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Defining genes that are essential for life has major implications for understanding critical biological pro-
cesses and mechanisms. Although essential genes have been identified and characterised experimentally
using functional genomic tools, it is challenging to predict with confidence such genes from molecular
and phenomic data sets using computational methods. Using extensive data sets available for the model
organism Caenorhabditis elegans, we constructed here a machine-learning (ML)-based workflow for the
prediction of essential genes on a genome-wide scale. We identified strong predictors for such genes
and showed that trained ML models consistently achieve highly-accurate classifications.
Complementary analyses revealed an association between essential genes and chromosomal location.
Our findings reveal that essential genes in C. elegans tend to be located in or near the centre of autosomal
chromosomes; are positively correlated with low single nucleotide polymorphim (SNP) densities and epi-
genetic markers in promoter regions; are involved in protein and nucleotide processing; are transcribed
in most cells; are enriched in reproductive tissues or are targets for small RNAs bound to the argonaut
CSR-1. Based on these results, we hypothesise an interplay between epigenetic markers and small RNA
pathways in the germline, with transcription-based memory; this hypothesis warrants testing. From a
technical perspective, further work is needed to evaluate whether the present ML-based approach will
be applicable to other metazoans (including Drosophila melanogaster) for which comprehensive data sets

(i.e. genomic, transcriptomic, proteomic, variomic, epigenetic and phenomic) are available.
© 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-
commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction tional genomics tools, such as double-stranded RNA interference

(RNAI), transgenesis and, more recently, CRISPR/Cas9, combined

Model organisms, such as the free-living nematode Caenorhab-
ditis elegans, have been utilised extensively to explore the biology
of multicellular (metazoan) organisms [1-3]. The sequencing of
the C. elegans genome [4]| and subsequent development of func-

Abbreviations: ML, machine-learning; RNAi, RNA interference; CRISPR, Clustered
Regularly Interspaced Short Palindromic Repeats; SNP, single nucleotide polymor-
phism; CDS, coding sequence; TSS, transcription start site; EST, expressed sequence
tag; VCF, variant call file; GFF, general feature format; ES, Essentiality Score; PPI,
protein-protein interaction; SPLS, Sparse Partial Least Squares; GO, gene ontology;
GLM, Generalised Linear Model; NN, Artificial Neural Network; GBM, Gradient
Boosting Method; SVM, Support-Vector Machine; RF, Random Forest; ROC-AUC,
Area Under the Receiver Operating Characteristic Curve; PR-AUC, Area Under the
Precision-Recall Curve; TEA, Tissue Enrichment Analysis tool (WormBase).
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with genetic mapping, have underpinned studies of gene function
[5-9]. A key research focus has been to identify or define genes
which are functionally essential for life in cells, tissues and/or
the organism (thus called ‘essential genes’) using such gene
knock-down or knock-out approaches [7,10-12]. These efforts
have led to a wealth of experimental data and information on
essential genes, now publicly available in the WormBase database
[13]. While these data are rich and highly informative, there have
been some discrepancies in the assignment of gene essentiality
among studies using phenotypic data. Such discrepancies can be
due to some genes being ‘conditionally-essential’ [1] depending,
for example, on developmental stage, strain or experimental/envi-
ronmental conditions. However, it is also possible that some dis-
crepancies might relate to possible off-target effects in RNAi [14]
and/or human error during large-scale experiments [15]. Despite
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such variation among experimental studies, there appears to be a
consensus set of essential genes in C. elegans.

In recent years, computational approaches have been evaluated
for the prediction of the complement of essential genes on a
genome-wide scale employing functional genomic-phenotypic
data sets for C. elegans. Such approaches could become important
tools for predicting essential genes in less-studied organisms, such
as many parasitic helminths, for which extensive genome, tran-
scriptome and/or proteome data are available, but for which
genome-wide functional genomic data have been lacking (e.g.,
[16,17]). Some studies of C. elegans data sets have used genome-
wide genetic interaction networks [18,19] or single-nucleotide
polymorphism (SNP) analyses [20,21]. Others have identified fea-
tures, such as gene size, evolutionary rate, phyletic retention, tran-
scription level, protein-protein interaction (PPI) network
connectivity and/or cellular or subcellular localisation, which cor-
relate with gene essentiality [1,22,23]. Despite the apparent utility
or promise of these computational approaches, some discrepancies
in experimental results among functional genomic studies, varia-
tion in the nature and extent of data sets used, and the limited
curation of some data sets can markedly affect the confidence of
predicting essential genes [1,24-26]. Here, we tackle this problem
by employing a scoring-system to assign essentiality to genes from
phenotypic data and by establishing procedures for large-scale
extraction/engineering and selection of features associated with
those genes from extensive ‘omics data sets. Using these essential-
ity annotations and selected predictive features, we constructed
and systematically evaluated a machine-learning (ML)-based
workflow for the genome-wide prediction of essential genes in C.
elegans.

2. Materials and methods
2.1. Data sets

We obtained extensive data and annotations from three sources
(i.e. WormBase [27], the Ensembl database [28] and/or published
studies). Functional genomic/phenomic data sets from RNAi stud-
ies and annotated data (genomic, transcriptomic, proteomic and
epigenetic; in GFF) linked to the C. elegans genome were from
WormBase (WS270 release - 25/02/2019) [27]. Genomic, coding
sequences (CDSs) and proteins (canonical) were from Ensembl.
Gene transcription data for different developmental stages [29];
transcription start site (TSS) locations in the genome [30]; multi-
cell or single-cell transcriptomic data [31,32]; Ribo-seq annota-
tions [33]; epigenetic markers (ChIP-seq and ATAC-seq) [34-36];
and variomic data containing genome-wide SNPs (high-quality
VCF; release 20180527) [37] were obtained from the peer-
reviewed literature.

2.2. Scoring of gene essentiality and provisional assignment

From WormBase, we extracted phenotypic data from all pub-
lished RNAI studies of C. elegans and corresponding ontology terms
using established scripts (see Data and code availability). We
extracted all ‘lethal’ terms and their descendants from the pheno-
type_ontology.WS270.obo file and all ‘not lethal’ terms from the
association file (phenotype_association.WS270.wb; column 4).
We used the latter file to identify individual genes reported (in
the peer-reviewed literature) to be linked to ‘lethal’ or ‘not lethal’
phenotypes upon RNAi. For each gene, we then calculated an
essentiality score (ES), defined as the total number of RNAi exper-
iments reporting essential/lethal (E) terms squared divided by the
total number of experiments reporting essential/lethal and non-
essential/viable terms (T) squared (E?/T?). A gene was provisionally

assigned as “essential” (ES > 0.9) or “non-essential” (ES < 0.1); any
other genes with an ES between >0.1 and <0.9 were assigned as
“conditionally-essential”.

2.3. Feature extraction or engineering

For individual genes, features were extracted from six (i.e. geno-
mic, CDSs, overlapping-gene, transcriptomic, protein and ‘vari-
ome’) data sets derived from WormBase, Ensembl and/or
published studies; see Data sets, above).

From genomic data, we extracted features including length,
number of exons, distance from the chromosome centre (average
distance between start codon of the first gene and the stop codon
of the last gene in a chromosome), number of isoforms and pres-
ence/absence of associated Pfam-domains using “biomaRt” for R.
From CDSs, we extracted nucleotide composition and correlation
features using rDNAse (R package) as well as codon usage features
using codonW (http://codonw.sourceforge.net).

For overlapping gene regions, we engineered new features (e.g.,
occurrence of chromatin state-domains; [34-36]) using the pro-
gram BEDTools. The same approach was used to count features
of overlapping genes defined in the GFF file (column 2) obtained
from WormBase. In addition, we engineered additional features
by establishing whether genes overlap outron- and/or exon-
mapping transcription starting sites (TSS) (https://wormtss.utgen-
ome.org) [30].

For ‘pooled’ transcriptomic data, we individually queried all
designated ‘essential’, ‘conditionally-essential’ or ‘non-essential’
genes against the WormExp database, and then recorded the pres-
ence/absence of each gene in each of the first 30 returned data sets.
For developmental transcriptomic data [29], we used the transcrip-
tion levels of individual genes in each developmental stage as fea-
tures. For single-cell transcriptomic data [31], we recorded the
transcription level of each gene in each cell and enumerated the
cells transcribing a particular gene.

From protein sequences, we extracted features using ‘“protr”
utilising all descriptors defined in this R package as well as the
numbers of predicted transmembrane domains and signal peptides
per protein employing TMHMM [38] and SignalP [39], respectively.
We also obtained features from predicted protein subcellular local-
isations using WolfPsort [40] and DeepLoc [41] as well as protein
disorder features employing DisEMBL [42].

For the variomes of C. elegans (variomics-natural file; see Data
sets), we calculated the numbers of SNPs in individual genes using
BEDTools and inferred the effect(s) of individual SNPs on gene
function using SnpEff [43] - these data were employed as features.
The Ka/Ks ratio was calculated from the SnpEff output using an
available script (https://github.com/MerrimanLab/selectionTools/
blob/master/extrascripts/kaks.py). The data sets and code used to
extract or engineer features are in the “R Markdown” script avail-
able at (https://bitbucket.org/tuliocampos/essential_elegans).

2.4. Feature sets

We combined all extracted/engineered features with respective
genes essentiality annotations and stacked this information into a
matrix using R. In this feature matrix, each line represented a gene,
each column represented an extracted feature and the last column
represented the essentiality annotation (“essential” or ‘“non-
essential”); this matrix contained all data (“FULL”). To create a
non-redundant (NR) set of features, we first clustered protein
sequences using USEARCH (parameters: -cluster_fast -centroids)
[44], obtained gene identifiers and then removed genes and associ-
ated features if multiple amino acid sequences had >25% identity,
retaining only the centroid sequences of all individual clusters.
Subsequently, we removed features with low variance from both
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the “FULL and “NR” feature sets using the nearZeroVar method in
“caret”. For “FULL", we also assessed statistical differences in the
features between “essential” and “non-essential” using two-tailed
pairwise t-tests (95% confidence interval) in R (t.test), recording
p-values and Holm-Bonferroni corrected (p.adjust) values.

2.5. Feature selection, ML training and performance assessment

Features were selected by random subsampling from 10% to
90% of data representing ‘“essential” or ‘“non-essential” genes (in
10% stepwise increments) based on a consensus between elas-
ticNet (alpha = 0.5) and ensemble Sparse Partial Least Squares
(SPLS) methods using “glmnet” and “enspls” in R, respectively
[26]. The features were then used to train each of six ML-models
(GBM (Gradient Boosting Machine), GLM (Generalised Linear
Model), NN (Neural Network - perceptron), Random Forest (RF),
SVM (Support-Vector Machine) [26] and XGB (eXtreme Gradient
Boosting - xgbTree) in the “caret” R-package. During the training
process, we employed parameter-tuning and 5-fold cross-
validation, ultimately selecting the models with highest ROC-
AUC. Following subsampling, we employed the remaining data
(90%-10%) to evaluate the performance of the final models using
ROC-AUC and PR-AUC.

Subsequently, we trained each of the six ML-models with 100%
of each set, and calculated the ‘importance’ of each feature for each
ML algorithm for each feature set using the varlmp method in the
“caret” package. For each ML-model, we calculated ROC-AUCs
using 5-fold cross-validation and plotted them against the param-
eters tested. We ranked the predictors according to the median
feature-importance among the best three ML-models and selected
40 consensus-features that were highly predictive of gene essen-
tiality employing the “FULL” or “NR” data set. Then, we assessed
whether these consensus-features correlated with essentiality
using “correlationfunnel”, and evaluated pairwise correlations
among features using “corrplot” (R). Using this reduced set of
consensus-features (NR_SELECTED), we then trained the ML-
methods and evaluated their prediction-performance using ROC-
AUC and PR-AUC. Finally, we assessed variation in these metrics
using bootstrapping (1000-times) employing 90% of the
consensus-features used for training and the remaining 10% for
testing.

2.6. Distribution of gene and SNPs on chromosomes

We counted the number of SNPs per each 1000 bp-window on
each chromosome using published variomic data (high-quality
VCF; release 20180527) [37]. We established the locations of genes
provisionally assigned as ‘“essential”, ‘non-essential’ or
‘conditionally-essential’ (see Subsection 2.2) using the WormBase
GFF file, and generated individual density plots showing the distri-
bution of genes for each chromosome (“ggplot” for R). We com-
pared the distributions of genes by essentiality annotations using
Kolmogorov-Smirnov tests (ks.test in R) [36].

2.7. Gene ontology (GO), transcription and tissue enrichment analyses

Using the GBM, RF and XGB methods trained with NR_SE-
LECTED data, we identified 500 C. elegans genes with the highest
median probabilities of being essential and then conducted gene
ontology (GO), transcription and tissue enrichment analyses. For
these 500 genes, GO enrichment (for biological process, molecular
function and cellular component) was carried out using the Gene
Set Enrichment Analysis available at WormBase [27], DAVID [45]
and WebGestalt (‘over-representation analysis’) [46] databases,
after which WormExp database/website [32] was interrogated for

transcription enrichment. Then, we queried WormBase using the
Tissue Enrichment Analysis (TEA) tool [47].

2.8. Validation of ML predictions using mutant allele data

First, we ranked all genes used in the present study by their
final ML predictions (see Sub-section 2.5). Second, a list of all C. ele-
gans genes with at least one report of a “lethal” phenotype in the
GExplore database [48] was created. Third, we incrementally
searched for all genes in GExplore, according to ML probability,
in an descending and also in an ascending manner, and then calcu-
lated cumulative ratios. These ratios were displayed in a graph
using “ggplot” in R.

3. Results

We built and then employed a well-defined workflow (Fig. 1)
to: (i) annotate genes for essentiality from phenomic data; (ii)
extract features predictive of gene essentiality; (iii) train and test
ML approaches using selected features; (iv) locate essential genes
and SNPs to locations on chromosomes; and (v) explore gene
ontology (GO) and transcription enrichments linked to essential
genes.

3.1. Annotating genes for essentiality from phenomic data

We first categorised sets of genes as ‘essential’, ‘non-essential’
or ‘conditionally-essential’ — with the latter category reflecting dis-
crepant experimental results between or among published studies.
For this categorisation, we inspected the hierarchical phenotype
ontology for C. elegans (in WormBase), obtained 150 ontology-
identifiers and then used them to calculate individual essentiality
scores (ESs) (Table S1). Using these ESs, we provisionally assigned
670 genes in C. elegans as essential, 16,070 as non-essential, and
1721 as conditionally-essential using RNAi data sets (Fig. 2a;
Tables S2-S4). A small percentage of genes annotated as essential
(23 of 670; 3.4%) or non-essential (1616 of 16,070; 10%) were
recorded as having both lethal/essential and viable/non-essential
entries in the phenotype association file from WormBase. Most
gene annotations were supported by results from at least three
published RNAi experiments (via WormBase): 527 (78.6%) for
essential, 13,579 (84.5%) for non-essential and 1592 (92.5%) for
conditionally-essential.

3.2. Predictive features identified from multiple sources

For all individual genes annotated previously, 55,694 features
were identified. Following the removal of features exhibiting low
variance, 1609 features (per gene) were retained and used in sub-
sequent analyses. After p-value correction (Holm-Bonferroni), 801
features displayed significant differences between essential and
non-essential genes (Table S5). More than half (n = 416) of these
features were from protein sequences, 193 from nucleotide
sequences, 42 from transcriptomic data (from the WormExp data-
base), 16 from SNP data, 14 related to subcellular localisation, 9 to
single-cell RNA-seq (scRNA-seq) data, 5 from genomic locations or
gene models, and 4 related to evidence of transcription in different
developmental stages. In addition, we identified 102 predictive
features that overlap with the genomic locations of genes, includ-
ing 50 features derived from WormBase, 49 from epigenetic mark-
ers, 2 from transcription start sites (outron/exon) and 1 from Ribo-
seq (Table S5).



1096 T.L. Campos et al./ Computational and Structural Biotechnology Journal 18 (2020) 1093-1102

Caenorhabditis elegans

Data sets

Genomic Variomic
— Transcriptomic

Epigenetic Phenomic

Proteomic I

Defining essentiality

—— Distributions of
genesand SNPs
on chromosomes

Gene essentiality annotations
essential (n = 670)

Gene Ontology/transcription/tissue
enrichment analyses

t !

Genes with the highest

Essentiality scores (ES) non-essential (n = 16,070) GeBs'\T Et":a ngéczgibg(l)tg) Nl
conditional-essential (n = 1,721) B
* I
Feature extraction/engineering
¥ (n = 55,694 features) Feature subsets Feature selection
1 2 ..
2 Filter out: near-zero variance ]
38 (n = 1,609 features retained)
@
e v 0% Machine-| Learnmg (ML) training
2g & Fullset —————> 4 soo. GBM, GLM, NN, RF, SVM, XGB
g e v | 7'
o3 Filter out: clustering, protein
a2 sequence identity = 25% [10%] Prediction performances
* @ Training —— ROC-AUC
NR set Ml Testing PR-AUC
s v
8 Feature importance <—
® & [« NR_SELECTED set i
- -t
8 | Common features Parameter tuning <
FULL, NR (n = 28)

Fig. 1. Workflow employed in the present study. First, a wealth of publicly available ‘omics data sets for C. elegans were obtained (blue). Then, we employed a ‘scoring system’
to the phenomic data to annotate C. elegans genes for essentiality (green). Next, we extracted or engineered features (yellow) from the data sets to establish feature sets (FULL
- all features; NR - all features from sequences containing <25% amino acid identity; NR_SELECTED - 28 highly-predictive features of essentiality, selected from the NR data
set). These feature sets were used for a systematic evaluation of machine-learning (ML) approaches for essential gene predictions (orange). T-tests and correlation tests were
performed on the FULL and NR_SELECTED sets, respectively. The performances of the individual ML models, and the importance of the selected features for essentiality
predictions were calculated and evaluated (orange). Finally, Gene Ontology (GO), transcription and tissue enrichments were performed, as well as an analysis on the
preferential genomic locations of SNPs and genes by essentiality annotations (grey). (For interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)

3.3. Systematic feature selection, and training/evaluation of ML
approaches

First, we selected a complete (FULL) set of features from ‘essen-
tial’ and ‘non-essential’ genes (filtered) (n = 1609 per gene). Then,
we used subsets of the FULL set (10-90% random samples) to train
six individual ML methods (Gradient Boosting Machine, GBM; Gen-
eralised Linear Model, GLM; Neural Network, NN; Random Forest,
RF; Support-Vector Machine, SVM; and eXtreme Gradient Boosting,
XGB) to predict the same subsets, usually achieving high prediction
performances (ROC-AUC of ~1 and PR-AUC of ~1; Fig. S1). Nonethe-
less, NN and GLM did exhibit a decrease in ROC-AUC (~0.97 and
~0.97, respectively) and in PR-AUC (~0.97 and ~0.8, respectively).
Having trained individual ML methods, we then predicted gene
essentiality from nine independent test-sets (not used for model
training). Each of the six ML models achieved a high ROC-AUC of
0.94 to 1.0, with PR-AUCs of 0.75-0.95 for GBM, RF and XGB, and
0.65 to 0.76 for GLM, NN and SVM (Fig. S2). Only the latter model
decreased PR-AUC as more data were added to individual training
sets. Subsequently, we used the FULL set for the final selection of
features and to train each of the six ML methods. Using this

approach, we identified 418 predictors of gene essentiality, with
the relative importance of these predictors being recorded for each
model (Table S6).

Second, we created a non-redundant (NR) set of features by
clustering protein sequences, retaining the centroid sequences
with <25% identity representing all individual clusters. This NR
dataset represented 615 essential and 12,193 non-essential genes,
each having 1609 features. We employed this data set for the sys-
tematic selection of features as well as the training and testing of
all six ML methods. The prediction performances of most ML mod-
els were commensurate with those achieved using the FULL data
set (Fig. 2b - left), with SVM achieving a superior PR-AUC perfor-
mance when trained using the NR set (Tables S6 and S7). Following
feature-selection and training with the NR data set, 291 features
were selected as the ‘best’ predictors of essentiality (representing
a reduction of 30% compared with the FULL set).

Third, we established the minimum number (n = 40) of features
that were highly-predictive for essentiality in the FULL or the NR
data set (Fig. S3); 28 of these 40 features were shared between
the two data sets. These highly-predictive features included: exon
number; gene length; GC content; presence of an encoded signal
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Fig. 2. Curation of essential genes from phenotype data and performance of ML methods for essentiality predictions. A. C. elegans genes were curated for essentiality using
phenotype data available in WormBase. For each gene, an essentiality score (ES) was calculated (y-axis) and ordered using the formula E?/T?, were “E” is the number of entries
relating to lethality/essentiality, and “T” is the total number of entries reported. Genes were annotated as ‘essential’ if ES was >0.9, or ‘non-essential’ if was ES <0.1, or
‘conditionally-essential’ otherwise. B. In the systematic evaluation of gene essentiality predictions (‘essential’ vs. ‘non-essential’) the performance of six machine-learning
(ML) algorithms and a default classifier were assessed, initially with a data set (FULL) containing all genes curated previously and their features. In addition, a non-redundant
(NR) data set with features from sequences that contained <25% amino acid sequence identity was created, and all features identified for these genes were included. Another
data set containing the NR genes and a selection of 28 best-predictive features (NR_SELECTED) was also evaluated. For each data set, random subsets of genes (10-90%, 10%
increments) were used as training sets (x-axis), and the remaining 90-10% used as independent test sets. At each step, the prediction performance was evaluated using the
test set using ROC-AUC (right) and PR-AUC (left) metrics. C. Violin and box plots of ROC-AUC and PR-AUC from 1000 bootstraps of RF, XGB and GBM, with random sampling of
90% of the NR_SELECTED used for training and the remaining 10% of this feature set used for independent testing.

peptide; sequence characteristics (e.g., nucleotide sequence com-
position, which considers order and physiochemical properties
[PseKNC_5_Xc1.CGT] or amino acid triads in a protein sequence
[CTriad_VS115]); epigenetic chromatin-state markers relating to
promoter regions or exon transcription elongation, three of which
associated with early embryo (EE_1, EE_2 and EE_3) and one in the
third-stage larva (L3_2); subcellular localisation; expressed
sequence tag (ESTs) ‘best-hit’ by BLAT (BLAT_Caen_EST_BEST in
WormBase); RNAi probes (RNAi_primary) and peptide fragments
from mass spectrometry (mass_spec_genome); scRNA-seq data
(number of cells with transcription - num_cells_expressed) and
transcription profiles of selected cells (e.g., cele.010.023.TCGTAGA-
GAA - in the germline) (Table S8).

Fourth, we assessed the correlation between 28 individual
(highly-predictive) features and gene essentiality upon pairwise
comparison (Fig. 3a). The correlations ranged between 0.1 and
0.35, showing that no single feature correlated perfectly with
essentiality, which justified the use of multivariate methods for

prediction using ML models. When we assessed the pairwise corre-
lations among the 28 features (378 tests; Fig. 3b), most (>99%) val-
ues were between —0.5 and +0.5, and 12 (<1%) were >0.5. A strong
correlation was recorded for chromatin-state markers in EE_1 to
EE_.3 and L3_2; num_cells_expressed; and scRNA-seq for
cele.010.023.TCGTAGAGAA. Interestingly, num_cells_expressed
also correlated positively with BLAT_Caen_EST_BEST, and the sub-
cellular localisations ‘cytoplasm’ and ‘nucleus’ correlated nega-
tively with ‘endoplasmic reticulum’ (Fig. 3b).

Fifth, we assessed the performances of the six individual ML
models to predict essentiality from the NR data set using the final
set of 28 highly-predictive features (NR_SELECTED data set). High
ROC-AUCs (>0.95) were achieved for training sets. PR-AUCs were
consistently ~1.0 for the XGB, GBM and RF models, compared with
performances of ~0.98-0.85 for NN, 0.88-0.84 for SVM and 0.78-
0.74 for GLM (Fig. 2b). For test sets, ROC-AUCs were >0.92 for all
six ML models, and PR-AUCs were 0.85-0.96 for XGB, GBM and
RF, and 0.65-0.77 for SVM, NN and GLM. An evaluation of the med-
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Fig. 3. Correlations of features with essentiality; distributions of single nucleotide polymorphisms (SNPs) in and gene essentiality density along C. elegans chromosomes. A.
The correlations (x-axis) of 28 highly-predictive features (y-axis) with gene essentiality. B, The pairwise correlation among these 28 predictors. C. The distribution of SNPs
(1000 bp- windows) along C. elegans chromosomes, based on a variant-call file (VCF) derived from whole-genome sequencing of natural C. elegans populations [37]. D. Density
plots showing the distributions of genes along C. elegans chromosomes, stratified by essentiality annotations (red - ‘essential’; blue - ‘non-essential’; yellow - ‘conditionally-
essential’). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

ian importance of each of the 28 highly-predictive features for all
six ML models showed that ‘num_cells_expressed’ (71.26), ‘BLAT_
Caen_EST_BEST’ (66.62) and ‘RNAi_primary’ (54.98) were the
strongest predictors using NR_SELECTED data (Table S8). Using
the same data set, we assessed variation in the ROC-AUCs and
PR-AUCs by bootstrapping (random subsampling; 90% of the data
for training; 10% for testing; n = 1000) employing XGB, GBM or
RF (Fig. 2c); ROC-AUCs were consistently >0.90 for these three
ML models, with XGB and GBM each achieving a median ROC-
AUC of >0.98. PR-AUCs were consistently >0.7 for these three mod-
els, occasionally achieving ~1, with a median of between 0.85 and
0.90.

Sixth, the entire NR_SELECTED data set was used to predict
essentiality for each individual gene included here employing each
of the six models, and essentiality probabilities calculated (Tables
S9 and S10). Using the best performing models (i.e. GBM, RF and
XGB), 755 genes were assigned as ‘essential’ based on high median
probabilities (>0.70). Almost 65% of these genes (n = 490) had been
annotated previously, based on ESs, as essential, 34% (n = 255) as
conditionally-essential and 1% (n = 10) as non-essential. For each

of the data sets (i.e. FULL, NR and NR_SELECTED), we then assessed
the effects of parameter-tuning on ROC-AUC using a 5-fold cross-
validation for each of the six final ML models (Figs. S4-S6). For
the parameters tested, we observed that the prediction perfor-
mance (ROC-AUC) was superior using a regularisation-parameter
value of <0.02 for GLM; sigma-parameter of <0.02 for SVM;
>1000 boosting iterations and max-tree-depth of >3 for both
XGB and GBM; >10 hidden-layer units for NN; and randomly
selected predictors of 10-50 for RF.

Finally, the validation of the final ML predictions against inde-
pendent mutant allele data available in the GExplore database
[48] (Fig. 4) showed that 7.25% of all C. elegans genes studied here
have at least one “lethal” phenotype recorded in GExplore. The
ratios of genes with a “lethal” phenotype were higher (>20%) for
genes with higher ML probabilities (>0.7), and these ratios
decreased to 7.25%, as more genes with lower probabilities were
included in the search. Conversely, the ratios were consistently
low (<5%) for genes with the lowest ML prediction probabilities
(<0.1), and increased to 7.25% as more genes with higher ML pre-
diction probabilities were included.
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3.4. Essential genes and SNPs are usually located centrally on
autosomal chromosomes of C. elegans

We calculated the numbers of SNPs per 1000 bp and then plot-
ted them on to chromosomes (Fig. 3¢). Interestingly, there were
considerably more SNPs along chromosome arms than in the cen-
tres, except for sex chromosome X where SNPs were evenly dis-
tributed. Then, we investigated respective distributions (density
plots) of essential, conditionally-essential and non-essential genes
on chromosomes (Fig. 3d). We showed that essential genes (usu-
ally) have a higher density in the middle of autosomal chromo-
somes | to V rather than their arms, whereas the density of non-
essential genes was higher in the arms of autosomal chromosomes
(I-V; Fig. 3d). Interestingly, essential and conditionally-essential
genes had similar distributions on all autosomal chromosomes,
except chromosome III where the distributions of conditionally-
essential and non-essential genes were similar. On sex chromo-
some X, there appeared to be a preference for essential genes on
its left-arm.

The gene density patterns appeared to match SNP densities on
chomosomes. Notably, essential genes are preferentially located
within regions of low SNP density, as these genes tend to be more
conserved than non-essential ones. Moreover, most essential genes
are found on autosomal chromosomes (n = 173 on chromosome I;
124 onll; 131 onIIl; 120 on 1V; 103 on V), and only a small number
(n=19) on the sex chromosome. Using Kolmogorov-Smirnov tests,
we compared gene densities along chromosomes; there were sig-
nificant differences between essential and non-essential
(p = 1.243e7%), and between non-essential and conditionally-
essential (p = 4.79e~'2), but not significant between essential and
conditionally-essential genes (p = 4.651e™).

3.5. Gene ontology (GO) and transcription enrichments pertaining to
essential genes

Multiple separate GO enrichment analyses (WormBase, Web-
Gestalt and DAVID) revealed information on the biological pro-
cesses, cellular components and molecular functions for which
essential genes play a role. For biological processes, the three most
significant terms were ‘peptide biosynthetic process’ (99 genes),

‘cellular macromolecule localisation’ (73) and ‘embryo develop-
ment ending in birth or egg hatching’ (66) (WormBase;
p < 1.3e'% Table S11); ‘embryo development ending in birth or
egg hatching’, ‘ribonucleoprotein complex biogenesis’ and ‘transla-
tion’ (WebGestalt; Fig. S7); ‘translation’ (88 genes), ‘protein trans-
port’ (26) and ‘intracellular protein transport’ (24) (DAVID;
p < 2e7'% Table S12). For cellular components, predominating
terms were ‘organelle’ (412 genes), ‘cytoplasm’ (325) and ‘en-
velope’ (60) (WormBase; p < 1.7e8; Table S11); ‘cytosolic large
ribosomal subunit’, ‘cytosolic ribosome’ and ‘large ribosomal sub-
unit’ (WebGestalt; Fig. S8); ‘intracellular ribonucleoprotein com-
plex’ (63 genes), ‘ribosome’ (62) and ‘cytosolic large ribosomal
subunit (30 (DAVID; p < 1.5e"%; Table $12). For molecular func-
tions, highly-enriched terms were ‘structural constituent of ribo-
some’ (62 genes); ‘protein heterodimerisation activity’ (31) and
‘primary active transmembrane transporter activity’ (18) (Worm-
Base; p < 2.9e7%; Table S11); ‘ATPase activity, coupled to trans-
membrane movement of ions’, ‘structural constituent of
ribosome’ and ‘structural molecule activity’ (WebGestalt; Fig. S9);
‘nucleotide binding’ (104 genes), ‘ATP binding’ (78) and ‘structural
constituent of ribosome’ (61) (DAVID; p < 1.3e%; Table S12).

For transcription (WormEXP database; Table S13), there was an
enrichment of targets for small RNAs bound to CSR-1 - an argonaut
responsible for chromatin segregation and the protection of germ-
line gene expression [49,50], gene down-regulation in gonad-
ablated C. elegans, constitutive post-embryonic gene expression
as well as matches to orthologues in D. melanogaster and S. cere-
visiae (Table S14). The transcription of most essential genes
(92.6% of 500) was enriched in the ‘reproductive system’ (including
germline and gonad tissues) (WormBase; Table S14).

4. Discussion

Here, we demonstrate that gene essentiality in C. elegans can be
reliably predicted using ML models trained using: (i) sets of genes
which are well-annotated for essentiality and (ii) features selected
and/or engineered from ‘omics data. We also reveal highly-
predictive features and multiple gene ontology and tissue enrich-
ment analyses to associate with the functions of essential genes
in the worm.

The prediction of essentiality from published functional geno-
mic (i.e. RNAI) experiments can be challenging because of ambigu-
ous or contradictory results achieved as a consequence of
variations relating to C. elegans strains, techniques (soaking vs.
injection), experimental conditions used, a lack of repeatability or
reproducibility of findings and, in some instances, off-target effects
in RNAI [51]. In order to not exclude data for genes that might be
essential, we created a scoring system for the inclusion of
conditionally-essential genes with ambiguous or variable results
from previously published studies. Indeed, the present investiga-
tion using well-trained ML models showed that some of these
genes provisionally assigned as ‘conditionally-essential’ (e.g., dpy-
23 [WBGene00001082]; rpl-7 [WBGene00004418] and vha-15
[WBGene00020507]) are highly likely to be essential (Table S10).
Indeed, “lethal” phenotypes have been recorded for dpy-23
(WBGene00001082) and vha-15 (WBGene00020507) in gene
knockout data sets in the GExplore database. In addition, 10 genes
provisionally assigned as non-essential appear to be essential
based on ML predictions. For instance, phenotype information
linked to essentiality upon knockout (‘L1 arrest’ and ‘reduced
brood size’) has been reported for vav-1 (WBGene00006887) in
GExplore. Nonetheless, further work is required to experimentally
prove essentiality predictions using classical or modern (e.g.,
CRISPR/Cas9) gene knock-out methods [52].
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Employing large-scale feature engineering, we identified strong
essentiality predictors, not previously described, and showed that
it is possible to predict gene essentiality reliably without pro-
tein—-protein interaction network data — which can be error prone
[53]. We identified a small number of features (n = 28) that, collec-
tively, contributed to a significant improvement to ML prediction
performance. Some of these predictors relate to exon number, GC
content and subcellular localisation, identified previously by other
workers [23], and novel genomic features such as scRNA-seq or
epigenetic markers. Particularly exciting were the four epigenetic
markers, EE_1, EE_2, EE_3 and L3_2, identified as being strong pre-
dictors of essential genes. For instance, EE_1 and EE_2 corre-
sponded to chromatin states, defined in early embryos by the
markers H3K4me3 and H3K4me2, respectively [34]. These markers
are known to be involved in cellular differentiation [54], lifespan
[55] and/or aging [56], are present in germline cells [57] and are
represented throughout the life cycle of C. elegans [34]. Interest-
ingly, H3K4me3 has also been associated with gene essentiality
in human cells [58]. Previous work [59] has shown that chromatin
organisation is highly variable among select metazoans, which
would partially explain the distinctiveness in the spectra of essen-
tial genes among species [26]. This aspect stimulates studies to
explore which features that are predictive of essentiality are com-
mon to or distinct among eukaryotic species representing closely
and distantly related groups.

The ML models trained using selected features reliably pre-
dicted essential genes in C. elegans based on a thorough evaluation
using multiple independent test sets and threshold-independent
metrics (ROC-AUC/PR-AUC). PR-AUC is recognised to be more
informative for ‘imbalanced’ data sets (e.g., markedly more non-
essential than essential genes) [60]. In our systematic evaluation,
we showed that predictions were quite consistent among the six
ML methods and data sets of different sizes, with high prediction
performances being achieved using a data set (i.e. NR_SELECTED)
that was less prone to sequence bias. Moreover, the ensemble-
based ML methods (XGB, GBM and RF) were shown to be most
suitable for essentiality prediction, in accordance with other recent
findings [26,61]. Here, we calculated probabilities for gene essen-
tiality based on predictions made using high-performing ML meth-
ods trained with the NR_SELECTED data set. In addition, a
validation conducted using independent functional genomic (mu-
tant allele) data revealed a clear relationship between the ML pre-
dictions and the likelihood of a “lethal” phenotype upon knockout.
Future work should focus on experimentally confirming our ML-
based predictions.

We showed that essential genes in C. elegans tend to be located
in or near the centre of autosomal chromosomes, and are positively
correlated with low SNP densities and epigenetic markers in pro-
moter regions [34,62]. GO results inferred that essential genes in
C. elegans are involved in protein and nucleotide processing, are
transcribed in most cells, are enriched in reproductive tissues
and/or are targets for small RNAs bound to the argonaut CSR-1. It
has been reported that the CSR-1 and its targets are involved in
chromatin segregation [49] and protection of germline cells against
piRNA-mediated silencing [50]. This argonaut appears to be
responsible for holocentromere organisation [63,64] particularly
in nematodes of evolutionary clades V and III [64,65]. Collectively,
this information stimulates future investigations of the chromoso-
mal structures and intricate molecular mechanisms linked to gene
essentiality, which likely govern the life/survival of nematodes of
these clades. Interestingly, selected (non-conserved) essential
genes in C. elegans are known to be involved in chromatin segrega-
tion [66] and exhibit characteristics of house-keeping genes [67],
which might suggest an interplay between epigenetic markers
and small RNA pathways in the germline [68] linked to a transcrip-

tion ‘memory’ profile of gene essentiality that is transmitted to the
next generation of cells.

5. Conclusion

This study shows that well-trained ML methods can be useful
tools to predict essential genes in C. elegans. From a biological per-
spective, our findings show that essential genes tend to be located
in or near the centre of autosomal chromosomes; are positively
correlated with low SNP densities and epigenetic markers in pro-
moter regions; are involved in protein and nucleotide processing;
are transcribed in most cells; are enriched in reproductive tissues
or are targets for small RNAs bound to argonaut CSR-1. Based on
these results, we speculate that there is an intimate interplay
between epigenetic markers and small RNA pathways in the germ-
line, with one or more transcription-based memory profile(s).
From an informatic perspective, although the present ML approach
seems promising for broader application, it remains to be estab-
lished whether essentiality can be reliably predicted in distantly
related taxa, based on evidence for C. elegans (cf. [26]). This aspect
requires in-depth evaluation. As a first step, we propose to pre-
dict/explore gene essentiality in D. melanogaster - for which exten-
sive data and feature sets are available - using the present ML
approach, and then to compare findings with those achieved here
for C. elegans. Such an investigation would establish whether there
is a panel of concordant features which are strong predictors of
essentiality in both of these model organisms (superphylum
Ecdysozoa). If successful, the next step would be to assess the
applicability of our approach to a range of metazoan (invertebrate)
taxa, for which suitably large and informative genomic, transcrip-
tomic and/or proteomic data sets are available (in the absence of
functional genomic and PPI network data sets), so that a panel of
“universal” strong predictors of essentiality can be defined for
invertebrates.

6. Data and code availability

The data used herein, the code developed to perform the sys-
tematic ML approaches as well as information regarding software
versions and attached libraries are available at: https://bitbucket.
org/tuliocampos/essential_elegans. A static version linked to this
publication is available at: https://doi.org/10.6084/m9.figshare.
11533101.
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