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Cataract and presbyopia are the leading cause of vision loss and impaired vision,
respectively, worldwide. Changes in lens biochemistry and physiology with age are
responsible for vision impairment, yet the specific molecular changes that underpin
such changes are not entirely understood. In order to preserve transparency over
decades of life, the lens establishes and maintains a microcirculation system (MCS)
that, through spatially localized ion pumps, induces circulation of water and nutrients
into (influx) and metabolites out of (outflow and efflux) the lens. Aquaporins (AQPs) are
predicted to play important roles in the establishment and maintenance of local and global
water flow throughout the lens. This review discusses the structure and function of lens
AQPs and, importantly, their spatial localization that is likely key to proper water flow
through the MCS. Moreover, age-related changes are detailed and their predicted effects
on the MCS are discussed leading to an updated MCS model. Lastly, the potential
therapeutic targeting of AQPs for prevention or treatment of cataract and presbyopia is
discussed.

Keywords: cataract, protein aging, aquaporin regulation, microcirculation system, water transport

INTRODUCTION

The majority of cases of age-related vision loss in the world today are associated with the lens
pathologies presbyopia and cataract (Frick et al., 2015). Presbyopia is the loss of the ability of the lens
to dynamically change its shape (accommodate) to focus on near objects (Glasser and Kaufman,
1999), while cataract is the loss of the transparent properties of the lens (Asbell et al., 2005). Although
it is believed these two lens pathologies are linked by oxidative damage to lens proteins (Kupfer,
1985), antioxidant-based therapies have to date proven ineffective in slowing the onset of either
presbyopia or cataract (Braakhuis et al., 2019). Confirmation of the existence of a lens
microcirculation system (MCS) (Vaghefi et al., 2011; Candia et al., 2012; Vaghefi and
Donaldson, 2018), which generates a circulating flux of water, provides an alternative view not
only to understand the onset of presbyopia and cataract, but also opens new therapeutic pathways to
treat these lens pathologies.

It has been shown in animal lenses that movement of water through the lens generates a
substantial and highly regulated pressure gradient (Gao et al., 2015), delivers nutrients and
antioxidants to the lens center (Vaghefi and Donaldson, 2018), controls lens water content and
volume (Donaldson et al., 2009), and maintains overall lens optics (Vaghefi et al., 2015). It is
envisaged that in the human lens, these processes become dysfunctional with advancing age, and
manifest first duringmiddle age as presbyopia and then as cataract in the elderly. Consistent with this
view, it has been shown that the free water content of the human lens increases with age (Lie et al.,
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2021) and is significantly increased in cataratous lenses
(Bettelheim et al., 1986; Heys et al., 2008). Motivated by this
growing recognition of the importance of water transport in the
maintenance of the transparency and refractive properties of the
lens, in this review we have focused on the role of water channels
from the aquaporin (AQP) protein family in mediating, directing
and regulating water flow in different regions of the lens. Since
AQPs mediate the passive diffusion of water across cell
membranes, the direction and magnitude of which is
determined by osmotic gradients established across the
membrane (Knepper, 1994; Verkman et al., 1996), we will first
provide a review of the microcirculation system that generates the
ion fluxes that drive water transport in the lens, before
concentrating on how the expression of different lens AQPs
and regional differences in their subcellular distribution, post-
translational modification and regulation all contribute to lens
water transport. We hypothesize that these regional differences,
specifically the tissue and cellular locations of AQPs and their
modifications facilitate water movement throughout the lens via
the MCS. Further, we hypothesize that age-related changes in
AQP structure and function lead to cataract formation. Finally,
we will discuss therapeutic strategies being developed in other
tissues that are targeting AQPs with the view to inform efforts to
develop novel therapies on the lens.

LENS WATER TRANSPORT

To compensate for the lack of a blood supply, the lens operates an
internal MCS (Figure 1) that delivers nutrients to deeper fiber cells,
maintains fiber cell ionic homeostasis, and actively preserves the
transparent and optical properties of the lens (Donaldson et al., 2017;
Mathias et al., 2007; Mathias et al., 1997). TheMCS is generated by a

circulating current of Na+ ions, which primarily enters the lens at the
poles and travels into the lens via the extracellular spaces between
fiber cells (Figure 1, Influx). Na+ ions cross fiber cell membranes and
return towards the surface via an intercellular outflow pathway
mediated by gap junction (GJ) channels (Cx46 & Cx50) (Figure 1,
Outflow), where Na+ is actively removed by Na+ pumps
concentrated at the lens equator (Figure 1, Efflux). This
circulating ion current generates a near isotonic water flow that
enters the lens at both poles and exits at the equator (Candia et al.,
2012). This flow of water has two consequences. First, the
extracellular flow of water convects nutrients and antioxidants
towards the deeper lying fiber cells where multiple membrane
transporters enable cellular uptake (Donaldson and Lim, 2008).
Mapping this extracellular delivery of solutes to the lens cores using
MRI (Vaghefi et al., 2012) and confocal microscopy (Grey et al.,
2003; Lim et al., 2009) has revealed that a barrier to extracellular
diffusion forms in the inner cortex of the lens where mature fiber
cells have lost their organelles. Through the use of spatially-resolved
quantitative proteomics it has been shown that this closing of the
extracellular space is accompanied with increased expression of gap
junction, adherens junction and tight junction related proteins and
by increases in the expression of AQP0 and its interaction partners,
ezrin-radixin-moesin (ERM) proteins (Wang et al., 2021). It has
been proposed that this barrier, by restricting radial extracellular
space diffusion in the inner cortex, serves to preferentially direct
water and solute fluxes into the lens nucleus via the sutures (Vaghefi
et al., 2012).

Secondly, Mathias et al. have shown that the removal of water
from the centre of the lens across the extracellular diffusion
barrier, through an intercellular outflow pathway thought to be
mediated by gap junction channels, generates a substantial
hydrostatic pressure gradient, which ranges from 0 mmHg in
the periphery to 335 mmHg in the lens centre in all lenses studied
to date (Gao et al., 2013; Gao et al., 2011). This lens pressure
gradient is maintained through a dual feedback system that
utilizes the mechanosensitive Transient Receptor Potential
Vanilloid channels, TRPV1 and TRPV4, to sense changes in
pressure at the surface of the lens (Gao et al., 2015). TRPV1 and
TRPV4 channels sense decreases and increases, respectively, in
lens pressure and utilize distinct signalling pathways to modulate
Na+ pump (Gao et al., 2015) and NKCC1 (Shahidullah et al.,
2018) activity to ensure that a constant hydrostatic pressure and
therefore water content is maintained (Figure 2). Altering the
tension applied to the mouse lens via the zonules, through
pharmacological modulation of ciliary muscle contractility,
alters lens surface pressure and this change in pressure is
mediated by TRPV1 and TRPV4 channels (Chen et al., 2019).
This finding suggests that the hydrostatic pressure gradient, and
therefore steady state water transport, in the non-accommodating
mouse lens can be altered by contraction of the ciliary muscle.

In this scheme, the active transport of Na+ drives a directed
isotonic flow of fluid through the lens. Near isotonic fluid flow, in
turn, requires a high membrane permeability to water that is known
to be mediated by the aquaporin family of water channels (Knepper,
1994; Verkman et al., 1996). However, what is not known is how
different lens AQPs, which exhibit distinctly different functional
properties, regulation mechanisms, and expression patterns,

FIGURE 1 | 3D representation of the microcirculation model showing ion
and fluid fluxes that enter the lens at both poles via the extracellular space
(Influx), before crossing fiber cell membranes and exiting via an intercellular
outflow pathway mediated by gap junctions, that directs the fluxes to the
equatorial efflux zone where they exit the lens. Adapted from Shi et al., 2009.
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contribute to the generation of the microcirculation system. To
address this knowledge gap we first discuss general properties and
functions of AQPs before comparing the expression patterns of three
lens AQPs and their modified forms. Finally, we detail lens AQP
functional properties and how these properties are regulated in order
to develop a working model on how the different AQP isoforms
contribute to the generation of the lens microcirculation system
which is so central to the maintenance of lens homeostasis.

AQUAPORIN STRUCTURE AND FUNCTION

Aquaporins are a class of transmembrane proteins that function as
water channels. These water channels exist in 13 known isoforms

(AQP0-AQP12) in mammals and act to move water bidirectionally
across biological membranes through osmotically driven passive
diffusion (Ishibashi et al., 2011; Rojek et al., 2008). Clearly, water
transport is an essential cellular function as evidenced by the wide
and diverse tissue-specific expression of aquaporins. For example,
AQPs showwide-ranging distribution throughout tissues such as the
eye, brain, kidney, liver, and heart with varying physiological
functions in each tissue (Azad et al., 2021). Aquaporin isoforms
display many structural similarities including six transmembrane
domains and two conserved asparagine-proline-alanine (NPA)
motifs that are associated with water transport (Maurel et al.,
2015) (Figure 3). However, there is a subfamily of aquaporins,
coined the superaquaporins, that show sequence deviation from the
greater family, particularly in the NPA motif (Ishibashi et al., 2014).
Early crystallographic studies confirmed previous reports that
physiologically, aquaporins adopt a tetrameric structure (Mitra
et al., 1994; Daniels et al., 1999). Recent native mass
spectrometry results have confirmed this tetrameric structure of
AQP0 in solution (Harvey et al., 2022).

The water permeability rate varies between aquaporin
isoforms; for instance, AQP0 water permeability is
approximately 20-fold lower than AQP1 and AQP5 (Chandy
et al., 1997; Yang and Verkman, 1997). In addition to
transporting water, some aquaporins can transport other
molecules such as glycerol (AQPs 3, 7, 9, and 10), ammonia
(AQPs 3, 7, 8 and 9), urea (AQPs 7, 9 and possibly 3), and
hydrogen peroxide (AQPs 0, 1, 3, 5, 8 and 9) (Bienert et al., 2008;
Litman et al., 2009; Ishibashi et al., 2014; Varadaraj and Kumari,
2020). Aquaporins may play other roles in addition to their roles
as membrane channels. For example, AQP0 has also been shown
to possess cell adhesive properties that are critical to establishing
lens transparency and that may be involved in the development
the refractive index gradient, that is a key aspect of the refractive
properties of the lens (Kumari and Varadaraj, 2009).

FIGURE2 | The dual-feedback control system that maintains hydrostatic pressure in the lens. Lens surface pressure (pset) is maintained by the competing activities
of the two arms of a dual-feedback system that regulate ion transporters that control the intracellular osmolarity of cells at the lens surface. Increases in pressure (Dpi),
hypoosmotic stress, increased zonular tension, or the TRPV4 agonist GSK1016790A (GSK), all work via TRPV4 to activate a signaling pathway that involves the release
of ATP via hemichannel, the subsequent activation of purinergic P2Y receptors, and the Src family of protein tyrosine kinases (SFK) to increase the activity of the
Na+/K- ATPase and decrease lens pressure. Decreases in pressure (Dpi), hyperosmotic stress, decreased zonular tension or the TRPV1 agonist capsaicin all work via
TRPV1 to activate the extracellular signal-regulated kinase 1/2 (ERK1/2), phosphatidylinositol 3-kinase (PI3K/Akt) and the WNK (Kinase with no lysine (K)), and SPAK
(Ste20-related proline-alanine-rich kinase)/OSR1(oxidative stress-responsive kinase-1) signaling pathway to directly activate the sodium potassium dichloride
cotransporter (NKCC) and to eventually reduce the decrease in the activity of the Na+/K- ATPase to effect an increase in surface pressure. This scheme is based on
earlier model (Gao et al., 2015; Shahidullah et al., 2018). The figure and figure caption are reused with no special permission under an open access Creative CommonCC
BY license published by MDPI from (Nakazawa et al., 2021).

FIGURE 3 | Schematic diagram of generic AQP structure showing NPA
sequence motifs and regions of post-translational modification (stars) and
protein interactions (pink). Created with BioRender.com.
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AQUAPORINS IN THE LENS

Five aquaporins have been reported in the lens (AQP0, AQP1,
AQP5, AQP7, AQP8) with each protein displaying unique
localization and abundance patterns, discussed in detail below
(Figure 4A). Since the rate of movement of water across cell
membranes, given by the membrane permeability to water
(PH2O), is enhanced by the presence of AQPs in cell
membranes, we can expect that differences in AQP expression,
subcellular distribution, lipid and protein interactions, and
function will all contribute to the directed movement of water
into and out of the lens. In addition, other AQP properties, such
as cell adhesion, could also be important in establishing the lens
MCS and will be discussed below. There are few reports on
lenticular AQP7 and AQP8 expression and both appear to be
expressed exclusively in lens epithelial cells (Tran et al., 2013;
Hayashi et al., 2017; Varadaraj and Kumari, 2020). Although
AQP8 is a known peroxiporin (Bienert et al., 2008), the specific
function of AQP7 and AQP8 in the lens has yet to be determined.
Thus, our discussion will focus on AQPs 0, 1, and 5.

Epithelial Cell Aquaporin-1
AQP1 expression is specific to lens epithelial cells and lenses of
AQP1-null mice showed opacification and a change in water
content demonstrating the role of AQP1 in lens transparency
(Ruiz-Ederra and Verkman, 2006). Deletion of AQP1 in the lens
epithelium resulted in a threefold reduction of the epithelial water
permeability of AQP1 knockout mice lenses (Ruiz-Ederra and
Verkman, 2006). The same study reported acceleration of lens
opacities in AQP1 knockout lenses organ cultured in vitro in high
glucose. Recently, it has been reported (Lo et al., 2020) that AQP1
expression in two distinct epithelial regions changes as a function
of lens development and growth in mice. In younger lenses (P3-
P9) AQP1 expression was located in the central lens epithelium.
In contrast, in older lenses, AQP1 expression was increased in the
equatorial epithelium and remained in a small area of the central
epithelium thereby corresponding to the twomajor sites for water
influx and efflux. Thus, it appears that lens epithelial AQP1 is
required to promote water influx and efflux across the epithelium,
a function that is necessary to maintain lens transparency,
especially following exposure to stress conditions such as
hyperglycemia and osmotic imbalance.

Fiber Cell Aquaporin-0
AQP0 is the most abundant integral membrane protein in the lens
making up roughly 50% of the lens membrane proteome (Fitzgerald
et al., 1983). AQP0 plays critically important roles in maintaining
lens transparency as evidenced by knockout of AQP0 in mouse and
mutations of AQP0 in humans leading to congenital cataracts (Berry
et al., 2000; Francis et al., 2000; Al-Ghoul et al., 2003; Zeng et al.,
2013; Yu et al., 2014), with many of these AQP0 mutations resulting
in cataract formation through the development of defects in plasma
membrane trafficking (Shiels and Bassnett, 1996; Varadaraj et al.,
2008). AQP0 is distributed in both the cortical and nuclear fiber cells
where it performs specific regional functions. In the lens cortex, it
functions primarily as a water channel and plays a critical role in
sustaining the lens microcirculation system. Deeper in the lens core,

AQP0’s main function shifts to one of junction formation and cell
adhesion (Gonen et al., 2004; Kumari and Varadaraj, 2009). These
cell adhesion properties of AQP0 are a result of both AQP0-AQP0
interactions (Gonen et al., 2004) andAQP0-apposing cell membrane
(lipid) interactions (Costello et al., 1989; Zampighi et al., 1989;
Michea et al., 1994; Kumari et al., 2013), and likely play a role in
suture formation (Al-Ghoul et al., 2003). Given that AQP0 has been
demonstrated to possess multiple functions including acting as a
rather poor water channel (Varadaraj et al., 1999), an adhesion
molecule (Kumari and Varadaraj, 2009), and a structural protein
linking the plasma membrane to the cytoskeleton (Lindsey Rose
et al., 2006; Nakazawa et al., 2011; Wang and Schey, 2011), it is not
surprising that the loss of functional AQP0 produces deleterious
effects on lens development, suture formation (Al-Ghoul et al., 2003)
and overall lens homeostasis. Consistent with this view the
replacement of AQP0 with another aquaporin water channel
(AQP1) without these additional adhesive and structural
functions does not fully rescue the cataract phenotype (Varadaraj
et al., 2010; Clemens et al., 2013).

Epithelial and Fiber Cell Aquaporin-5
A RT-PCR study reported that an AQP5 transcript was expressed
at low levels (compared to other lens aquaporin isoforms) in the
rat lens (Patil et al., 1997). Subsequent proteomic studies byWang
et al. (2008), and Bassnett et al. (2009), confirmed AQP5 protein
expression in the lens. Proteomic studies also showed that AQP5
distribution spans the epithelial, cortical and fiber cell regions of
the lens and that the subcellular localization pattern of AQP5
varies depending on the lens region (Wang et al., 2008; Bassnett
et al., 2009; Grey et al., 2013). Specifically, AQP5, in contrast to
AQP0, does not immediately insert into the membranes of
differentiating lens fiber cells (Petrova et al., 2015).
Importantly, lens vesicles show increased water permeability
when AQP5 is present in their membranes (Petrova et al.,
2018). This result suggests that water permeability changes
from the outer cortex to the inner cortex. Further, when
combined with evidence of AQP5 trafficking in response to
zonular tension (Petrova et al., 2020), these results suggest that
AQP5 can dynamically regulate lens fiber cell water permeability,
at least in the outer cortex of the lens. Recently, AQP5, as well as
AQP0 and AQP1, have been shown to function as peroxiporins
that are permeable to hydrogen peroxide (Varadaraj and Kumari,
2020). The fact that AQP5 knockout animals are cataractous
(Tang et al., 2021), and are susceptible to osmotic stress-induced
cataract (Sindhu Kumari and Varadaraj, 2013), suggests that
control of AQP5 permeability is important in regulating fiber
cell volume and water homeostasis.

MULTIPLE MECHANISMS REGULATE
LENS AQUAPORIN FUNCTION

As fiber cells differentiate from lens epithelial cells at the lens
equator, we expect normal differentiation-related processes, such
as protein synthesis/degradation, protein trafficking and post-
translational modification, to govern protein expression and
function. However, fully mature lens fiber cells are organelle-
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free and therefore lack the ability to synthesize new protein
(Bassnett and Costello, 2017). Thus, regulation of protein
function in mature fiber cells is accomplished by post-
translational modifications, protein-protein interactions, or by
changes in the local environment (Schmid and Hugel, 2020).
Layered on top of these regulatory processes is a set of additional
changes that occur to lens AQPs as we age. Because the lens
continues to grow throughout life, an age gradient is established
where the oldest cells are found in the lens core and the youngest
cells are found in the outer cortex. Accumulation of age-related
lens protein modifications have been studied for multiple decades
(Takemoto and Takehana, 1986; Garland et al., 1996; Lampi et al.,
1998; Ueda et al., 2002; Schey et al., 2020). Interestingly,
modifications, as well as protein interactions and lipid
environment, change throughout the lens suggesting that the
functionality and regulation of lens AQPs also changes as a
function of their location (i.e., age) in the lens. Such age-
related changes could lead to changes in the local properties of
AQPs that may contribute to the development of age-related
cataract. In the next two sections we first highlight mechanisms
known to regulate lens AQP functionality before discussing how
age-related changes can alter this regulation in different areas of
the lens.

Mechanisms That Regulate Lens Aquaporin
Function
The following mechanisms have been shown to alter AQP
function and their potential roles in lens AQP regulation are
discussed:

Phosphorylation: Reversible protein phosphorylation is one of
the most common posttranslational modifications and provides
dynamic posttranslational control of protein function (Hardie,
1989). In lens fiber cells, both AQP0 and AQP5 are
phosphorylated (Ball et al., 2004; Kumari et al., 2012; Schey
et al., 2000; Wang et al., 2013), hence phosphorylation may
play important roles in regulating AQP water permeability,
membrane trafficking, and/or cell-cell adhesion. Three AQP0
phosphorylation sites (S229, S231, and S235) were identified in
the short amphipathic helix (Leu227-Gly237) located in the
AQP0 C-terminus (Ball et al., 2004; Schey et al., 2000)
(Figure 3). S235 is the major phosphorylation site and
phosphorylation at S229 and S231 are present at significantly
lower stoichiometries (Gutierrez et al., 2011). AQP0 PH2O is
known to be reduced by calmodulin (CaM) binding and the
interaction of CaM through binding to the short amphiphilic
helix region (Leu227-Gly237) of AQP0 is reduced upon
phosphorylation (Girsch and Peracchia, 1991; Rose et al.,
2008). Phosphorylation, especially at S235, severely impaired
CaM-AQP0 interaction (Reichow and Gonen, 2008; Rose
et al., 2008), therefore, phosphorylation of AQP0 to impede
CaM binding would be expected to increase AQP0 PH2O.
Fields et al. (2017) reported a second site of contact between
AQP0 and CaM in the arginine-rich intracellular loop (ICL2,
Figure 3) where CaM allosterically controls the dynamics and
configuration of the pore opening. Thus, phosphorylation not
only regulates AQP0 permeability by modulating CaM-AQP0

interactions but also through allosteric mechanisms that directly
alter AQP0 PH2O. Quantification of AQP0 phosphorylation in the
different regions of the lens showed that phosphorylation,
especially phosphorylation on the major phosphorylation site
S235, is spatially regulated (Ball et al., 2004; Gutierrez et al., 2016).
Specifically, phosphorylation levels on S235 are low in the outer
cortex and peak in the inner cortex region before decreasing in
the lens core (Ball et al., 2004; Gutierrez et al., 2016). Therefore,
AQP0 S235 phosphorylation could play an important role for
establishing the lens microcirculation system by restricting PH2O

in the outer cortex and by increasing permeability in the inner
cortex through to the lens core.

In AQP5, two consensus PKA sites are found: S156 in ICL2 in
Figure 3 (aa 153–157) and T259 in the C-terminus. While
phosphorylation of T259 has been confirmed in lens fiber
cells, a quantitative assessment of AQP5 phosphorylation
through the lens has not been done. Phosphorylation of S156
has not been detected in the lens despite phosphopeptide
enrichment and global phosphoproteomic analysis (Wang
et al., 2013). In addition to regulating the inherent PH2O of
AQP water channels, phosphorylation has also been shown to
dynamically modulate AQP trafficking (van Balkom et al., 2002;
Nesverova and Tornroth-Horsefield, 2019) and alter the
abundance of water channels in the membrane and therefore
PH2O (discussed below). The classic example is the
phosphorylation of the AQP2 C-terminal residue S256 that
promotes the trafficking of AQP2 to the apical membrane of
epithelial cells that line the cortical collecting duct of the kidney
(van Balkom et al., 2002). In this regard it is interesting to note
that T259 in AQP5 is a site that is considered homologous to S256
in AQP2. In non-lens cells, AQP5 trafficking to the plasma
membrane has been shown to be both dependent (Yang et al.,
2003; Kumari et al., 2012) and independent (Hasegawa et al.,
2011) of phosphorylation status. In short, the phosphorylation
status of lens cytoplasmic and membrane AQP5 remains an
unanswered question.

Membrane Trafficking: As mentioned above,
phosphorylation-dependent trafficking to and from the
membrane may be a way to modulate PH2O of fiber cell
membranes, however it needs to be remembered that fiber
cells are essentially elongated epithelial cells that retain their
distinct apical and basal membrane domains but have
dramatically elongated lateral membranes (Figure 4B). To
achieve an orderly packing that minimizes extracellular space,
fiber cells adopt a hexagonal cross-sectional shape and lateral
membranes are further subdivided into distinct broad and narrow
side membrane domains (Figure 4C) (Zampighi et al., 2000). The
apical domains of elongating fiber cells meet at the anterior pole
and the basal domains at the posterior pole (Kuszak et al., 2004)
to form the lens sutures, which create extracellular pathways
linking the central core of the lens to the surrounding humours
that supply the lens with nutrients. Hence the trafficking of AQP0
and AQP5 to these distinct membrane domains appears to be
differentially regulated. Immunofluorescence studies revealed
that AQP0 phosphorylation (S235) was needed for trafficking
to the plasmamembrane and that based on PKC inhibitor studies,
PKC was associated with its trafficking (Golestaneh et al., 2008).
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However, AQP0 appears to immediately traffic to the plasma
membrane upon synthesis in the earliest differentiating fiber cells.
Interestingly, proper trafficking and localization of AQP0 may be
dependent on Eph-Ephrin signaling (Cheng et al., 2021).

In contrast, AQP5, a close homologue of AQP2, appears to
traffic by a different mechanism from that of AQP0 (Gletten
et al., 2022). AQP5 displays a cell-dependent localization pattern
where it is predominantly found in the cytoplasm of
differentiating fiber cells and in the plasma membrane of
mature fiber cells (Grey et al., 2013; Petrova et al., 2015;
Gletten et al., 2022). Within individual fiber cells of the same
lens region, differences in the trafficking of AQP5 to the apical
and basal membrane tips of fiber cells, corresponding to the
anterior and posterior sutures, was observed (Petrova et al.,
2020). In contrast to AQP0, AQP5 displays a clear change in
subcellular localization upon alteration of zonular tension
suggesting it may help the lens adapt under conditions of
stress (Petrova et al., 2020). Pharmacological interventions
with TRP channel activators/inhibitors suggest that mechano-
sensing TRP channels can regulate AQP5 localization in the
equatorial efflux and anterior influx zones of the rat lens (Petrova
et al., 2020). Importantly, fiber cell membrane permeability
correlates with the amount of plasma membrane AQP5
present (Petrova et al., 2018). Whether these dynamic changes
in AQP5 membrane localization are associated with changes in
the phosphorylation of AQP5, as has been determined for its
close homolog AQP2 in the collecting ducts of the kidney (Jung
and Kwon, 2016; Moeller et al., 2016), remains to be determined.

Protein Interactions: Multiple proteins have been reported to
interact with AQP0 and such interactions occur most often
through the AQP0 C-terminus (Figure 3). As mentioned
above, AQP0 water permeability is regulated by interaction
with CaM through the amphiphilic helix (Girsch and
Peracchia, 1991; Lindsey Rose et al., 2006) and positively
charged arginine-rich loop (Fields et al., 2017). In addition,
proteins that interact with AQP0, for example, filensin, also

undergo modifications and change subcellular localization.
Therefore, protein-protein interactions are expected to be
highly spatially controlled in lens fiber cells, and thus it is
important to consider where in the lens these interactions
occur as well as their potential effects on PH2O in those
specific regions of the lens.

AQP0 associates with gap junction plaques in a narrow zone of
the lens bow region and this interaction may facilitate the assembly
of Cx50 into nascent gap junction plaques during the early stages of
embryonic lens development (Yu and Jiang, 2004). The AQP0-
Cx50 interaction enhances the formation of functional gap
junction channels (Liu et al., 2011) predicted to be important in
establishing the outflow pathway of the MCS. This interaction
occurs via the C-terminus of AQP0 and the intracellular loop
region of Cx50 (Liu et al., 2011) and is abolished with age-related
truncation of both proteins (Wenke et al., 2015; Slavi et al., 2016).
Multiple cytoskeletal proteins have been reported to interact with
AQP0 through its C-terminal tail including filensin (Wang and
Schey, 2017), CP49 (Lindsey Rose et al., 2006) and ezrin (Wang
and Schey, 2011). Importantly, the AQP0-filensin interaction can
affect AQP0 water permeability (Nakazawa et al., 2011). The
AQP0-filensin interaction is another example of spatially
regulated protein-protein interactions in the lens since regional
(age-related) truncation of filensin occurs (Sandilands et al., 1995;
Wang et al., 2010). Spatially resolved proteomic analysis indicated
ezrin and radixin are among the very few proteins that increase
membrane association together with increasing AQP0 expression
and formation of extracellular diffusion barrier in the inner cortex
of the bovine lenses (Wang et al., 2021). Ezrin is one of the
components of the ezrin, periplakin, periaxin, desmoyokin
(EPPD) adherens complex (Straub et al., 2003). Together with
increasing ezrin membrane association, periplakin and
desmoyokin abundances decreased significantly. It is reasonable
to predict that ezrin is released with the decomposition of EPPD
complexes and reused by the fiber cells to regulate AQP0
membrane redistribution (Wang et al., 2021).

FIGURE 4 |Distribution of lens AQPs. (A) Axial cross section showing how the spatial differences in the distribution of AQP1 in the anterior epithelium, full length and
cleaved AQP0 (left hemisphere) and cytoplasmic and membraneous AQP5 (right hemisphere). Note that AQP7 and APQ8 are expressed in lens epithelium and are not
depicted. (B) Schematic of an isolated fiber cell depicting the apical and basal tips that form the anterior and posterior sutures, respectively, and the greatly elongated
lateral membranes. Along a fiber cell the distributions of AQP0 and AQP5 in these distinct membrane domains varies as a function of fiber cell differentiation. (C) 3D
volume rendered image taken from an equatorial section through the lens that has been labelled with the membrane marker WGA showing the narrow and broad side
membrane domains where AQP0 and AQP5 are differentially localized.
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Studies of proteins that interact with AQP5 in the lens are
limited, however, in other tissues, AQP5 function can be
regulated by protein-protein interactions (Ohashi et al., 2008;
Chivasso et al., 2021a). For example, the AQP5 C-terminus was
found to interact with prolactin-inducible protein (PIP) in
control mice (Jcl:ICR, CLEA Japan), but interact with major
urinary protein 4 in non-obese diabetic (NOD) mice (model for
Sjögren’s syndrome) (Ohashi et al., 2008). The PIP-AQP5
interaction plays an important role in controlling AQP5
localization in human salivary glands (Chivasso et al., 2021b).
AQP5/ezrin interaction in salivary glands was also reported and
this interaction could be involved in the regulation of AQP5
trafficking and may contribute to AQP5-altered localization in
Sjögren’s syndrome patients (Chivasso et al., 2021b). Since ezrin
is abundant in lens fiber cells, it will be interesting to study if
AQP5 also interacts with ezrin and where in the lens such an
interaction occurs.

Lipid Interactions: Intrinsic membrane proteins are
embedded in a biological membrane where lipids dynamically
interact with them and can affect their function as well as
structural properties such as folding, packing and stability
(Lee, 2004). Similar to other cell types, we have shown that
lens fiber cell proteins exist in lipid rafts or non-raft
environments (Wang and Schey, 2015). Others have
demonstrated that different lipids can affect AQP stability
(Laganowsky et al., 2014) and permeability (Tong et al., 2013).
Although lipid changes with fiber cell age have been reported
(Borchman and Yappert, 2010; Hughes et al., 2012), how different
lens lipids interact with lens aquaporins in specific lens regions to
regulate their function in the context of the lens microcirculatory
system requires further exploration.

Effects of Age-Dependent Modifications on
Lens Aquaporin Function
Numerous studies of age-related modifications to lens proteins
reveal extensive age-related modifications to AQPs including
truncation (Takemoto and Takehana, 1986; Schey et al., 2000;
Ball et al., 2004; Gutierrez et al., 2011), deamidation (Ball et al.,
2004; Wenke et al., 2015), and crosslinking (Friedrich et al., 2019;
Wang et al., 2019). How these age-dependent modifications affect
AQP regulation and function in the different regions of lens and
therefore overall lens function remains unknown. The following
age-related modifications have been identified.

Truncation: Non-enzymatic truncation is a prevalent age-
related modification observed for most of the abundantly
expressed lens proteins, including AQP0 (Schey et al., 2000)
and AQP5 (Schey, unpublished results). Given the importance
of the AQP C-terminal tail in regulating permeability and in
AQP-protein interactions, loss of this portion of the protein
through the aging process is expected to have a significant
impact on both permeability and the ability to regulate water
movement.

AQP0 undergoes extensive C-terminal truncation with two
major truncation sites at Asn 246 and Asn 259 (Takemoto and
Takehana, 1986; Schey et al., 2000; Ball et al., 2004; Gutierrez
et al., 2011). Truncation increases steadily with fiber cell age from

the lens cortex to the lens nucleus, and plateaus in regions of lens
nucleus (Gutierrez et al., 2011; Wenke et al., 2015) such that 50%
of AQP0 is truncated at a fiber cell age of around 25 years
(Gutierrez et al., 2011). Considering the extensive truncation
of AQP0 observed in older, but still transparent lenses, truncation
is most likely a normal age-related event and not necessarily
cataractogenic. However, when the rates and sites of truncation
change, AQP0 truncation could be detrimental to the lens
function. For example, accelerated AQP0 C-terminal
truncation can be detected in hyperbaric oxygen treated
guinea pig lenses, a model for nuclear cataract development
(Giblin et al., 2021). Cleavage of the AQP0 C-terminus has
been reported to enhance the adhesive properties of the
extracellular surface of AQP0 and promote the formation of
AQP0-AQP0 junctions (Gonen et al., 2004). The cleaved form of
AQP0 was predicted to have a lower water permeability than
intact AQP0; however, when truncated AQP0 proteins were
expressed in oocytes (Ball et al., 2004; Kumari and Varadaraj,
2014 #80), no difference in water permeability or cell-cell
adhesion was found compared to full length AQP0. This
finding led Kumari and Varadaraj (2014) to predict that
AQP0 truncation may play a role in adjusting the refractive
index to prevent spherical aberration in the constantly growing
lens. Since the AQP0 C-terminus is the region of AQP0 that
interacts with multiple cytoskeletal proteins (Lindsey Rose et al.,
2006; Wang and Schey, 2011;Wang and Schey, 2017), C-terminal
truncation is expected to impair such interactions. As suggested
above, AQP0 and cytoskeletal protein interaction could be
localized in very specific regions of the lens and truncation of
AQP0 could then play a regulatory role for AQP0 C-terminal
involved protein-protein interactions.

Consistent with western blot results, AQP5 undergoes only
minor C-terminal truncation in the lens core (Grey et al., 2013;
Petrova et al., 2015). Using highly sensitive mass spectrometry
techniques, some truncation of AQP5 at residues F199, T264,
D248, D246 and E244 in the human lens core can be detected
(Schey, unpublished data). The functional consequences of AQP5
truncation have not been studied, but loss of the major AQP5
phosphorylation site (T259) is expected to have functional
consequences in regard to protein interactions.

Deamidation: One of the most abundant age-related
modifications in human lenses is deamidation (Kim et al.,
2002; Lampi et al., 2006; Takata et al., 2008) and AQP0 is
known to undergo extensive deamidation (Schey et al., 2000;
Ball et al., 2004) even in lenses as young as 4 months old (Wenke
et al., 2015). The functional consequences of AQP0 C-terminal
deamidation remain to be determined, however, considering
deamidation occurs in the region where AQP0 interacts with
several cytoskeletal proteins (Lindsey Rose et al., 2006; Wang and
Schey, 2011;Wang and Schey, 2017), this modification could alter
AQP0 function in different regions of the lens. Furthermore, most
AQP0 deamidation occurs on the C-terminus; however,
deamidation was also detected on Asn115 in the second
extracellular loop, Gln129 in a transmembrane domain and
Asn197 and Asn200 in the third extracellular loop (Schey,
unpublished data). The extracellular loops of AQP0 are
important in regulating AQP0 cell adhesion function (Gonen
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et al., 2004; Kumari et al., 2019); therefore, extracellular loop
deamidation could affect AQP0 cell adhesion function.

Crosslinking: It has been widely recognized that lens protein
crosslinking and loss of solubility contribute to the development of
age-related lens opacity (Dilley and Pirie, 1974). Recently, with the
development of high-resolution mass spectrometry as well as
improvements in crosslinked peptide searching algorithms,
direct analysis of residues involved in crosslinking has become
possible. Five distinct crosslinking mechanisms have been
elucidated in aged lens fiber cells (Wang et al., 2014; Friedrich
et al., 2018; Friedrich et al., 2019; Wang et al., 2019) and AQP0,
given its high abundance, is among the proteins that are frequently
crosslinked. The regions of AQP0 involved in crosslinking include
the N-terminal amino group, Lys228 and C-terminal Asn or Asp
residues. Some AQP0 crosslinks can be detected in the lens nucleus
in lenses as young as 20 years old (Friedrich et al., 2019;Wang et al.,
2019). AQP0 is frequently detected to be crosslinked with itself,
presumably forming crosslinks within a single AQP0 tetramer. In
addition, AQP0 crosslinked with γS crystallin has been detected
(Wang et al., 2019). The functional consequence of AQP0
crosslinking has not been studied; however, Lys228 is within the
amphiphilic helix where CaM binds with AQP0 (Girsch and
Peracchia, 1991; Rose et al., 2008; Fields et al., 2017). Thus,
crosslinking of AQP0 is expected to change interaction with
CaM and may directly affect AQP0 permeability.

REGIONAL CHANGES IN AQUAPORIN
STRUCTURE AND FUNCTION
CONTRIBUTE TO LENS WATER
TRANSPORT: AN UPDATED MODEL

Experimental confirmation of the existence of water fluxes
(Mathias et al., 1997; Mathias et al., 2007; Donaldson et al.,
2010; Gao et al., 2011; Candia et al., 2012; Vaghefi et al., 2012)
along with evidence of their dynamic regulation (Gao et al., 2015)
led to the development of an initial model of how regional
differences in lens aquaporin expression, localization, and
regulation combine to produce regional differences in fiber cell
PH2O that facilitate the outflow and efflux of water from the lens
driven by the local osmotic gradients generated by the ion fluxes
that drive the MCS (Schey et al., 2017). However, this model was
based solely on regional differences in lens AQP functionality and
did not consider that fiber cells within a specific lens region also
exhibit differences in the distribution of AQP0 and AQP5 that
occur in the different membrane domains observed along the
length of individual fiber cells (Figure 4B) (Zampighi et al., 2002;
Grey et al., 2009; Petrova et al., 2020). Thus, AQP channels in the
anterior and posterior tips of fiber cells located at the anterior and
posterior poles of the lens will mediate water influx, while in the
same cell, water flow across the lateral membranes will be directed
out of the lens via an intracellular pathway mediated by gap
junctions where at the lens surface AQP channels mediate the
efflux of water from the lens. In this section, we now present an
updated model of regional differences in AQP functionality
which includes recently acquired data (Petrova et al., 2020)

that suggest differences in localization and regulation of AQP5
in the anterior and posterior sutures differentially modulates the
influx of water at the anterior and posterior poles. While this
model attempts to show how regional differences in the molecular
and cellular structure and function of lens AQPs contributes to
overall function of the lens at the whole tissue level, like all models
it is at best an approximation of the real situation and will require
further experimental validation.

In this updated model (Figure 5), AQP1 is a constitutively
active water channel exclusively localized to lens epithelial cells,
where it mediates water influx and efflux in the central and
equatorial regions of the lens, respectively. In contrast, fiber cell
PH2O is dependent on both AQP0 and AQP5, which undergo
distinctly different differentiation-dependent changes in their
subcellular location and post-translational modification which
by altering local PH2O contribute to the overall magnitude and
directionality of water fluxes that circulate through the lens. Based
on our current understanding of these changes to AQP0 and
AQP5 expression we propose that full length AQP0 provides a
basal level of water permeability in the outer lens cortex and this
permeability can be altered by AQP0 phosphorylation/calmodulin
binding (Lindsey Rose et al., 2006; Fields et al., 2017). In this outer
region of the lens, AQP5 appears to operate as a regulated water
channel, where its membrane location, and hence contribution to
fiber cell PH2O, can be modulated by either mechanically or
pharmacologically altering zonular tension via a process that is
mediated by TRP channels (Petrova et al., 2018; Petrova et al.,
2020). In the lens inner cortex, AQP0 forms cell-cell junctions,
either AQP0-AQP0 junctions or AQP0-plasma membrane
junctions (Zampighi et al., 1989; Gonen et al., 2004), that may
enable the formation of an extracellular diffusion barrier (Grey
et al., 2009). Recent proteomics analysis of the barrier region
indicates that adhesion proteins also play a role in barrier
formation (Wang et al., 2021). A major consequence of this
barrier formation is that delivery of water and nutrients to the
lens core occurs via the lens sutures (Vaghefi and Donaldson,
2018). Further, AQP modifications that reduces the PH2O of the
plasma membrane relative to the PH2O of the gap junctions would
tend to facilitate the cell-to-cell removal of water via the
intracellular outflow pathway mediated by gap junctions. In
this regard it has been shown that AQP0 becomes associated
with the periphery of gap junction plaques in this region (Grey
et al., 2009). In contrast, we have preliminary data for AQP5 that
shows in the inner cortex AQP5 accumulates in plaque-like
structures on the broadsides of fiber cells (unpublished data)
that resemble the gap junction plaques known to form in this
region of the lens (Jacobs et al., 2004). Whether AQP5 also
contributes to the intracellular outflow of water from the core
that is thought to be mediated by gap junctions (Gao et al., 2011)
remains to be determined. In the lens core, extensive age-related
modifications such as truncation of the C-terminus of AQP0 will
change the regulation of AQP0 PH2O permeability by
phosphorylation/calmodulin binding and interaction with
binding partners, while the altered lipid environment in the
lens is predicted to reduce the PH2O of AQP0 based on in vitro
studies (Tong et al., 2013). Since it appears that the majority of
C-terminus of AQP5 is largely intact in the lens core (Grey et al.,
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2013; Petrova et al., 2015), we propose that the bulk of water
transport occurs via full length AQP5 in the core rather than via
truncated AQP0 water channels.

Since the diffusion of water through water channels is
driven by the local osmotic gradient established by ion
transport we will now propose how these observed spatial
differences in AQP0 and AQP5 location and functionality
combine to drive water transport through the lens
(Figure 5). In parallel to ion movement, water enters the
lens at both poles via an extracellular route that is
associated with the sutures (Candia et al., 2012; Vaghefi
et al., 2011). This influx zone spans from the lens surface to
the core of the lens (Figure 5, influx pathway) and crosses the
extracellular diffusion barrier formed in the inner cortex
(Vaghefi and Donaldson, 2018; Vaghefi et al., 2012). Since

in the outer cortical region of this influx zone AQP5 is not
associated with the apical or basal tips of fiber cells (Petrova
et al., 2020), we envisage that water will only enter fiber cells
via AQP0 water channels (Figure 5, anterior influx—outer
cortex). In addition, it is possible water will remain in the
extracellular space between fiber cells as it moves away from
the sutures towards the equatorial regions of the lens before
crossing fiber cell membranes via AQP0 and/or AQP5 channels
located in the lateral membranes of fiber cells. In the inner
cortex the restriction of extracellular space would reduce this
lateral extracellular movement of water away from the sutural
influx zone and direct water flow towards the lens core. In this
inner cortical region movement of water from the suture into
the fiber cells via AQP5 can be dynamically modulated by
changes in zonular tension in the anterior (Figure 5, anterior

FIGURE 5 | Cellular and regional differences in AQP expression that contribute to the water influx, outflow and efflux in the lens. Apical and basal tips from adjacent
fiber cells interact to form the anterior and posterior sutures, respectively, that function as an extracellular influx pathway that directs ions and water into the lens and
traverses the lens extracellular diffusion barrier to deliver water to the lens core. The fiber cell tips of both sutures contain AQP0, but only the apical tips of fiber cells in inner
cortex that form the anterior suture contain AQP5. In the inner cortex of this anterior influx zone changes in zonular tension dynamically regulate the trafficking of
AQP5 to the apical tips of fiber cells to modulate the flow of water from the anterior suture into fiber cells in this region. In the lens core we propose that water uptake is
mediated mainly by AQP5 rather than truncated AQP0. Once delivered to the lens core water flows out towards the equatorial surface for the lens via an intracellular
pathway mediated by gap junctions. In the inner cortical region of this outflow pathway we propose that the PH2O of fiber cells is reduced relative to the PH2O of gap
junctions to facilitate the cell-to-cell movement of water. This reduction in plasma membrane PH2O is facilitated in part by recruitment of AQP0 to junctional structures
that restrict the extracellular space and AQP5 to plaque like structures on the broad sides of fiber cells that have a similar distribution to gap junction plaques. Once water
reaches the lens periphery it can efflux the lens via AQP1 and AQP5 in epithelial cells and AQP5 and AQP0 in differentiating fiber cells located at the lens equator. In this
efflux zone PH2O can also be dynamically regulated by changes in AQP5 membrane trafficking in response to changes in zonular tension.
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influx–inner cortex), but not the posterior sutural influx zone
(Petrova et al., 2020). We speculate that this ability to
differentially change water influx in this region of the lens
may be a mechanism via which the lens can change the
curvature of its anterior surface and hence the optical
properties of the lens. In the core of the lens the water
delivered to this zone would then be taken up into fiber cells
via both AQP0 and AQP5 (Figure 5, influx/outflow—core),
however as mentioned above, we are currently unsure about the
relative contributions of truncated AQP0 and non-truncated
AQP5 to fiber cell PH2O in this region of the lens.

Once delivered to the central lens, water moves towards the
surface of the lens via an intracellular outflow pathway that
delivers water to an equatorial efflux zone where water leaves
the lens. In this outflow pathway (Figure 5, outflow—inner
cortex) the gradients for water movement are generated by
both the movement of ions through gap junctions and the
hydrostatic pressure gradient generated by the outflow of
water. In this area of the lens we envisage that limiting the
flow of water across fiber cell membranes into the extracellular
space by altering the functionality of AQP0/AQP5 via post-
translational modifications will promote the intracellular
passage of water through gap junction channels. Finally,
once water reaches the equatorial efflux zone it can leave
the lens through AQP1 or AQP5 channels located in
equatorial epithelial cells or by AQP0 or AQP5 channels in
peripheral fiber cells (Figure 5, outflow—equator). Since the
subcellular distribution of AQP5 can be dynamically altered by
mechanically or pharmacologically altering zonular tension
via a process that is mediated by TRP channels (Petrova et al.,
2020), PH2O of fiber cells in the efflux zone can be regulated in
parallel to the ion fluxes that drive the transport of water
throughout the lens. Taken together, it is clear that the
expression level, the subcellular localization, the extent of
modification, the local lipid environment, and the extent of
protein-protein interactions all play roles in the regulation lens
water transport which has been shown to be so critical for the
maintenance of the transparent and refractive properties of the
lens (Donaldson et al., 2017).

LENS WATER TRANSPORT—A NEW
TARGET FOR ANTI-CATARACT DRUG
DISCOVERY
Based on our knowledge that AQP mutations or AQP deletion
leads to cataract formation (Shiels and Bassnett, 1996; Shiels
et al., 2000; Okamura et al., 2003; Tang et al., 2021) and that
AQPs are an integral component of lens water transport, we
propose that age-related modifications to AQP functionality
are involved in cataract formation. Consistent with this view,
glycemic stress in AQP5 knockout mice leads to cataract,
suggesting a protective role of AQP5 under conditions of
stress (Sindhu Kumari and Varadaraj, 2013). Thus, if AQP
age-related modifications and diabetic stress lead to altered
AQP function, then we surmise that age-related opacification
is a possible consequence. It is also conceivable that age-related

changes in water transport could affect lens stiffness and, as
such, AQPs could represent a novel target for presbyopia
treatment.

In other tissues where AQP dysfunction has been linked to
numerous diseases, AQPs have been promoted as therapeutic
drug targets (Verkman et al., 2014; Soveral and Casini, 2017;
Salman et al., 2022). For example, the involvement of AQPs in
cancer initiation, cell migration and tumor angiogenesis, has
made AQPs attractive targets for novel anticancer therapies
(Wang et al., 2015; Elkhider et al., 2020). AQP1 inhibitors have
also been considered as a therapeutic target for the treatment
of intraocular hypertension in glaucoma (Patil et al., 2018).
Thus, therapeutic targeting of aquaporins is an active area of
research (Villandre et al., 2022), including in ocular tissues,
and we can expect continued discoveries of new AQP
modulators. In the context of lens water transport and
cataractogenesis, the lens microcirculation system needs to
be tightly regulated and it is worth considering lens AQPs as a
potential anti-cataract targets (Pierscionek, 2021). In the
search for natural products for cataract treatment,
Heliotropium indicum extract was found to alleviate
selenite-induced cataract and also increase AQP0 levels
(Kyei et al., 2015). Considering the increased water content
in the aged lens nucleus (Siebinga et al., 1991), the
accumulation of water and sodium, and the swelling of fiber
cells in AQP5 deficient lenses under hyperglycemic stress
(Sindhu Kumari and Varadaraj, 2013), therapeutics
designed to increase efflux of water could be used to
alleviate cataractous conditions.

QUESTIONS AND FUTURE DIRECTIONS

There are many features of our working model for lens water
transport that require further investigation. Given the known
effects of post-translational modifications, lipid environment
and expected effects on local water permeability, spatial
definition of these lens properties is necessary to define the
molecular basis of lens water transport. It is important to
recognize that many previous studies have used either
homogenized whole lenses or separation methods with low
spatial resolution (Ball et al., 2004; Gutierrez et al., 2016)
resulting in limited information on spatial regulation of lens
water transport. Furthermore, most spatially-resolved lens
studies have examined equatorial sections (Wenke et al.,
2015; Wang et al., 2021); however, there may be axial
protein differences where expression or modifications occur
along the length of individual fiber cells (Zampighi et al., 2002;
Kuszak et al., 2004). Thus, spatially-resolved methods of
analysis are necessary to increase our understanding of
AQP structure and function in the different regions of the
lens. In addition, as described above, AQP structure and
function can be affected by age. We predict, therefore, that
the combined local effects of protein modification, protein-
protein interactions, lipid environment, and age-related
alterations will affect global lens water transport; a
property that has yet to be measured as a function of age.
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With a better understanding of AQP function as a function of
age, we expect that new directions in the treatment of
presbyopia and cataract will emerge.
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