyperglycemia, hyperkalemia, hypo-
kalemia, nephrotoxicity, pancytopenia, rhabdomyolysis and QT prolongation (Fig. 2e). Also, the lowest AUROC 
of our prediction result was 0.55 in hypoglycemia, while Iyer study did not perform well in predicting pancytope-
nia, acute renal failure, hyperglycemia, hypokalemia and nephrotoxicity, with AUROC scores less than or equal 
to 0.5. Moreover, our method has a definite advantage in offering insights on the MoA of drug interactions, which 
cannot be handled in knowledge-based approaches. Overall, our results indicate that the P-score can be used for 
identifying prioritized phenotypic effects of drug pairs.

Drug pairs having similar phenotypes are more likely to interact with each other.  To demon-
strate whether the quantified phenotypic effects of drug pairs can be used to predict drug interactions, we 
first calculated DI-scores for all possible drug pairs among the list of FDA-approved and investigational drugs 
(Supplementary Data 2). We then evaluated the performance in predicting drug interactions which have ther-
apeutic effects or adverse effects. As gold standard datasets, 1,093 drug combinations from DCDB26 and TTD27 
were used for therapeutic effects and 29,074 DDIs from DrugBank28 and KEGG29 were used for adverse effects.

We performed the FE test to identify the correlation between the DI-score and the likelihood that a drug com-
bination occurs. All possible drug pairs were ranked by the DI-score and binned into groups of 50,000 drug pairs. 
As a result, as DI-scores increase, the number of drug combinations has markedly increased, especially at top 25% 
region (Fig. 3a). The result indicates that the drug pairs assigned with high DI-scores are more likely to have drug 
combinations. We also performed KDE to compare the density distributions of DI-scores between verified and 
unverified drug combinations. As a result, the distribution of verified drug combination scores was enriched on 
high score region compared to scores from unverified drug combinations (Fig. 3b). This indicates that verified and 
unverified drug combinations can be separately detected with the DI-scores. Next, we used AUC scores of ROC 
curves to examine the quantitative performance of the proposed method in predicting drug combinations. We 
compared our method with four different cases: (i) using known DPVs only; (ii) using inferred DPVs only; (iii) 
using target closeness to calculate DDI score by distance between each pair of drug targets on PPI network21; and 
(iv) using target effect overlap to predict DDIs based on similarity between random walk results on PPI network30. 
Importantly, our method, which integrates the information from known and inferred drug-phenotype associa-
tions into combined DPVs, exhibited better performance (AUROC = 0.943) than those with single information 
(AUROC = 0.869~0.917). Also, our method showed better performance than target closeness (AUROC = 0.896) 
and target effect overlap (AUROC = 0.908) methods (Fig. 3c). However, ROC curves could not reflect the effects 
of change the proportion of positive to negative instances. In drug combination prediction, large class skew and 
large changes in class distributions are common, because the negative set of drug combinations is not available. 
Therefore, many studies have exempted gold standard positive set from all possible drug pairs and used them as 
the gold standard negative set11,21,31. To see the effect due to the class skew, we calculated PR curves. When AUC 
values from PR curves were compared, our method (AUPR = 0.897 ± 0.004) showed the best performance among 
the other methods (Fig. 3d). Moreover, we calculated PR curves for different positive/negative ratios to evaluate 
the performance in the various skewness of dataset and compared it with previous methods (Supplementary 
Fig. 3). From the result, our method achieved the best performance even with the highly skewed dataset. Finally, 
we compared our DDI prediction with previous methods, including target closeness, target effects overlap and 
target connectivity in weighted PPI (Supplementary Fig. 4).

Drug pairs were assigned with high scores when their phenotypic effects were similar. Further analysis was 
done on whether the sets of drug pairs sharing similar DI-score patterns have similar phenotypes. In order to 
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Figure 3.  Performance evaluations of the predicted drug interactions. (a) All possible drug pairs are ranked and 
binned into groups by their DI-scores. FE of known pharmacodynamic drug combinations in each bin (y-axis) is 
plotted against average DI-score (x-axis). Linear regression model (red) and generalized additive model (blue) are 
used to fit the distribution of FE values (red and blue outlines indicate 95% confidence interval). (b) The result of KDE: 
DI-score distributions show the relative separation between verified (blue) and unverified (red) pharmacodynamic 
drug combinations. In this plot, the verified pharmacodynamic drug combinations are significantly enriched in higher 
scores than in lower scores. (c) ROC and (d) PR curves for our method (blue), our method only with known DPVs 
(green), our method only with inferred DPVs (red), target closeness method (magenta) and target effect overlap 
method (purple) to evaluate the performance of DI-score. (e) Biclustering of a DI-score matrix. DI-score matrix 
is generated by calculating DI-score for all possible drug pairs. Red and yellow indicate high and low score values, 
respectively. DI-score matrix is partitioned into 11 clusters (black box), where the rows and columns are ordered 
according to the clustering. (f) Comparing average Jaccard index between high-scored, low-scored and random 
clusters. For drug pairs in a cluster, we counted shared phenotypes which are reported in DrugBank and SIDER. 
Average Jaccard index of each cluster is calculated by averaging Jaccard index of all drug pairs in a cluster. (g) Major 
therapeutic effects (blue) and adverse effects (red) of high scored clusters (Fisher’s test, p-value < 0.001).
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identify optimal subsets of drug pairs which have high relevance to each other, we performed the biclustering 
with DI-score matrix to take into account duality between drugs in subspace32,33. The result showed that the drug 
pairs are divided into 11 clusters, including four high-scored and seven low-scored clusters (Fig. 3e). Next, to 
investigate the difference among high-scored, low-scored and random clusters, we calculated phenotypic sim-
ilarity for each cluster based on Jaccard index. For a drug pair, a list of associated phenotypes of each drug was 
gathered from DrugBank and SIDER, and the number of common phenotypes was counted to calculate Jaccard 
index. From the result, the average Jaccard index of high-scored clusters (JI = 0.03) was markedly higher than the 
index of low-scored (JI = 5.2 × 10−4) and random clusters (JI = 9.3 × 10−3) (Fig. 3f). This indicates that high- and 
low-scored clusters differ strongly with respect to the number of shared phenotypes. Next, we identified major 
phenotypes of high-scored clusters by performing phenotype enrichment analysis based on Fisher’s exact test. 
To get Fisher’s test value of each phenotype, the number of drug pairs was counted based on whether they are 
included in the cluster and whether they have associations with the phenotype. From the result, we found that 
each cluster has representable phenotypes and that similar phenotypes are enriched to each cluster. For example, 
phenotypes enriched in cluster 1 (C1 in Fig. 3e) were related to blood clotting disorder or symptoms, including 
bleeding, thrombosis, pulmonary embolism and myocardial infarction. Whereas phenotypes enriched in cluster 
2 (C2 in Fig. 3e) were related to mental and neurological disorders (Fig. 3g). Detailed information of enriched 
phenotypes of four high-scored clusters can be found in Supplementary Tables 2–5. These results show that sets 
of drug pairs sharing comparable DI-score patterns have similar phenotypes, providing that our method can be 
used as a tool to screen sets of drug pairs for specific phenotypes.

Our method predicts drug interactions based on the connectivity and closeness between phenotypes on the 
phenotypic network, which enables us to find previously undetected drug combinations by target distance-based 
methods11,21. By assigning high scores on drug pairs which have distanced targets but have similar target pheno-
types, we can improve prediction coverage of drug combinations (Table 2). For instance, ramipril and irbesartan 
are being currently prescribed as a drug combination for albuminuria treatment. When measuring the distance 
between the target genes of these two drugs in the molecular network (average shortest distance = 3.48), they are 
far away from each other, which is close to random (p-value < 0.05). Therefore it is hard to find that these two 
drugs can be used as a drug combination from target distance-based methods. However, in our method, rami-
pril and irbesartan receives a high score (DI-score = 0.908) and are proposed as a potential drug combination. 
Furthermore, we can predict additional phenotypic effects, such as cardiovascular disease, heart condition, hyper-
tension and diabetes nephropathy, which have not been reported in DrugBank and DCDB34–36.

Analyzing mechanism of action of drug interactions via molecular and phenotypic networks.  
Our novel method, which predicts drug effects and interactions from the integrated molecular and phenotypic 
networks, provides opportunities for better understanding of the molecular mechanisms underlying drug inter-
actions. As an example, an interaction between mirtazapine and pramipexole was predicted with a high score 
(DI-score = 0.91) of our method (Fig. 4). Mirtazapine is an antidepressant which refines the specificity of effects 
on the noradrenergic and serotonergic systems by blocking α2 adrenergic autoreceptors and heteroreceptors. 
In addition, mirtazapine selectively antagonizes the 5-HT2 and 5-HT3 serotonin receptors in the central and 
peripheral nervous system, which are mainly targeted in depression treatment. It also being used as anxiolytic, 
hypnotic, antiemetic and appetite stimulant37. Pramipexole is a non-ergoline dopamine agonist with selective 
actions at dopamine D2 and preferential D3 receptor, which are indicated targets for treating Parkinson’s disease 
and restless legs syndrome38. The two drugs, mirtazapine and pramipexole, share 11 common targets. Although 
their interaction has not been reported in DrugBank and DCDB, recent studies have reported that this drug pair 
can be used as a drug combination to treat restless legs syndrome and Parkinson’s disease39,40. Also, TWOSIDES 
has reported 99 adverse events including fainting, pain, bleeding and erythema, which cannot be clearly attrib-
uted to the individual drugs alone6. In our results, therapeutic targets or biomarkers of neurological disorder 
and mental disorder, such as DRD1, DRD2, DRD4, HTR2A, PRL and ADRA2A, were assigned with high scores 
in both mirtazapine and pramipexole (Fig. 4a and b). Based on these results, we can consider that neurolog-
ical disease (P-score = 19.82, rank = 2), parkinsonism (P-score = 9.82, rank = 70) and restless legs syndrome 
(P-score = 8.19, rank = 140) are related with mirtazapine and pramipexole (Fig. 4c). Furthermore, our method 

Agent 1 Agent 2 DI-score Rank (DI-score) Rank (Distance-based)

Ramipril Irbesartan 0.906 47 661

Cyclophosphamide Amoxapine 0.904 51 620

Telmisartan Clopidogrel 0.902 57 629

Tiagabine Gabapentin 0.901 59 689

Lopinavir Pitavastatin 0.899 65 676

Prednisolone Mycophenolic acid 0.898 77 543

Sildenafil Phentolamine 0.892 81 714

Methotrexate Methylprednisolone 0.889 87 566

Clopidogrel Cilostazol 0.887 94 811

Sildenafil (-)-Prostaglandin E1 0.878 127 783

Table 2.  Top 10 drug combinations showing a large difference in rank between our proposed method and target 
distance-based similarity method.
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predicted 62 adverse events over 99 reported adverse events, including pain, difficulty breathing, bleeding, ery-
thema and coma with high P-scores (Supplementary Data 3). Next, to understand the MoA of a drug interaction, 
we investigated whether significantly enriched pathways in both sets of high-scored genes of mirtazapine and 
pramipexole are associated with our predicted phenotype. For this, genes with the top 10% of propagated drug 
effects were selected in each drug (Fig. 1a) and pathway enrichment test was performed based on the selected 
genes by using DAVID tool41. Based on these results, we found an intersection of significantly enriched pathways 
(p-value < 0.001) in both drugs. Next, we validated associations between pathways and our predicted pheno-
types by PubMed manual curation (Supplementary Data 4). The result shows that a large number of observed 
pathways are associated with our predicted phenotypes. For example, ‘Neuroactive ligand-receptor interaction’, 

Figure 4.  Case study of mirtazapine and pramipexole. (a) Propagated effects of mirtazapine (blue) and  
(b) pramipexole (brown) were calculated in molecular and phenotypic networks. Circular composition of the 
molecular network was constructed by selecting high scored genes (circle) which have interactions between 
high scored proteins or phenotypes, and the edges were generated by protein-protein interactions. Circular 
composition of the phenotypic network was constructed by selecting high scored phenotypes (square) which 
are reported in TWOSIDES, and the edges were generated by phenotype associations of UMLS. The gene nodes 
were weighted by RWR results, and the phenotype nodes were weighted by the sum of values of associated gene 
nodes. Edges in the circular network were weighted by shortest path length between nodes. (c) Phenotypic 
effects (light green) of the drug interaction were identified by calculating P-scores based on the candidate 
phenotypic effects of a drug pair.
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‘Dopaminergic synapse’, ‘Serotonergic synapse’, ‘Cholinergic synapse’ and ‘Cocain addiction’ pathways were found 
to be associated with neurological disease and Parkinson’s disease42–46. For inflammation, associated pathways, 
such as ‘Chemokine signaling pathway’ and ‘cAMP signaling pathway’, were found47,48. As another example, an 
interaction about zoledronic acid and gemcitabine is provided in Supplementary Fig. 5. These case studies show 
that our method can investigate the MoA of drug interactions based on the propagated effects of drugs and their 
connectivity on molecular and phenotypic networks.

Predicted phenotypic effects and their interaction potentials are validated in external liter-
ature.  To validate the reliability of our method, we confirmed whether the predicted phenotypic effects of 
drug pairs and their interactions were identified in external literature49. We first ranked predicted phenotypic 
effects of the 894 approved drug combinations by P-scores, and made three independent sets by selecting top 5%, 
bottom 5% and random 5% phenotypes containing 34,352 drug pair-phenotypic effect associations respectively. 
For the selected drug pair - phenotypic effects, we counted co-occurrences (nc) from PubMed abstracts, calcu-
lated the Jaccard index and conducted the Fisher’s exact test (nf) (Table 3). The average number of co-occurrence 
of the high-scored set (nc = 0.87) was 8.7 and 2.8 times larger than the average number of co-occurrence of the 
low-scored set (nc = 0.10) and the random set (nc = 0.31). Also, in order to correct the differences in the frequency 
of drug pairs and phenotypic effects, the co-occurrence value was normalized by the Jaccard index. From the 
result, the average value of the high-scored set (JI = 2.9 × 10−5) was 3.6 and 2.1 times higher than the values of 
the low-scored set (JI = 8.1 × 10−6) and the random set (JI = 1.4 × 10−5). Furthermore, we performed Fisher’s 
exact test to find the significant associations (p-value < 0.001), and the number of significance associations of the 
high-scored set (nf = 674) was 7.1 and 3.1 times higher than that of the low-scored set (nf = 94) and the random 
set (nf = 216).

Next, we applied above process to predicted drug interactions to validate the DI-score. We ranked all drug 
pairs by DI-scores, and made three independent sets by selecting top-ranked 5%, bottom-ranked 5% and ran-
dom 5% drug pairs containing 739,975 drug interactions respectively. For selected drug interactions, the average 
number of co-occurrence of the high-scored set (nc = 1.67) was significantly larger than the average number of 
co-occurrence of the low-scored set (nc = 1.9 × 10−3) and the random set (nc = 0.24). The average value of the 
Jaccard index for the high-scored set (JI = 1.9 × 10−4) was remarkably higher than the value of the low-scored 
set (JI = 3.3 × 10−7) and the random set (JI = 5.9 × 10−6). Finally, in the Fisher’s exact test, the high-scored set 
(nf = 21,380) had markedly more significant associations than the low-scored set (nf = 49) and the random set 
(nf = 3,109). As the result shows, we can conclude that both P- and DI-scores can be used as metrics to identify 
the effects and interactions of drug pairs.

Discussion
Drug interactions often occur when drugs act on the same or interrelated pathways, resulting in the regulation 
of biological processes. In this process, unexpected effects may occur due to the complex molecular mechanism 
of drug interactions. Therefore, identifying phenotypic effects of drug interactions with mechanistic explanation 
is crucial to increase therapeutic effects while reducing adverse effects. Here, we introduce a phenotype-based 
approach to predict effects and interactions of drug pairs based on the profiling of systemic effects of drugs. Our 
analysis of drug effects and their interactions in the molecular and phenotypic networks offers the mechanistic 
explanation of why phenotypic effects occurred and why drug pair interacts.

In this study, systemic effects of drugs obtained from calculating propagated effects on molecular and pheno-
typic networks were used as core information in predicting phenotypic effects of drug pairs and their interaction 
potential. By comparing with random and OFFSIDES results, we confirmed that systemic effects of drugs were 
successfully predicted with high coverage, and that they were not biased with respect to the number of drug 
targets and disease associated genes. Based on these results, phenotypic effects of drug pairs were predicted by 
calculating P-scores considering the connectivity and closeness between phenotypes on the phenotypic network. 
Most previous methods have focused on predicting potential drug interactions or relations between a certain 
disease and drug interactions. Even though a few knowledge-based approaches predict adverse effects of drugs 
and DDIs, they seldom considered the complicated MoA in predicting phenotypic effects of drug interactions. 
Our predictions attained high coverage of therapeutic effects (63%) and adverse effects (41%) of drugs with 
the AUROC value of 0.731 and 0.734, respectively. Also, compared with the knowledge-based approach, our 
method showed better performance in 9 phenotypic effects among 14 phenotypic effects. We further quantified 
the interplay of drugs by aggregating the P-scores of the drug pair. Compared to the conventional method, our 
method showed better performance, with high rates of sensitivity and specificity in predicting drug combinations 
(AUROC = 0.943, AUPR = 0.897). Furthermore, these processes enabled us to find drug interactions previously 

Drug pair – phenotypic effect Drug – drug interaction

High-scored Low-scored Random High-scored Low-scored Random

co-occurrence 0.87 0.10 0.31 1.67 1.9 × 10−3 0.24

Jaccard index 2.9 × 10−5 8.1 × 10−6 1.4 × 10−5 1.9 × 10−4 3.3 × 10−7 5.9 × 10−6

Fisher’s exact testa 674 94 216 21,380 49 3,109

Table 3.  Literature validation for drug pair-phenotypic effect and drug-drug interaction associations by 
comparing co-occurrence, Jaccard index and Fisher’s exact test value between high-, low-scored and random 
sets. ap-value threshold of Fisher’s exact test is 0.001.
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undetected by target distance-based similarity methods, by allowing high scores on drug pairs which have similar 
target phenotypes even though their drug targets are distantly located. We also found that drug pairs sharing 
comparable patterns have similar phenotypes, by applying biclustering on the score matrix of drug interaction. 
Thus, the drug interaction prediction in this study can be used as a tool to find the sets of drug pairs that are asso-
ciated with specific phenotypes. Finally, by analyzing candidate phenotypic effects of the previously unknown 
drug interactions at the molecular and phenotypic networks, possible MoA of those drug interactions could be 
explained.

However, the given method needs improvements to be directly used as a screening tool in clinical practice. 
First, the dosage is not taken into an account in the method, although the effects of drug interactions can be varied 
by different combinations of concentration. Until now, most studies on dose-response relationship have only con-
sidered individual drugs, where only a few computational methods have calculated the expected dose-response 
relationship for drug combinations2. Second, limited by the current knowledge of drugs, diseases and interactions 
of molecule and phenotype, our prediction cannot provide detailed interaction types such as additive, synergistic 
and antagonistic interactions. Even though our study provides a list of prioritized effects and interactions of drug 
pairs, the absence of interaction type information is an obstacle to design precise clinical trials. Nevertheless, 
these limitations can be taken into an account for further experiments or improved computational methods. With 
these further improvements, our method can be used as a valuable resource in drug development and large-scale 
clinical trial design, serving as an in silico screening tool to provide a list of prioritized drug interactions with phe-
notypic effects in a cost-effective manner. We believe that the identification of drug interactions with phenotypic 
effects can be a key factor (i) to provide insights into the underlying molecular and phenotypic mechanisms of the 
drug interactions and (ii) to extend the combinatorial use of drugs, increasing therapeutic effects while reducing 
adverse effects.

Materials and Methods
Data set.  Drug information was collected from DrugBank version 4.328. In this study, we mainly focused 
on 5,441 drugs including approved and investigational drugs which have at least one target information. Drug 
targets were collected from DrugBank, DCDB26, CTD50, MATADOR51, STITCH52 and TTD27 databases, and 
gene-phenotype associations were collected from CTD database. Drug-phenotype associations were collected 
from DrugBank, CTD, ClinicalTrials.gov53 and DCDB databases by exploiting the MetaMap tool to extract phe-
notype-related terms54. With inputs like narrative text, MetaMap returns a ranked list of Metathesaurus concepts 
associated with each word of the input text. Among the Metathesaurus concepts categorized in semantic types, 
we used Metathesaurus concepts assigned to 20 semantic types out of 135 semantic types, which have related 
phenotypes such as ‘Disease or Syndrome’, ‘Sign or symptom’ and ‘Clinical attribute’ (Supplementary Table 6). 
Drug side effects were obtained from SIDER55 database, and adverse effects of drug pairs were collected from 
TWOSIDES6 database.

A PPI network, including 19,093 nodes and 270,970 edges, was obtained from BioGrid version 3.4.13656, 
and a phenotypic network was taken from Unified Medical Language System (UMLS) in the 2016AA version25. 
UMLS provides integrated information of various terminologies pertaining to biomedicine. The Metathesaurus 
is the main component of the UMLS which is organized by biomedical concepts, where each distinct concept 
is assigned to a unique concept identifier (CUI). We collected CUIs with broader (RB), narrower (RN) and 
other-related (RO) relationships among 11 types of UMLS relationships from MRREL lists, resulting in total 
220,104 CUIs and 663,018 relations. For systematic analysis, we integrated molecular and phenotypic networks 
based on the CODA system which handles various types of biological information57.

Propagation of drug effects from molecules to phenotypes.  We constructed a molecular network 
based on a PPI network and performed RWR algorithm to investigate the propagation of drug effects in the 
molecular layer. RWR simulates the random walker from its seed nodes and iteratively transmits the node val-
ues to the neighbor nodes with the probabilities proportional to the corresponding edge weights58,59. First, we 
assigned initial values to seed nodes in molecule network based on drug-target associations to simulate RWR 
algorithm. Drug-target associations can be divided into two groups, direct and indirect associations. The bio-
logical activity of drugs cause changes in various biological systems by complex interactions with molecular 
components, and their exact MoA remains largely unknown. Therefore, to expand the coverage of drug effects, 
we used not only direct (binding) associations, but also indirect associations which can be caused by the changes 
in the expression of a protein, drug induced phosphorylation or active metabolites of the drug (Supplementary 
Fig. 1a). The initial values of a direct and indirect association were assigned as 1 and 0.3, respectively. Second, the 
transition probability from a node to the neighbor node was calculated. We assumed that the transition proba-
bility represents the propagated drug effects on the molecular network. The transition probability vector of each 
node at time step t + 1 is defined as equation (1).

= − ++p r W p rp(1 ) (1)t
T

t1 0

where r represents the restarting probability of the random walker at each time step, set to 0.7 in this study. W 
represents the normalized adjacency matrix of the molecular network, pt is the probability vector of each node 
at time step t, and p0 represents the initial probability vector. The RWR algorithm simulates the random walker 
until all nodes reach the steady state (pt+1−pt < 10−8). We then mapped RWR results to phenotypes based on 
the gene-phenotype associations. In this step, we found all genes which are therapeutic targets or biomarkers 
of certain phenotypes and mapped the sum of these gene values, which were obtained from RWR results, to the 
corresponding phenotypes. Through this process, we obtained a list of phenotype values for each drug.
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Filter effective phenotypes from a large number of candidates.  Although a phenotype value cal-
culated from propagated drug effects is high, it may not mean that the drug is highly related to the phenotype. 
When there are many phenotype associated genes, or when a drug has a large number of target proteins, overall 
phenotype values get increased stochastically. To overcome this problem, we generated random DPVs and com-
pared them with a list of inferred phenotype values to select phenotypes with significant values. A random DPV 
was generated by randomly selecting drug’s targets while fixing the number of target proteins. For each drug, 
1,000 random DPVs were generated, and phenotypes with an empirical p-value lower than 0.01 were selected. The 
empirical p-value was calculated as equation (2).

= + +p r n( 1)/( 1) (2)

where n is the number of random DPVs and r is the number of DPV values that are larger than the phenotype 
value, respectively60. Value one was assigned on phenotypes with the p-value lower than 0.01, and zero on the 
others. From this process, inferred DPVs were generated with filtered effective phenotypes from a large number 
of inferred candidates of drug effects. Although phenotypic effects of drugs were extracted from the molecular 
network, there may have been an omission of some drug-phenotype associations due to the incomplete infor-
mation such as pathophysiology information about diseases, protein interaction and molecular mechanisms of a 
drug. Therefore, the combined DPVs were generated by combining both known and inferred DPVs which cover 
the large amount of known and unexpected drug-phenotype associations (Fig. 1b).

Predicting phenotype-specific interaction of drug pairs.  A set of candidate phenotypic effects of 
a drug pair was defined as a union of phenotypes in combined DPVs. There are hundreds of phenotypes in 
each combined DPV, so we prioritized phenotypes by P-scores to filter out meaningless phenotypes. For this, we 
mapped phenotypes of the combined DPVs to the phenotypic network. The P-score of a phenotype is calculated 
by considering phenotype pairs containing this specific phenotype among the whole pairs with the closeness in 
the phenotypic network as equation (3)61,62.

c e v v v vP score ( ) ( )
(3)

d d
p P

d c p( , )
1 2 1 2c p p c1 2 ∑− = +

∈

−

where c is the phenotype of interest, and P is the set of phenotypes in the combined DPV. d(c,p) is the shortest 
path length between phenotype nodes c and p in the phenotypic network. Therefore, e−d(c, p) is increased when two 
phenotypes are closely located in the phenotypic network. vij

 is the value of phenotype j in the combined DPV of 
drug i. If the phenotype belongs to both combined DPVs, and the phenotype is closely located to the phenotype 
set of the opposite combined DPV in the phenotypic network, then the phenotype is given a high value. 
Conversely, if the phenotype belongs to less than one combined DPV, and there is no connection between the 
phenotype and the phenotype set of the other combined DPV, then the phenotype is given a minimum value 
(zero).

Phenotype-based prediction of drug interactions.  The interaction potential between each drug pair 
was quantified based on phenotypic effects of the drug pair. The underlying hypothesis of this study was that a 
drug pair can interact with each other if they have similar phenotypic effects. Therefore, we defined an interaction 
potential of a drug pair as a sum of P-scores of phenotype candidates as equation (4).

∑= −
∈

d d pIP( , ) P score ( )
(4)p P

d d1 2 ,1 2

If a drug pair has lots of similar phenotypic effects, the number of phenotypes with a high P-score will increase 
and the interaction potential will be given a high value. Conversely, if there are no shared phenotypes between a 
drug pair, the interaction potential will be given a low value. Next, the interaction potential was normalized by 
dividing it by the geometric mean of the interaction potential values, which were obtained by calculating each 
interaction potential against itself. Finally, the DI-score is calculated as equation (5)

− =
⋅

d d IP d d
IP d d IP d d

DI score( , ) ( , )
( , ) ( , ) (5)

1 2
1 2
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The value of the DI-score is zero (min) when combined DPVs have no shared phenotypes and phenotypes 
between combined DPVs are disconnected in the phenotypic network, and the value is one (max) when com-
bined DPVs have the same phenotypes. DI-score has following characteristics: (i) the DI-score is related to the 
closeness between phenotype components; (ii) the DI-score is independent of the size of combined DPVs; and 
(iii) the maximum DI-score is assigned when combined DPVs are identical, no matter how many phenotypes 
they share (Supplementary Fig. 6).

Performance evaluation.  To measure the performance of our method in predicting drug combinations and 
DDIs, we collected 1,093 known drug combinations from DCDB26 and TTD27 databases and 29,074 known DDIs 
from DrugBank28 and KEGG29, which were used as the gold standard positive set. Since the negative set of drug 
combinations and DDIs is not available, we exempted gold standard positive set from all possible drug pairs and 
used them as the gold standard negative set. These sets were used to calculate the ROC, FE and KDE. Moreover, 
unlike the ROC curve, the PR curve is very sensitive to the imbalance of positive/negative ratio63. Therefore, we 
generated negative sets by considering the various negative/positive ratios in samples (1:10, 1:100, 1:500, 1:1000), 
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highlighting the difference in performance measures which might be lost in the ROC curve analysis (Fig. 2d). To 
obtain robust AUC score estimates, we performed our method 10 times by randomly selecting different negative 
sets. We then averaged the resulting AUC scores, and benchmarked the AUC performance against the perfor-
mance of previous methods. Next, we performed FE test to evaluate whether the drug pairs identified by the high 
similarity score are more likely to result in drug combinations. In the FE test, all possible drug pairs were ranked 
by the DI-score and binned into groups of 50,000 drug pairs. The FE is defined as equation (6).

=Fold enrichment m n
M N

/
/ (6)

where m is the number of known drug combinations in each bin among all known drug combinations M, and n is 
the number of drug pairs in each bin among the total possible drug pairs N. Linear regression model and general-
ized additive model were used to fit the distribution of FE values64. In addition, we estimated probability density 
function of positive and negative set scores by KDE to compare the distribution of positive and negative sets65.

In order to identify drug pairs which have a high relevance to each other, we performed the biclustering with 
DI-score matrix based on Plaid model in R66. Biclustering is used to find a subset of columns and rows with a 
high similarity scores in a table, which is composed of different rows and columns. However, as in this paper, 
biclustering can be applied to symmetric matrices where column and row are the same. If a one-sided clustering 
algorithm is applied in our result, drugs will be clustered considering the similarity of interaction scores across 
all 6,499 drugs. However, groups of patterns found in drug pair matrix are not homogeneous across all the drug 
pairs. Rather, only a subset of the drug pairs possesses these groupings. Therefore, biclustering was performed to 
find an optimal co-cluster with a high interaction score between drugs in the subset of drugs.

The phenotype enrichment analysis of each cluster is performed by Fisher’s exact test, and two-sided p-value 
and odds ratio are used to evaluate the strength of the enrichment of phenotypes among the clustered and 
un-clustered drug pairs.
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