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Abstract: Drug repurposing identifies new clinical indications for existing drugs. It can be used
to overcome common problems associated with cancers, such as heterogeneity and resistance to
established therapies, by rapidly adapting known drugs for new treatment. In this study, we utilized
a recommendation system learning model to prioritize candidate cancer drugs. We designed a
drug–drug pathway functional similarity by integrating multiple genetic and epigenetic alterations
such as gene expression, copy number variation (CNV), and DNA methylation. When compared with
other similarities, such as SMILES chemical structures and drug targets based on the protein–protein
interaction network, our approach provided better interpretable models capturing drug response
mechanisms. Furthermore, our approach can achieve comparable accuracy when evaluated with
other learning models based on large public datasets (CCLE and GDSC). A case study about the
Erlotinib and OSI-906 (Linsitinib) indicated that they have a synergistic effect to reduce the growth
rate of tumors, which is an alternative targeted therapy option for patients. Taken together, our
computational method characterized drug response from the viewpoint of a multi-omics pathway
and systematically predicted candidate cancer drugs with similar therapeutic effects.

Keywords: drug functional similarity; drug repurposing; pathway activities; recommender system

1. Introduction

Drug resistance is a major problem in cancer treatment where cancer cells escape from
the effects of anticancer compounds and patients suffer from recurrence and more aggres-
sive forms of cancer. Although the exact mechanism is still not completely understood,
accumulated evidence indicates that resistance to cancer therapy is mediated by the com-
plex interplay between several key factors, such as intratumoral heterogeneity, metabolic
reprogramming, and cancer microenvironment [1]. Therefore, it is urgent to develop novel
therapy options, such as the combination of known drugs, to combat cancer cells. However,
the development and validation of new drugs are time-consuming, expensive, and often
prone to failure. Studies have shown that each drug takes an average of 10–15 years and
more than USD 2 billion to create; but, the success rate is less than 10% [2].

Drug repurposing is used to identify new uses of existing or research drugs that are
beyond their original indications [3]. Classic examples include Minoxidil (initially used
for hypertension; now for hair loss), Viagra (initially used for angina; now to treat erectile
dysfunction and pulmonary hypertension), and Rituximab (initially used for chronic
lymphocytic leukemia and rheumatoid arthritis; now for non-Hodgkin’s lymphoma) [4].
Recently, bromocriptine has been approved for the treatment of type 2 diabetes in the
U.S. due to the new finding that it is also a central dopamine agonist [5]. Compared with
traditional drug discovery, the repositioning of known drugs has the advantages of lower
cost and higher safety; thus, they may demonstrate a new way to accelerate the drug
development process [6].

Molecules 2022, 27, 1404. https://doi.org/10.3390/molecules27041404 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27041404
https://doi.org/10.3390/molecules27041404
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-9863-9261
https://doi.org/10.3390/molecules27041404
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27041404?type=check_update&version=2


Molecules 2022, 27, 1404 2 of 12

Many computational repositioning methods have been developed. Some researchers
exploited the structural similarity of drug molecules or shared protein targets, whereas
others leveraged prior knowledge of drug, target and disease interaction, and introduced
systems biology approaches for drug repurposing. For example, we and others have de-
veloped network-based methods for finding molecules inhibiting tumor progression [7–9].
In this study, we adopted a recommendation system-based framework to prioritize drugs.
The recommender system is widely applied in e-commerce to predict users’ preferences
for selling products. Recently, it has demonstrated great promise in various bioinformatics
problems, such as predicting protein subcellular localization, RNA–protein interactions,
and drug repurposing [10–13]. In this study, we combined various cancer multi-omics
datasets, such as gene profiling, DNA methylation and CNV data, and enriched them
into KEGG pathways. Then, based on these functional features, a recommender system is
utilized to predict drug response. Our results indicated that this model can achieve both
comparable accuracy and clear biological mechanisms when evaluated on two large cancer
drug response datasets (CCLE and GDSC).

2. Results and Discussion
2.1. Workflow Overview

We developed a pipeline to prioritize candidate drugs based on a drug functional
similarity. A flow diagram of the pipeline is shown in Figure 1. Our method consists of
three main steps. (A) Download mRNA expression data, DNA methylation data, and
copy number variation data from the GDSC and CCLE databases. Then, use single sample
gene set enrichment analysis (ssGSEA) to project each type of omics data onto the KEGG
pathway, thus obtaining multi-omics pathway activity profiles. (B) Download compounds’
activity data, and then predict the drug response activity through a recommendation system
based on multi-omics pathway features. (C) Construct a drug functional similarity between
the drugs by integrating the mRNA, methylation, and CNV pathway activity profiles and
the predicted drug response activity. This functional similarity is compared with compound
structural similarity and target distance similarity.

2.2. Evaluation of Predictive Drug Response Results

For evaluation, we compared the above pipeline (multi-omics pathway) with the
following two scenarios: (1) only mRNA expression profiles are used to infer pathway
activity, then feed the same recommendation system (mRNA-pathway); (2) the mRNA
expression profile, but not pathway activity, is used directly in the same recommendation
system (mRNA expression). NDCG is a generally accepted index for evaluating ranking
recommendations. It ranges from 0 to 1, where 1 means that the model predicted the
drug’s ranking accurately. As shown in Table 1, both the multi-omics pathway setting
and mRNA-pathway setting are significantly better than the mRNA expression setting in
both the GDSC and CCLE datasets. At the same time, these two scenarios also achieved
a relatively smaller sum of squared error than when mRNA expression data were used,
which indicated better robustness of the learning models.

This analysis suggests that pathway-based drug response prediction is better than
gene-based prediction in the recommendation system. Furthermore, multi-omics pathway
settings can achieve comparable accuracy with the single-omics (mRNA profile) pathway-
based setting.
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Figure 1. A pipeline to prioritize candidate compounds based on a drug functional similarity.
Our method includes three main steps: (A) inferring multi-omics pathway activity profiles; (B)
predicting drug response activity through recommendation system based on multi-omics pathway
activity profiles; and (C) calculating drug–drug functional similarity and evaluating with other drug
similarities to validate our result.

Table 1. Performance and robustness comparison on drug response.

GDSC
Multi-omics

Pathway

GDSC mRNA-
Pathway

GDSC mRNA
Expression

CCLE
Multi-omics

Pathway

CCLE mRNA-
Pathway

CCLE mRNA
Expression

NDCG 0.815 0.816 0.381 0.976 0.978 0.798
Sum of squared

error 1.176 1.173 3.540 0.728 0.662 2.633

2.3. Drugs’ Effects on Biological Pathway Levels

Inspecting the multi-omics pathway activity profiles for each drug can reveal its
functional effect in cells. In addition, comparing the multi-omics pathway activity profiles
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of each drug pair can elucidate their mechanistic similarity, which provides a functional
understanding for their mutual replacement.

The heatmap in Figure 2 shows the Pearson correlation of the top 10 drug repurposing
pairs with the activity levels of multi-omics pathways. For example, (5Z)-7-Oxozeaenol
and GSK2126458/omipalisib form a drug repurposing pair in GDSC datasets. Previous
reports found that (5Z)-7-Oxozeaenol inhibits TAK1 [14] and GSK2126458 is the inhibitor of
PI3K [15]. They have the highest correlation with “Toxoplasmosis pathway”, ”Tuberculosis
pathway”, and ”Salmonells infection pathway” from the viewpoint of methylation, which
may indicate that the two drugs have similar effects on the methylation of key genes in these
pathways. In addition, for the L-685458 and ZD-6474/Vandetanib drug pair in the CCLE
datasets, L-685458 is a kind of gamma-secretase inhibitor [16], and ZD–6474/Vandetanib
efficiently suppresses RET kinase, including the vascular endothelial growth factor receptor
and epidermal growth factor receptor signaling [17]. These two drugs both have the
highest correlation with the “Bacterial invasion of epithelial cells pathway”, “ErbB signaling
pathway”, and “Small cell lung cancer pathway” at the methylation level. Again, this result
revealed that both L-685458 and ZD-6474 are involved in the methylation process of genes
located in KEGG pathways.

Figure 2. Heatmap of Pearson correlation coefficients of drugs in the activity of the multi-omics
pathway. (A) Top 10 drug pairs based on functional similarity in GDSC database, in which each row
represents a drug, and each column represents multi-omics pathways. The values are correlation
coefficients. Drug names are listed at the right most columns. (B) Top 10 drug pairs based on
functional similarity in the CCLE database.

Furthermore, these data also suggest that even though the drug targets are very
different, their pathway activity in cells may have similar patterns, indicating that the
drugs share common regulatory mechanisms. The activity pattern of the drug pairs across
multi-omics pathways describes their functional similarity, which also lays the foundation
for drug repurposing.

2.4. Comparison of Drug Pair Similarities

According to the activity patterns of the drug pairs across all the multi-omics pathways,
we can assign each drug pair a functional similarity score. Table 2 lists the top 10 drug
pairs’ similarities in the GDSC and CCLE datasets. For comparison, we also investigated
the similarities based on the chemical structures and protein targets of these drug pairs in
GDSC and CCLE datasets. As shown in Table 2, the functional similarity is higher than
other similarities. These results suggest that drug responses at biological pathway levels are
more likely to reflect their biological influences and explain why the two drugs can induce
similar effects on the cell; i.e., it is not based on their molecular structure or the closeness
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of their protein targets in a PPI network, but rather due to their similar functional effects
on the multiple-omics pathways. Furthermore, it confirmed that the functional similarity
between drugs can prioritize their mutual replacement.

Table 2. Top 10 drug pairs’ similarities in GDSC and CCLE datasets.

Database Drug1 Drug2 Functional
Sim SMILES Sim PPI Sim

GDSC (5Z)-7-
Oxozeaenol GSK2126458 0.998365459 0.162790698 1.08E−70

GDSC MS-275 OSI-930 0.998193161 0.362694301 3.30E−77
GDSC GW-2580 VX-11e 0.997189963 0.242063492 3.71E−84
GDSC ABT-869 AC220 0.996300765 0.257462687 0.9
GDSC 681640 Methotrexate 0.996231842 0.236734694 6.46E−66
GDSC AG-014699 PHA-793887 0.996134942 0.223529412 5.37E−72
GDSC JQ12 Vinblastine 0.995927571 - 1.54E−91
GDSC KIN001-055 T0901317 0.99574713 0.161111111 4.90E−75
GDSC PFI-1 Tamoxifen 0.995377083 0.208092486 2.38E−66
GDSC PFI-1 SB590885 0.995238003 0.194029851 2.74E−83
CCLE L-685458 ZD-6474 0.994678 0.11349 1.18E−67
CCLE 17-AAG Paclitaxel 0.994097 0.272071 0.9
CCLE 17-AAG Panobinostat 0.99304 0.075472 3.97E−71
CCLE TKI258 ZD-6474 0.992772 0.227439 0.9
CCLE Paclitaxel Topotecan 0.992513 0.291483 0.9
CCLE L-685458 TKI258 0.989722 0.129946 2.38E−66
CCLE PHA-665752 Sorafenib 0.98863 0.157855 0.9
CCLE AZD6244 Sorafenib 0.98829 0.169047 0.9
CCLE Erlotinib Sorafenib 0.987973 0.256565 0.9
CCLE AZD6244 Nutlin-3 0.987127 0.137107 0.9

2.5. Case Study

The drug repurposing pair, Erlotinib and OSI-906, has a functional similarity of 0.978,
indicating their similar therapeutic effects. Erlotinib potently blocks EGFR kinase activity
and suppresses downstream signaling pathways, such as PI3K–AKT and MAPK [18]. In
addition, these signaling pathways are promoted by other receptors, including IGF1R [19].
During embryonic development and postnatal growth, IGF1R is sensitized by ligands IGF-1
and -2 [20,21]. Researchers have indicated that the components of the IGF family are often
abnormally expressed in cancers and activate tumorigenesis [20,22]. IGF1R overexpression
is also associated with poor survival in some tumor types [23–26]. Furthermore, cancers
have evolved a compensating mechanism for IGF1R inhibition [27]. A variant form of the
insulin receptor (INSR-A) is induced by IGF-2 and insulin, which enhances proliferation
and cell survival [28]. Thus, co-inhibition of IGF1R and INSR may provide enhanced
antitumor activity [29,30].

Linsitinib (OSI-906) suppresses both IGF1R and INSR tyrosine kinase. Previous studies
indicated it can inhibit proliferation in a variety of tumor cell lines and xenograft models [31,32].
Single-drug treatment of linsitinib in patients with solid tumors, such as melanoma and
adrenocortical carcinoma, has proven its antitumor activity [33–35]. From drug mechanistic
analysis, it can be seen that although Erlotinib and OSI-906 inhibit different protein targets,
their influences in cells converge on the same downstream pathway. This explains why they
can be mutually repurposed.

In addition, this repositioning drug pair also implies that the combined use of both
drugs may be a good therapeutic option, especially for overcoming drug resistance. The
literature review confirms this conclusion. The combined IGF1R/INSR and EGFR block-
ade has shown enhanced inhibition of common downstream signaling pathways, and
suppressed resistance to single-receptor blockades [22,30,36]. Preclinical investigations
among NSCLC, breast, pancreatic, and colorectal cancer patients have indicated that the
combined administration of IGF1R/INSR and EGFR inhibitors lead to additive effects on
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tumor growth [37–41]. Furthermore, IGF-2 is induced in erlotinib-resistant tumors and
small-molecule IGF1R TKI sensitized the tumors to the EGFR inhibitor [42].

Finally, we set the functional similarity of multi-omics pathways that are >0.95 as a
threshold to select candidate repurposing drug pairs. In total, we obtained 1015 out of
31125 drug pairs in the GDSC dataset, and 53 pairs out of 276 pairs in the CCLE dataset
(Supplementary Table S1).

3. Materials and Methods
3.1. Data Sources and Data Processing
3.1.1. Chemical Compounds Activity Data

GDSC drug data: The drug activity data of 250 unique drugs in 904 cancer cell lines
were collected from the GDSC database (http://www.cancerrxgene.org/gdsc1000/GDSC1
000_WebResources/Home.html). This page provides several Excel sheets referred to in
the Iorio et al. paper [43] as Supplementary Materials. Drug responses were provided
as the natural logarithm of half the maximal inhibitory concentration in a data matrix
(file:TableS4A.xlsx, tab “TableS4A-IC50s”), which we subsequently converted to negative
logarithms with a base 10, ensuring that the drug activity levels are expressed as the
negative log of the half-maximal inhibitory concentration [−log10(IC50)]. A higher value
represents more drug sensitivity in a cell line.

CCLE drug data: CCLE drug sensitivity data in the form of IC50 values were extracted
from the file “CCLE_NP24.2009_Drug_data_2015.02.24.csv”, which is available on the
CCLE website [44] and includes IC50 data for 24 anti-cancer drugs. Afterwards, the
negative number of logarithms with a base 10 of the IC50 values was calculated for the
drug activity values. In total, there were 24 unique drugs in 402 cell lines that we used for
our analyses.

3.1.2. Multi-Omics Expression Data

GDSC multi-omics data: Raw cell line expression array data were downloaded from
ArrayExpress (file: E-MTAB-3610) [43], in which data is measured by the Affymetrix
Human Genome U219 Array chip, and after RMA normalization of R packages ‘affy’ [45],
the expression data of each gene in each cell line were obtained. The methylation data
were extracted from the average pre-processed β-values for each of all CpG islands (file:
F2_METH_CELL_Data.txt), which were also available on the download portal. For the
CpG islands, we used the GPL13534–11288 reference to match genes to the CpG islands
in the dataset. The copy number variation data were extracted from PICNIC [46], and
the absolute copy numbers were derived from the Affymetrix SNP6.0 array data (file:
cnv_abs_copy_number_picnic_20191101.csv). Thus, we derived the estimated value of the
copy number of each gene. For each omics profile of the GDSC database, we converted the
cell names to cosmic IDs based on the annotation file of the GDSC cell lines.

CCLE multi-omics data: Omics data (expression, methylation, and copy number
variation) describing the cancer cell lines were acquired via bulk download from the Can-
cer Cell Line Encyclopedia (CCLE) (https://portals.broadinstitute.org/ccle/data, access
date: 2020/08/05) [47]. In agreement with the original publications [44,47], expression
data were obtained through Affymetrix U133+2 arrays and processed to obtain gene-
centric RMA-normalized mRNA expressions (file: CCLE_Expression_Entrez_2012-09-
29.gct) [48]. Raw Affymetrix CEL files were converted to a single value for each probe
set using the Robust Multi-Array Average (RMA) and normalized using quantile nor-
malization. Methylation data were derived by quantifying CpG islands using Reduced
Representation Bisulfite Sequencing (file: CCLE_RRBS_tss_CpG_clusters_20181022.txt.gz).
Copy number variation (CNV) data were acquired from the Affymetrix SNP6.0 arrays
(file: CCLE_copynumber_byGene_2013-12-03.txt.gz). Copy numbers were normalized by
comparingto the most similar HapMap normal samples [49]. Segmentation of the nor-
malized log2 (CN/2) ratios was achieved using the circular binary segmentation (CBS)
algorithm [47,50]. For mRNA expression profiles with duplicate gene IDs, we aggregated

http://www.cancerrxgene.org/gdsc1000/GDSC1000_WebResources/Home.html
http://www.cancerrxgene.org/gdsc1000/GDSC1000_WebResources/Home.html
https://portals.broadinstitute.org/ccle/data


Molecules 2022, 27, 1404 7 of 12

their expression values by their means for our analysis, and for methylation profiles with
duplicate gene IDs, we aggregated their values by sum.

3.2. Inferring Multi-Omics Pathway Activity Profiles

First, we obtained 250 selected gene sets (C2) of the KEGG pathway from the previous
research [51] and then used single sample gene set enrichment analysis (ssGSEA) with
R packages “GSVA” [52,53] against KEGG pathway data to convert mRNA expression
data, methylation level data, and copy number variation data into a pathway activity
profile, which was accomplished by a “single sample” extension of GSEA [54], defining an
enrichment score based on the degree of absolute enrichment of a gene set in each sample
within a given dataset.

For the given sample S, the expression values of gene G of size NG were firstly rank-
normalized. Then, the empirical cumulative distribution functions (ECDF) of the genes
were used to calculate an enrichment score of ES (G, S) by a sum (integration) of the
difference between a weighted ECDF of the genes in the signature Pω

G and the ECDF of the
remaining genes PNG as follows, where α is set to 0.25.

ES(G, S) =
N

∑
i=1

[Pω
G (G, S, i) − PNG(G, S, i)] (1)

Pω
G (G, S, i) = ∑

rj∈G,j≤i

|rj|α

∑rj∈G|rj|α
(2)

PNG(G, S, i) = ∑
rj/∈G,j≤i

i
(N − NG)

(3)

This procedure differs from the classic GSEA procedure in that the gene list is ranked
by absolute expression and the enrichment score is obtained by an integration of the
difference between the ECDFs. For the GDSC dataset, 228 resultant mRNA pathways,
201 methyl pathways, and 227 CNV pathways were extracted. In total, 656 multi-omics
pathways were obtained. In addition, 223 mRNA pathways, 220 methyl pathways, and
228 CNV pathways were extracted for the CCLE datasets with a total of 671 multi-omics
pathways. Finally, these pathway activity patterns were used to calculate drug–pathway
associations and the drug pathway level similarity.

3.3. Predict Drug Response Activity through Recommendation System Based on Multi-Omics
Pathway Activity Profiles

Here, we modified the CADRRes framework to predict drug response. The previous
report indicated that the CADRRes algorithm outperformed other existing methods includ-
ing elastic net regression and random permutations [13]. The first step in CaDRReS is to
define the cell line features. In contrast to the original calculation with gene expression
information, here we calculated cell line features based on the activity of the multi-omics
pathway, i.e., by using Pearson’s correlation to compute every pair of cell lines, while
utilizing the multi-omics pathway activity profiles. In total, we obtained 904 and 402 cell
line features for GDSC and CCLE, respectively.

Models were pre-trained and tested independently on both CCLE and GDSC to avoid
biases toward either of the datasets [55,56]. Then, the matrix factorization was used to train
drug sensitivity models, which were computed based on the equation:

Ŝui = µ + bQ
i + bP

u + qi·pu = µ + bQ
i + bP

u + qi
(

xuWp
)T (4)

where Ŝui is the computed sensitivity score of cell line u to drug i; µ is the general mean
drug response; bQ

i and bP
u are bias terms for drug i and cell line u, respectively; qi, pu ∈ R f

are vectors for drug i and cell line u in the f -dimensional latent space; and WP ∈ Rd× f

is a transformation matrix that projects cell line features xu ∈ Rd onto the latent space.
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The value of f was set at 10. The source code of CaDRReS can be downloaded at https:
//github.com/CSB5/CaDRReS. Here, we used the CaDRReS_train_and_test.py file to
predict GDSC and CCLE drug response activity data.

Two indicators were used to evaluate the drug response predicted by the recommenda-
tion system. The normalized discounted cumulative gain (NDCG) is a generally accepted
score for comparing recommendations. It was computed as follows:

NDCG(r̂, s) =
DCG(r̂, s)
DCG(r, s)

(5)

DCG(r̂, s) = ∑
i

2s
i − 1

log2 î + 1
(6)

where r̂ is the output rank of drugs tested on a cell line, s is the observed drug activity
values, and r is the known rank of drugs based on the drug activity values. The numerator
in the DCG is designed to give more weight to drugs with higher sensitivity scores, while
the denominator takes precedence over predicting drugs with a higher rank. In addition,
the “sum of squared error” loss function was defined as:

L(θ) =
1

2|K|∑u
∑

i
e2

ui (7)

eui = sui − ˆsui (8)

where sui and ˆsui are the observed and predicted activity for cell line u using drug i, respec-
tively; θ =

{
bi, bu, Wp, qi

}
; and |K| is the number of drug activity values in the dataset.

3.4. Calculate the Functional Similarity of Drug–Drug Pairs Based on Multi-Omics
Pathways Profiles

We first calculated the Pearson correlation between the multi-omics pathway activity
profiles and the drug activity profiles predicted by the recommendation system across cell
lines in GDSC and CCLE datasets, respectively:

r =
∑n

u=1
(

Du,i − Di
)(

Pu,j − Pj
)√

∑n
u=1
(

Du,i − Di
)2
√

∑n
u=1
(

Pu,j − Pj
)2

(9)

where Du,i is the predicted drug activity profiles with drug i and cell lines u, and Pu,j is the
multi-omics pathway activity profiles in method 3.2 with pathway j. Then, for both drug
i and pathway j, the correlation based on the same cell lines as u can be computed. The
Pearson correlation coefficient reflects the association between the multi-omics pathway
activity and the drug response activity.

Next, based on the above multi-omics pathway–drug correlation matrix, the Pearson
correlation coefficient of each pair of drugs is calculated, which reflects the functional
similarity of each pair of drugs at the level of the multi-omics pathways and describes the
functional similarity between the multi-omics pathway activity patterns, in which drugs
with higher functional similarity have a higher probability of being involved in related
biological pathways and treating similar diseases.

3.5. Molecular Structural Similarities and Drug Target Similarities

In order to make a strict comparison with the other similarity of drugs, we calculated
the two-dimensional structural similarity of the drugs and the similarity of the protein-
protein interaction (PPI) distance of the drug targets. All similarity measures were finally
normalized to be in the range (0, 1). Here, the two-dimensional structure data of the drug
comes from the SMILES format of the PubChem database, which was downloaded from
Pubchem [57,58]. The similarity score between two drug molecules is calculated according
to the two-dimensional Tanimoto coefficient score [59], based on R packages “RxnSim” [60].

https://github.com/CSB5/CaDRReS
https://github.com/CSB5/CaDRReS
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It extracts structural features and is then defined as the size of the intersection divided
by the size of the union of the feature sets. The structural features determine absorption,
distribution, metabolism, excretion, and toxicity properties, which ultimately affect the
pharmacological activity of the drug molecule.

The target data come from The Drug Gene Interaction Database [61] and the PPI data
were downloaded from the STRING database [62]. The distances between each pair of drug
targets were computed using an all-pairs shortest paths algorithm, found on the human
PPI network for drugs, associated with more than one gene, and the minimal distance
between the associated genes was used. Then, the shortest distances were transformed to
similarity values using the formula described in Perlman et al. [63]: S(p, p′) = Ae−bD(p,p′),
where S(p, p′) is the similarity value between two proteins and D(p, p′) is the shortest path
between them in the PPI network. Then, A, b was set to 0.9 and 1 according to Perlman
et al. [63]. Self-similarity was assigned a value of 1.

4. Conclusions

The long and expensive drug discovery process needs to develop its machine learn-
ing method for drug repurposing. We integrate a variety of transcriptomic resources,
methylation, and CNV data into a recommendation framework. Not only can it accurately
predict drug response, but also provide an interpretable mechanism on drug effects at
the same time. This is particularly useful in personal drug prescriptions in cancer care
and/or combating drug resistance. In addition, accumulated evidence revealed that some
cancers share common mechanisms and molecular pathogenesis with neurodegenerative
diseases, such as Alzheimer’s disease (AD) [64,65]. Thus, this framework can be utilized as
a computational tool for generating mechanistic hypotheses and drug replacement for both
cancer and AD when the drug activity and multi-omics data are comprehensive.

Supplementary Materials: Table S1: Candidate drug repurposing pairs and their functional struc-
tural and target similarities. Candidate drug repurposing pairs are selected with a cutoff function
similarity of >0.95.
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