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Abstract: Eosinophils are innate immune granulocytes actively involved in defensive responses
and in local and systemic inflammatory processes. Beyond these effector roles, eosinophils are
fundamental to maintaining homeostasis in the tissues they reside. Gastrointestinal eosinophils
modulate barrier function and mucosal immunity and promote tissue development through their
direct communication with almost every cellular component. This is possible thanks to the variety
of receptors they express and the bioactive molecules they store and release, including cytotoxic
proteins, cytokines, growth factors, and neuropeptides and neurotrophines. A growing body of
evidence points to the eosinophil as a key neuro-immune player in the regulation of gastrointestinal
function, with potential implications in pathophysiological processes. Eosinophil–neuron interactions
are facilitated by chemotaxis and adhesion molecules, and the mediators released may have excitatory
or inhibitory effects on each cell type, with physiological consequences dependent on the type of
innervation involved. Of special interest are the disorders of the brain–gut interaction (DBGIs),
mainly functional dyspepsia (FD) and irritable bowel syndrome (IBS), in which mucosal eosinophilia
and eosinophil activation have been identified. In this review, we summarize the main roles of
gastrointestinal eosinophils in supporting gut homeostasis and the evidence available on eosinophil–
neuron interactions to bring new insights that support the fundamental role of this neuro-immune
crosstalk in maintaining gut health and contributing to the pathophysiology of DBGIs.

Keywords: intestinal eosinophils; neuro-immune interaction; disorders of brain–gut interaction

1. Introduction

Eosinophils are innate immune granulocytes involved in the defense against parasites
and in the pathogenesis of Th2 immune-mediated disorders [1]. During the last decade,
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the prevailing paradigm indicating that eosinophils act as strictly pro-inflammatory end-
stage effector cells is being progressively replaced by cumulative observations showing that
eosinophils are multifaceted fine-tuned tissue residents that are involved in multiple phases
of the immune response, participate in tissue regeneration, and play a role in homeostasis
maintenance [2–4]. The wide variety of receptors expressed by eosinophils and their ability
to produce and release a myriad of mediators enable them to develop tight and complex
bi-directional communication with almost every tissular component, including epithe-
lial immune cells and neurons (Figure 1), as recently described in the context of asthma
and allergic respiratory inflammation [3,5]. Consequently, resident and newly recruited
eosinophils may respond to specific tissue requirements. This response implicates the regu-
lation of immunoglobulin production, the promotion of both anti- and pro-inflammatory
networks, tissue remodeling and repair, and modulation of epithelial barrier function at
mucosal sites [6–8]. Notably, the gastrointestinal tract harbors the largest number of resident
eosinophils in the body and eosinophilia and eosinophil activation are associated with gut
dysfunction in a variety of inflammatory diseases, such as eosinophilic gastrointestinal diseases
(EGIDs) and inflammatory bowel disease (IBD), and in other non-inflammatory entities, such
as the disorders of brain–gut interaction (DBGIs). Eosinophil plasticity and the capacity to
communicate with the nervous system support additional pathways by which eosinophils
contribute to gut homeostasis but also to disease mechanisms and symptom generation [9,10]
which present potential avenues for therapeutic intervention.
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in the intestinal mucosa, along the surface of the cell membrane. (C) Dual interaction of an eosino-
phil with a plasma cell and a free nerve ending along its cell membrane. Ep, epithelium; L, lympho-
cyte; Eo, eosinophil; BV, blood vessel; PC, plasma cell; NE, nerve ending. Bar: 2 µm. 

In this review, we provide a comprehensive description of the role of eosinophils in 
the gastrointestinal tract, focusing on neuro-immune mechanisms that associate eosino-
phil activity with gut homeostasis and disease. We also summarize current knowledge on 
eosinophil–nerve communication in common DBGIs and support the need for further in-
vestigation of eosinophils as potential therapeutic targets to promote gut health. 

2. Eosinophils in the Gastrointestinal Tract 

Figure 1. Intestinal eosinophils in close proximity to mucosal resident cells. Transmission elec-
tron micrographs of healthy human intestinal mucosa showing interactions of eosinophils with
epithelial cells, nerve endings, and other immune cells. The eosinophil is identified based on mor-
phological characteristics, mainly the cytoplasmic granules with well-defined electron-dense cores
(crystalline cores) and a bilobed nucleus (not always observable under transmission electron mi-
croscopy). (A) Intestinal epithelial cell extending a protrusion to establish direct contact with a
subepithelial eosinophil which is in contact with a lymphocyte. (B) Eosinophil physically interacts
with a plasma cell in the intestinal mucosa, along the surface of the cell membrane. (C) Dual in-
teraction of an eosinophil with a plasma cell and a free nerve ending along its cell membrane. Ep,
epithelium; L, lymphocyte; Eo, eosinophil; BV, blood vessel; PC, plasma cell; NE, nerve ending. Bar: 2 µm.

In this review, we provide a comprehensive description of the role of eosinophils in
the gastrointestinal tract, focusing on neuro-immune mechanisms that associate eosinophil
activity with gut homeostasis and disease. We also summarize current knowledge on
eosinophil–nerve communication in common DBGIs and support the need for further
investigation of eosinophils as potential therapeutic targets to promote gut health.
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2. Eosinophils in the Gastrointestinal Tract

Eosinophils are continuously produced in the bone marrow from pluripotent CD34+
stem cells. Under the control of specific transcription factors (such as ∆dbl-GATA-1,
PU.1, and C/EBP) and in response to IL-5 [11], mature eosinophils are released into the
peripheral circulation and then transferred to target tissues, being the gastrointestinal tract
their main destination with the only exception of the healthy esophagus where the presence
of eosinophils is a histological hallmark of pathology such as in eosinophilic esophagitis
(EoE) [12].

The gastrointestinal tract is constantly exposed to multifactorial pressures (both in-
ternal and environmental) that are ultimately responsible for shaping and diversifying
intestinal eosinophil identity, presumably with differential impacts on gut function and
disease outcomes. Differences in eosinophil morphology, surface phenotypes, and lo-
calization within the gastrointestinal tract have been described both at the macro-level
(small vs. large bowel) as well as at the level of tissue microdomains (crypts vs. villi,
intraepithelial vs. lamina propria). Human data regarding eosinophil sub-populations in the
gastrointestinal tract are scarce, however, and most of the available information regarding
intestinal eosinophil phenotypic diversity has been gained from the study of mouse models
(exhaustively reviewed in [13]).

Intestinal eosinophils can be distinguished from the bone marrow and circulation pools
by the surface receptors they express. Steady-state intestinal eosinophils constitutively
express elevated levels of CD11c, Siglec F (Siglec 8 in humans), and CD11b, resembling
inflammatory eosinophils recruited to the airways in the context of allergic asthma in both
humans and mouse models [14,15]. Recruitment of eosinophils to the intestinal mucosa
is critically dependent on local production of chemoattractants, the most selective one
being the chemokine eotaxin-1 (C-C motif ligand 11, CCL11) constitutively expressed
along the gastrointestinal tract [12], followed by eotaxin-2 (CCL24), eotaxin-3 (CCL26),
RANTES (CCL5), and monocyte chemoattractant protein-3 (MCP-3), which bind to their
C-C chemokine receptors (CCRs) (CCR1, CCR3, and CCR4) [16]. In addition, adhesion
molecules are also involved in intestinal eosinophil recruitment towards the gastrointestinal
tract. While eosinophils expressing the surface receptor integrin α4β7 are preferentially
directed towards the small intestine by mucosal vascular addressin cell adhesion molecule
1 (MadCAM1) [17], the recruitment of eosinophils to the colon seems to be more dependent
on intercellular adhesion molecule 1 (ICAM1) expression [18].

Although there is evidence showing that eosinophils specifically recruited to the
small bowel exhibit particular phenotypic characteristics, such as uniquely prolonged
longevity [19] and compartmentalized morphological heterogeneity [20,21], the functional
significance of these sub-populations of differentially recruited eosinophils remains elusive.
One of the most characteristic features of eosinophils is their possession of cytoplasmic
granules containing stored mediators which equip them to quickly respond to the local
requirements of the tissues in which they reside, enabling them modulate tissue adapt-
ability to environmental changes. Eosinophil granules contain a considerable variety of
preformed biologically active substances (cytotoxic cationic proteins, cytokines, growth
factors, chemokines, neuropeptides, and enzymes) ready for rapid release, and eosinophils
are also able to synthesize de novo different mediators upon eosinophil stimulation (Table 1).
However, it is unknown whether distinct eosinophil sub-phenotypes harboring differential
profiles of surface receptors and granule contents may determine unique specific functions
within particular gut tissue regions or compartments, as has been described for mast cells
(reviewed in [22]).
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Table 1. Eosinophil mediators (modified from [23–25]).

Type of Molecule Class Function Mediator

Cationic Proteins Preformed Host Defense/Barrier
Function Homeostasis ECP, EDN, EPO, MBP

Cytokines and growth factors Preformed and de novo synthesis

Adaptive immunity

Th1: IFN-γ, IL-2, IL-12
Th2: IL-4, IL-5, IL-13, IL-9, IL-25
Th17: IL-17A, IL-17F
Treg: IL-10, TGF-β

Innate immunity GM-CSF, IL-3, IL-4, IL-5, IL-13, SCF
B cell class-switch and plasma
cell maintenance APRIL, IL-4, IL-6

Tissue remodeling and repair TGF-α, TGF-β, IL-1β, IL-13,
PDGF-B, VEGF

Chemokines Preformed and de novo synthesis Recruitment of innate and
adaptive immune cells

CCL3, CCL5, CCL6, CCL7, CCL8,
CCL11, CCL13, CCL17, CCL22,
CXCL9, CXCL10, IL-8

Lipid mediators De novo synthesis Pro-inflammatory LTC4, PAF, PGE, PGF1, TxA2

Resolution inflammation PD1, RvE3

Neuropeptides and neurotrophines Preformed and de novo synthesis Nerve function, survival,
and development CGRP, CRF, NGF, NT-3, SP, VIP

APRIL, A proliferation-inducing ligand; CGRP, Calcitonin gene-related peptide; GM-CSF, Granulocyte
macrophage colony-stimulating factor; CRF, Corticotropin releasing factor; ECP, Eosinophil cationic protein;
EDN, Eosinophil derived neurotoxin; EPO, Eosinophil peroxidase; IL, Interleukin; LTC4, Leukotriene C4; MBP,
Major basic protein; NGF, Nerve growth factor; NT-3, Neurotrophin-3; PAF, Platelet-activating factor; PD1,
Protectin D1; PDGF-B, Platelet-derived growth factor subunit B; PGE, Prostaglandin E; PGF1, Prostaglandin F1;
RvE3, Resolvin E3; SCF, Stem cell factor; SP, Substance P; TGF, Transforming growth factor; TxA2, Thromboxane
A2; VEGF, Vascular endothelial growth factor; VIP, Vasoactive intestinal peptide.

2.1. Eosinophils Regulate the Intestinal Barrier Function

Although the impact of eosinophils on the intestinal epithelium in in vivo human
studies is difficult to decipher, data gained from in vitro and pre-clinical models have
shown a significant influence of eosinophils on mucosal homeostasis (Figure 2).

The intestinal epithelium exerts a broad variety of functions ranging from simply
being a physical barrier to luminal content to directly promoting active defensive immu-
nity, achieved thanks to the existence of bi-directional communication between intestinal
epithelial cells and the whole plethora of mucosal resident immune cells. Eosinophil-
induced promotion of intestinal barrier protection seems to depend on the abundance of
eosinophils, a low eosinophil–epithelial cell ratio being associated with enhanced barrier
integrity [26–28], while a total depletion of intestinal eosinophils is associated with barrier
disruption, as experimentally demonstrated by a high-fat diet treatment [29]. A remarkable
exception to this pattern is the case of the healthy esophagus, where increased eosinophil
numbers in EoE are linked to chronic inflammation and barrier disruption [30]. Notably,
the close proximity of eosinophils and intestinal epithelial cells facilitates the crosstalk
between these two cell types (Figure 1) which may evoke a wide range of effects, ultimately
contributing to maintenance of homeostasis or barrier dysfunction.

The interplay between eosinophils and the airway epithelium has been extensively
studied, and similar interactions may be expected in the intestinal mucosa. Indeed, a large
number of studies have demonstrated that, similar to the airways, intestinal epithelial
cells are potent sources of immune-modulating cytokines, chemokines, and growth factors,
with large effects on eosinophil recruitment, survival, and activation [12,19]. On the other
hand, eosinophils can signal to epithelial cells through the generation of reactive oxygen
species (ROS) and the release of leukotrienes and other granule-stored mediators, thus
augmenting local inflammation and promoting epithelial proliferation [31,32]. In EoE,
eosinophil-derived mediators have been shown to target esophageal epithelial integrity.
More specifically, IL-13 down-regulates the intercellular adhesion molecule desmoglein-1,
but not desmoglein-3, leading to altered epithelial barrier function and the promotion of
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inflammatory responses [33,34]. Eosinophils also modulate the secretion of mucus and
bactericidal substances contributing to the reinforcement of epithelial barrier protection
against infection. In fact, eosinophil-deficient mice show significantly reduced numbers of
mucus-secreting goblet cells in the small bowel [35]. Moreover, supernatants derived from
activated eosinophils increase mucin levels in human airway epithelial cells [36,37], and
blocking the eotaxin receptor with anti-CCR3 monoclonal antibody in a mouse model of
asthma reduces lung eosinophil recruitment and mucus overproduction [38]. Additionally,
eosinophils have the ability to synthesize and rapidly release a web-like complex meshwork
of DNA fibers and granule proteins called eosinophil extracellular traps (EETs) in a ROS-
dependent manner but independently of eosinophil death, creating a second physical
barrier that limits bacterial invasion [39]. However, EETs could also have deleterious effects
on intestinal health due to increased production of mucus secretions [40]. Indeed, EETs have
been associated with respiratory diseases and a number of other inflammation-associated
diseases affecting the skin (atopic dermatitis, urticaria) and the gastrointestinal tract (IBD
and EoE) [40].
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Figure 2. Roles of eosinophils in gastrointestinal homeostasis and disease. The interactions between
eosinophils and other constituents of the intestinal mucosa (nerves, immune cells, endothelium,
stroma, and luminal factors) mediate barrier integrity maintenance or tissue damage through the
release of granule mediators. Major basic protein and eosinophil-derived cytokines contribute to
barrier function through prostaglandin and ion secretion and mucus production. Eosinophils also
impact tissue immuno-regulation and inflammation through cytokines and growth factors that
promote adaptive and innate immunity, including a direct effect on mast cells in inflammatory or
under stress conditions. Eosinophils also prime B cells for antigen-specific IgM production and
sustain long-lived plasma cells. They participate in protection against infections through the release
of DNA traps and the stimulation of mucus production through cationic proteins. In addition,
eosinophils are also a source of a varied range of proteins and cytokines involved in fibrogenesis
and angiogenesis that promote tissue remodeling, repair, and fibrosis. Eosinophils can regulate
the function, survival, and development of nerve cells through the release of eosinophil-derived
neuropeptides and neurotrophines, MBP, and ROS, and can promote hyperreactivity and aberrant
neurotransmission in pathological conditions. CRF, Corticotropin releasing factor; ECP, Eosinophil
cationic protein; EDN, Eosinophil-derived neurotoxin; EPO, Eosinophil peroxidase; MBP, Major basic
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protein; MMP, Matrix metalloprotease; ROS, Reactive oxygen species; SCF, Stem cell factor; SP,
Substance P; TGF, Transforming growth factor.

Additional to the direct effect on the epithelium, eosinophils also contribute to barrier
maintenance by promoting tissue remodeling/repair after tissue damage induced by
pathogens, toxins, or cell death. A dual role of eosinophils in tissue degradation and
repair has been described. In fact, eosinophils release eosinophil-derived neurotoxin
(EDN), which promotes fibroblast proliferation [41], and major basic protein (MBP), which
synergizes with IL-5 and transforming growth factor beta (TGF-β) to enhance fibroblast
expression and secretion of IL-6 and IL-11 [42]. In addition, MBP and EDN are potent
heparanase inhibitors, which suggests that eosinophils may be involved in proteoglycan
degradation prevention and contribute, therefore, to proteoglycan accumulation in fibrotic
tissues [43]. Tissue degradation can be sensed by eosinophils which react to promote
healing by facilitating epithelial proliferation and acting on the vasculature through the
release of vascular endothelial growth factor, fibroblast growth factor, and transforming
growth factor-β1 (TGF-β1) [2] in order to recover tissue structure and promote homeostasis.

2.2. Eosinophils Modulate Intestinal Immune Responses

Eosinophils are a major cellular element of the intestinal mucosa and participate in
the regulation of immunity and in the promotion of inflammatory responses (Figure 2).
They are omnipresent at sites of Th2-mediated inflammation, where they can precede or
be rapidly recruited to tissue, independently of adaptive immune responses [44]. This
suggests that eosinophils themselves can modulate and/or sustain the Th2 character of
the local tissue immune microenvironment and also promote Th2 memory cell functions
by, for example, releasing cytokines [45]. Beyond Th2 immunity, preformed eosinophil
mediators are also related to other immune responses; these include cytokines associated
with Th1 (IFN-γ, IL-12), T-regulatory (IL-10, TGF-β), and Th17 [46,47] activities. In addition,
eosinophils have the capacity to initiate and polarize adaptive immune responses. Unlike
their blood counterparts, intestinal eosinophils constitutively express on their cell sur-
face antigen presentation markers, including MHC class II, CD80, and activating receptor
FcγRIII, suggesting that gut eosinophils may be primed for antigen presentation [20,48,49].
In addition, eosinophils also promote the initiation of adaptive immune responses through
the granule proteins EDN and EPO which are involved in dendritic cell migration, activa-
tion, and maturation, leading, therefore, to enhanced antigen-specific Th2 responses [50].
Notably, eosinophils contribute to immunoglobulin production by plasma cells, as shown
in animal studies by mediating adjuvant-elicited priming of B cells and optimal antigen-
specific early IgM through IL-4 [51]. Eosinophils are crucial for class-switch generation and
the maintenance of IgA plasma cells in the lamina propria, mainly through the expression of
the A proliferation-inducing ligand (APRIL) and other cytokines, as identified in models of
eosinophil-depleted mice [6].

Eosinophil-derived cytokines and chemokines also have effects on innate immune
cells, especially on mast cells. Eosinophil–mast cell interactions have been the focus of
many hypotheses trying to explain mucosal immune responses (reviewed in [52]). The
large amount of evidence of eosinophil and mast cell contribution in the same scenarios,
along with the important role mast cells play in allergic and inflammatory diseases also
related to the brain–gut axis, suggest an additional eosinophil-derived effector function
in immunoregulation within this axis. This potential contribution should no longer be
interpreted as a minor interaction based on the release of eosinophil proteins and their
inflammatory activity. In fact, eosinophils can promote mast cell growth, survival, and
activation by several cytokines and by granule-derived proteins, such as MBP, stem cell
factor (SCF), and nerve growth factor (NGF) [52,53]. Additionally, mast cells secrete
mediators needed for reciprocally activating and promoting the survival of eosinophils [53].
However, mast cells may not be necessarily required for eosinophil survival, as in a mast
cell-deficient mouse model of EoE the number of eosinophils remain unaffected [54].
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2.3. Eosinophil–Neuron Interactions
2.3.1. Innervation of the Gastrointestinal Tract

The gastrointestinal tract is densely populated by two complex networks of neurons
(intrinsic innervation) and immune cells that have co-evolved mechanisms to sense and
rapidly adapt to the highly dynamic environmental challenges taking place at the intestinal
mucosa. The first network is the submucosal plexus or Meissner’s plexus, located in the
submucosal region between the circular smooth muscle and the submucosa, which controls
glandular secretions, regulates local blood flow, and controls water secretion into the lumen.
Fundamental research in different species, such as guinea pigs, rats, and humans, has shown
that secretomotor neurons release acetylcholine (ACh) and vasoactive intestinal polypeptide
(VIP) which stimulate chloride (Cl-) and water secretion. Nevertheless, the findings in mice
are contradictory. In this animal species, the activation of submucosal neurons by electrical
field stimulation involves in part the release of Ach and the activation of muscarinic
receptors; however, the pharmacological stimulation of these neurons with veratridine
does not involve the release of Ach [55]. The second network, called the myenteric plexus
or Auerbach plexus, is located between the circular and the longitudinal smooth muscle
layers and plays a crucial role in controlling gastrointestinal motility. Excitatory motor
neurons synthetize and release ACh as the main neurotransmitter, along with substance
P (SP) and other tachykinins. Inhibitory motor neurons synthetize nitric oxide, the main
inhibitory neurotransmitter in the upper gastrointestinal tract, and adenosine triphosphate
(ATP), the main inhibitory neurotransmitter in the lower gastrointestinal tract. Both plexi
of the enteric nervous system (ENS) operate independently but are in turn modulated by
the autonomic nervous system via efferent sympathetic and parasympathetic innervation
(extrinsic innervation). The cell bodies of these nerves are located in the celiac, superior,
and inferior mesenteric ganglions of the sympathetic chain and in the brain, respectively.
The central nervous system (CNS) processes sensory information from the different layers
of the gastrointestinal tract via the vagal afferent (non-painful physiological stimuli) and
spinal afferent nerves (nociceptive stimuli—pain). Gastrointestinal symptoms are triggered
basically through the stimulation of chemosensitive nociceptors present in spinal afferent
nerves that innervate the lamina propria and through the activation of mechanosensitive
nociceptors present in the longitudinal and circular smooth muscle [56]. The activation
of spinal afferent nerves induces the release of sensory neuropeptides, such as SP, CGRP,
and NKA.

How the different branches of the extrinsic and intrinsic nervous system crosstalk
with innate and adaptive immune cells residing in the gut to jointly coordinate critical
physiological functions and responses to challenges has been a matter of intense research.
Indeed, functional neuro-immune interactions have been described as playing fundamental
roles in intestinal health and disease [57] and there are excellent reviews discussing neuronal
crosstalk in several gut immune populations (mainly mast cells, macrophages, and T- and
B-cells) [9,10]. However, the role of eosinophils in this intestinal neuro-immune axis has
systematically received much less attention and most of the knowledge we currently have
regarding the influence of eosinophil activity on the nervous system has been gained in
the airways in the context of asthma and allergic respiratory inflammation [3,5]. It is clear
from an anatomical/functional point of view that the (patho)physiological consequences
of eosinophil–neuron communication will depend on the type of innervation (intrinsic or
extrinsic) involved.

Like other gut resident immune cells, eosinophils express a wide range of neuropep-
tides and their receptors (Table 2) that confer on them abilities of interacting with the ner-
vous system, either directly by cell-to-cell contact or indirectly through eosinophil crosstalk
with other immune cells residing in the lamina propria [47,57]. This eosinophil–neuron
communication has been shown to have a bi-directional nature (Figure 3); eosinophils
can be either the source or the target of the interactions. Indeed, neurons can recruit and
activate eosinophils, while eosinophils have been described to show trophic, stimulatory,
and inhibitory effects on neurons.
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Figure 3. Eosinophil–neuron interaction. Eosinophils and neurons communicate bidirectionally,
modulating functions in both cell types. Nerve cells can recruit eosinophils through the release
of neuropeptides, cytokines, and chemokines, and activate degranulation through nerve contact
facilitated by adhesion molecules (intercellular and neural cell adhesion molecules (ICAMs and
NCAMs). The release of bioactive mediators by eosinophils, such as cationic proteins, ROS, and
neuropeptides/neurotrophines, results in a variety of neuronal effects, including nerve growth, nerve
damage, neuropeptide synthesis and release, and activation and sensitization, leading to hyperreac-
tivity and aberrant neuropeptide release in pathological conditions. A1/A2a/A3, Adenosine receptor;
AR, Adrenergic receptor; B1/B2, Bradykinin receptor; CB2, Cannabinoid receptor 2; CGRP, Calci-
tonin gene-related peptide; CRTH2, Chemoattractant receptor-homologous molecule expressed on
Th2 cells; H1/H2/H4R, Histamine receptor H1, H2, H4; ICAM, Intercellular cell adhesion molecule;
M2/M3R, Muscarinic receptor 2, 3; nAChRs α-3/-α4/α-7, Nicotinic acetylcholine receptor α-3, -α4,
and α-7; NK-1/NK-2/NK-3, Tachykinin receptor 1, 2, 3; P2Y/P2X, Purinergic receptor 2Y, X; ROS,
Reactive oxygen species; TrK, Tropomyosin receptor kinase; VCAM, Vascular cell adhesion molecule;
5-HT1/2A, 5-hydroxytryptamine 1, 2A.

2.3.2. Neural-Induced Recruitment and Activation of Eosinophils by Extrinsic Nerves

Different in vitro and in vivo studies have shown that airway nerves actively recruit and
bind eosinophils, promoting a wide range of effects on both cell types. Direct recruitment
of eosinophils can happen through eotaxins constitutively expressed and released by
parasympathetic efferent nerves, as occurs in the airways during antigenic challenge [58,59].
In addition, neurotransmitters and sensory neuropeptides released from the peripheral
nerve endings of sensory neurons (extrinsic innervation), such as SP, CCK-8, NKA, and
CGRP, can also promote eosinophil recruitment [60–63]. After recruitment, eosinophils
adhere to nerves through cell adhesion molecules (CAMs), which leads to eosinophil
activation and degranulation [61,63].
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Table 2. Neuropeptide receptor expression and effects on eosinophils.

Receptor 1 Effect References

Adenosine receptors A1, A2a, and A3 Activation (A1), NADPH oxidase activity regulation
(A2a), pro- or anti-inflammatory response (A3) [64,65]

Adrenergic receptors (α1, α2), β1, β2, and β3

Inhibition of NADPH oxidase, degranulation,
chemotaxis, adhesion molecules, membrane lipid
metabolism (β2).
Inhibition of ICAM adhesion, ROS production, and EDN
degranulation in IL-5, LTD4, and CXCL10 primed
eosinophils

[64,66–68]

Bradykinin receptor B1, B2

Proliferation, migration, and increase in intracellular Ca2+

levels, generation of lipid bodies and decreased eosinophil
cell count in allergic airway inflammation (B1)
Implications for eosinophil accumulation (B2)

[64,69–71]

Cannabinoid receptor CB2 Chemotaxis, ICAM adhesion, increased eotaxin-2-primed
CD11b expression, increased ROS production [72–74]

Calcitonin gene-related peptide (CGRP) receptor Increased migration [60,64]

Histamine receptors H1R, H2R, H4R
Inhibition of ROS, EPO release, and chemotaxis (H2R)
Priming of chemotaxis to eotaxin and adhesion to
endothelium (H4R)

[75–78]

Muscarinic receptors M2, M3 Stimulate production and release of CRF [79]

Nicotinic acetylcholine receptors (nAChRs) α-3,
-α4, and α-7

Decrease infiltration into the lungs and airways
Down-regulate eosinophil function in vitro [80]

Purinergic receptors 2 P2Y and P2X family

Chemotaxis, induction of ROS production, CD11b
upregulation, calcium mobilization, production of
cytokines and ECP, induce release of EDN, EPO, and
inflammatory factors

[81–84]

Serotonin receptor 5-HT1 (A, B, E), 5-HT2A Migration(5-HT2A); effects on rolling and changes in
shape of eosinophils [85,86]

Tachykinin receptor NK1, NK2, and NK3

Induction of the expression (NK1) and secretion (NK2) of
CRF
Increment of ROS production and thromboxane and
degranulation of eosinophils

[64,87–89]

Vasointestinal peptide associated receptor CRTH2 Chemokinesis or chemotaxis [64,90,91]
1 CD11b, Cluster of differentiation molecule 11b; CRF, Corticotropin releasing factor; CRTH2, Chemoattractant
receptor-homologous molecule expressed on Th2 cells; CXCL10, C-X-C motif chemokine 10; EDN, Eosinophil
derived neurotoxin; EPO, Eosinophil peroxidase; ICAM, Intercellular adhesion molecule; IL, Interleukin; LTD4,
Leukotriene D4; PAF, Platelet-activating factor; ROS, Reactive oxygen species.

After recruitment, eosinophils adhere to nerves through cell adhesion molecules
(CAMs), which leads to eosinophil activation and degranulation [61,63]. Two major CAM
families are involved in eosinophil–nerve binding: the immunoglobulin superfamily of
CAMs, which include vascular, intercellular, and neural cell adhesion molecules (VCAM,
ICAM, and NCAM); and integrin CAMs, mainly integrin α4β1/VLA-4 and leukocyte
function-associated molecule 1 (LFA1). CAM expression on nerves can be constitutive or
inducible by pro-inflammatory cytokines and other mediators. Indeed, ICAM expression
is induced by TNF-α and IFN-γ causing increased eosinophil adhesion and switching
binding preference from VCAM to ICAM in primary cultures of airway parasympathetic
nerves [92], an effect that is prevented by treatment with dexamethasone and NFKB
inhibitors [93]. Eosinophil engagement to neural adhesion molecules leads to eosinophil
activation and ROS production [94,95]. Indeed, ICAM and VCAM activation concurrently
induce neurite retraction via the generation of tyrosine kinase-dependent ROS and by the
p38 MAP kinase pathway [96]. At the same time, neural-derived ROS trigger eosinophil
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degranulation [56], which makes ROS production a shared event in the eosinophil–nerve
bi-directional interaction.

Additional neural stimuli, such as ACh released by peripheral efferent nerves, have
been linked to eosinophil chemotaxis and degranulation in experimental models [97] and in
atopic asthma patients [98]. It is likely that a similar mechanism exists in the gastrointestinal
tract, but further investigations are needed to define the eosinophil–nerve interactions and
their contributions to organ functions.

2.3.3. Neural-Induced Recruitment and Activation of Eosinophils by the ENS

Although the anatomy and function of extrinsic nerves are very different, eosinophil–enteric
nerve interactions seem to be similar to those described in the parasympathetic efferent
innervation of the lungs. Nevertheless, we currently have little evidence about the role of
the ENS in recruiting and activating eosinophils. ICAM and eotaxin-3 are overexpressed
in ganglia of the myenteric plexus in refractory IBD patients. Interestingly, eosinophils
are in close proximity to terminal varicosities of excitatory motor neurons expressing SP
and choline acetyltransferase (ChAT) but not neuronal nitric oxide synthase (nNOS) [87].
In addition, another cell adhesion molecule, NCAM, has been reported to play a role
in eosinophil adhesion to myenteric terminal varicosities in the colonic mucosa of rats
undergoing a Th2 response caused by parasitic infection [99]. However, the specific mecha-
nisms underlying eosinophil adhesion to excitatory terminal varicosities during intestinal
inflammation are still unknown.

In the gastrointestinal mucosa, SP signaling has been shown to trigger the production
and release of corticotropin releasing factor (CRF) in vitro and in experimental chronic
restraint stress models [79,100]. CRF is a major mediator of stress-induced autonomic,
hormonal, and behavioral reflexes that inhibit inflammatory responses at regional levels
and influence gut motility and secretion [101] and it has been recently involved in a non-
classical non-pro-inflammatory eosinophil activation mechanism, wherein neuromediators
selectively induce eosinophil synthesis and release of CRF by piecemeal degranulation [102].
VIP is a key signaling molecule in the neuro-immune network that is secreted by neuronal
cells and by different types of immune cells and exerts a wide spectrum of functions. The
release of VIP by enteric neurons innervating the intestinal mucosa modulates the epithelial
barrier [103]. VIP also regulates the production of both anti- and pro-inflammatory media-
tors in immune cells [91]. Eosinophils do not express the classical VPAC-1 and VPAC2 but
respond to VIP through the Chemoattractant Receptor-Homologous Molecule Expressed
on Th2 Cells (CRTH2) [90]. The main effects of VIP on eosinophils are the promotion
of chemotaxis and the production of prostaglandin D2, both identified in the context of
allergic rhinitis. It may be relevant to determine whether eosinophilia is promoted by VIP
released by enteric neurons during intestinal inflammatory conditions, and, additionally,
whether eosinophils also impact the intestinal barrier by means of VIP, as they can store
and release this neuropeptide [104].

2.3.4. Eosinophil-Dependent Neuroplasticity

Among the repertoire of molecules expressed by eosinophils, there are multiple neuro-
modulatory mediators, including neurotrophins and neuropeptides (Table 1), that confer
on eosinophils the ability to influence nerve growth, reactivity, survival, and neurotrans-
mitter release. Indeed, eosinophil–neural crosstalk induces dual effects on diverse neural
plasticity mechanisms that lead to aberrant neurotransmission, including both increased
neural growth and activation and, contrarily, growth inhibition and nerve damage. On the
one hand, increased neural activity appears to be associated with the cardinal symptoms of
eosinophil-mediated chronic inflammatory respiratory and dermatological diseases, such
as pain, cough, itch, and bronchoconstriction [105,106]. Conversely, eosinophil degranula-
tion may also mediate loss of neural activity and neuropathic damage in demyelinating
diseases [107].
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Eosinophil influence on neural growth and damage has been also observed in the
intestinal mucosa in experimental models and in human tissue. Increased eosinophil
recruitment to enteric nerves, together with higher densities of nerves expressing the
growth and plasticity marker growth-associated protein 43 (GAP43), have been described
in an enteric parasitic infection pre-clinical model [99]. Moreover, eosinophils locate next to
vacuolated and necrotic axons in the jejunal mucosa in experimental enteric eosinophilic
inflammation [108], suggesting a neuropathic interaction with myenteric nerves. Similarly,
studies on acute appendicitis have reported elevated numbers of eosinophils and mast
cells, along with significant increases in nerves and ganglion cells, providing a possible
mechanism underlying pain generation in these patients [109].

Eosinophils also promote cholinergic neuronal remodeling, a feature in many in-
flammatory diseases. In human and animal models of asthma, eosinophils are actively
recruited and activated by nerves via tachykinins causing MBP release and a consequent
dysregulation of the vagal muscarinic M2 receptor [110], which contributes to ACh release,
nerve hyperactivity, and/or nerve remodeling, altering vagal-mediated smooth muscle
contraction responses [61]. in vitro data have shown that eosinophil adhesion to IMR32
neural cells promotes the release of eosinophil granule proteins that confer nerve plastic-
ity modulation capacities to protect nerves from inflammation-associated injury, mainly
through MBP-dependent abolition of apoptosis [92,95,111,112]. This crosstalk between
eosinophils and parasympathetic nerves described in asthma has also been highlighted
as a potential contributor to intestinal pathology. In human intestinal biopsies, mucosal
eosinophils and eosinophil granule proteins co-localize with nerves and myenteric gan-
glia [113,114]. Moreover, in the colonic mucosa, eosinophils express M2 and M3 receptors
and release CRF upon cholinergic activation, which disrupts intestinal epithelial barrier
function through a paracrine effect on mast cells [79].

3. Emerging Role of Eosinophils in Disorders of Brain–Gut Interaction

A recent large-scale multinational study has shown that DBGIs affect around 40%
of the population worldwide, that they are more frequent in women than men, and that
they are associated with a poor quality of life [115], leading to major economic impacts on
health systems. Despite intense research during the last 20 years, these disorders are still
diagnosed only by clinical criteria and by exclusion of organic diseases that may produce
similar symptoms. Among these disorders, functional dyspepsia (FD) and irritable bowel
syndrome (IBS) are the most prevalent ones. These entities are characterized by chronic
complaints arising from altered brain–gut interactions leading to intestinal dysmotility and
visceral hypersensitivity [116]. The pathophysiology of these disorders is complex and not
yet well understood; however, both FD and IBS show epithelial barrier dysfunction and
mucosal immune activation which, in a subset of patients, are associated with major clinical
complaints and their severity [117,118]. The trigger for the subtle immune activation is
unknown, but presumably food, acid, bile salts, and microbiota are involved [119,120].
Indeed, observational studies focused on pathophysiological research report increased
epithelial permeability and low-grade duodenal mucosal immune eosinophil and/or mast
infiltration in up to 40% of patients with FD [121]. However, eosinophil or mast cell number
and activation (as measured by granular complexity and degree of degranulation) seem
not to correlate with duodenal epithelial integrity (as measured by transepithelial electrical
resistance (TEER)) in these patients [122]. In fact, an altered barrier function but, contrary
to previous studies, not increased eosinophil or mast cell infiltration, has recently been
confirmed in two small cohorts of patients with FD, using standard histological methods.
One study, using confocal laser endomicroscopy showed significantly higher epithelial gap
density, impaired permeability to ions assessed by TEER measurements, and a quantitative
increase in inflammatory cell death (pyroptosis), along with significantly higher gene
expression of IL-6 in the duodenal mucosa [123]. Notably, permeability correlated with the
severity of certain dyspeptic symptoms. A second study showed a modest reduction in the
expression of several duodenal tight junction and adherens junction proteins, which may
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be secondary to up-regulation of regulatory miRNAs and the increase in small intestinal
permeability measured in vivo [124]. A recent study, measuring impedance baseline by
using a non-validated custom-built catheter-based technique, confirmed impaired duodenal
and jejunal mucosal barrier function in FD [125].

Unfortunately, there are still only limited data available by means of which to define
how eosinophils participate in these networks to modulate gut function. Some reports show
a context of enteric nerve dysfunction associated with eosinophil accumulation in mucosal
samples from both FD and IBS patients. In FD patients, a neuronal functional impairment of
the submucosal plexus of duodenal biopsies has been reported, with increased expression of
glial markers and altered ganglionic architecture and signaling, together with an increased
infiltration of eosinophils and mast cells in the submucosal plexus [113]. Interestingly, the
authors found a negative association between the number of eosinophils and neuronal
function. Additionally, increased mucosal infiltration and degranulation of duodenal
eosinophils have been shown to promote enteric nerve fiber density and sprouting in
patients with FD [114], a finding that supports a key role of this granulocyte through
neuro-immune mechanisms in this disorder.

In IBS, research has mainly shown the involvement of mast cell–nerve interaction in
hyperalgesia [22,126] and the association of mast cell activation with epithelial barrier dys-
function [127], but a role for eosinophils in neuro-immune networks and eosinophil impact
on epithelial permeability has not yet been defined. Mucosal eosinophil counts do not show
agreement in different intestinal segments and in particular subsets of IBS patients [128].
Rather than cell number, the activation of eosinophils may offer a new perspective for
exploring their potential contribution to IBS pathophysiology. Recent work in our group
showed a higher degree of piecemeal degranulation and higher granule CRF contents
correlated with cardinal clinical and psychological manifestations of diarrhea-predominant
IBS (IBS-D), despite eosinophil infiltrations similar to those of healthy controls [102]. More-
over, it has been shown in mouse and in in vitro models that eosinophils respond to SP
and carbachol (a cholinergic agonist) by increasing secretory activity and CRF synthesis
and release [79,100] without promoting pro-inflammatory activity—a profile similar to
that found in mucosal eosinophils from IBS-D [102]. Thus, the release of SP or ACh from
free nerve endings located in the lamina propria may potentially activate gut eosinophils to
produce and release CRF, mediating local neuro-immune circuits in stress-related intestinal
pathology. These results highlight the need for further research to define the potential
contribution of eosinophils to gastrointestinal dysfunction, though it is difficult to separate
the effects related only to the IBS physiopathology or psychological comorbidity.

Although there is a wide range of therapeutics for treating eosinophilic disorders [129,130],
including oral and systemic corticosteroids, monoclonal antibodies, and immunosuppres-
sants, the recent description and involvement of these cells in DBGIs has not yet allowed
researchers to define their potential advantages in the management of these entities. In-
terestingly, in patients with eosinophilic gastritis or duodenitis, a phase 2 trial with the
anti-Siglec-8 antibody AK002 (lirentelimab) reduced gastrointestinal eosinophils and symp-
toms in these patients, although no continuation of the study has been released [131].

4. Concluding Remarks

The data described in this review highlight the huge potential of eosinophils as key
neuro-immune players in the gastrointestinal tract but also expose the need to increase
our understanding of gut eosinophil–neuronal crosstalk with still so many unexplored
aspects of the influence of eosinophil activity on the nervous system and its dual func-
tional consequences. Eosinophil plasticity allows the expression of a variety of molecules;
therefore, it is necessary to determine how micro-environmental conditions modulate
the expression of receptors to better understand their predisposition to respond to neu-
ral stimuli and the consequences of these interactions for gut homeostasis and disease.
Eosinophil abilities to communicate and respond to nerves and other immune cells are
indeed of great relevance, particularly in diseases where unknown mechanisms maintain
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a low state of inflammation together with a relevant degree of immune activation, as in
DBGIs. Current available therapies against eosinophil-mediated inflammatory conditions
are directed towards chemotactic prevention or survival impairment. In the coming years,
we expect to see increasing functional and micro-anatomical evidence of the involvement
of eosinophil-driven neuro-immune interactions that will undoubtedly contribute to the
enrichment of the therapeutic landscape and the amelioration of gastrointestinal pathology
as well as the promotion of gut health.
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