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Abstract

Biogeographical regions (geographically distinct assemblages of species and communities)
constitute a cornerstone for ecology, biogeography, evolution and conservation biology. Species
turnover measures are often used to quantify spatial biodiversity patterns, but algorithms based on
similarity can be sensitive to common sampling biases in species distribution data. Here we apply
a community detection approach from network theory that incorporates complex, higher order
presence-absence patterns. We demonstrate the performance of the method by applying it to all
amphibian species in the world (c. 6,100 species), all vascular plant species of the USA (c.
17,600), and a hypothetical dataset containing a zone of biotic transition. In comparison with
current methods, our approach tackles the challenges posed by transition zones and succeeds in
retrieving a larger number of commonly recognised biogeographical regions. This method can be
applied to generate objective, data derived identification and delimitation of the world’s
biogeographical regions.

Considerable attention has been devoted to develop methods that can confidently assign
individuals to populations (1, 2), and then group those populations into phylogenetic entities
that deserve the status of species or evolutionary units (3). How species then co-exist and co-
interact to form clusters at higher levels, of similar taxonomic and eco-physiological
characteristics, is much less understood. This is surprising, considering that already by the
19t century prominent naturalists such as Humboldt and Bonpland (4), de Candolle (5),
Prichard (6), Sclater (7) and Wallace (8) had all realised that the world’s biota is divided into
a number of more or less distinct units.
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The recognition and use of biogeographical regions, or bioregions, offers several advantages
as compared to studying individual species or communities, and has therefore gained in
popularity in recent years in both terrestrial and aquatic systems (9-12). A bioregion based
approach in macroecology and evolution can be used to assess to what extent lineages are
able to cross major ecophysiological barriers over evolutionary time, i.e. their degree of
niche conservatism in a broad sense (13, 14). Evidence is growing that different bioregions
will be affected differently by climate change (15, 16), so understanding their origins and
evolution (17, 18) may provide further indications of their expected resilience to future
climate changes (19). Bioregions may also be used as operational units in ancestral
reconstruction analyses, aimed at inferring key biogeographical processes (dispersal,
vicariance, speciation and extinction) for particular lineages (20). Finally, a cross-taxonomic
approach based on bioregions also offers important advantages in conservation biology as
compared to focus on single taxa, not least in species rich areas such as seasonally dry
tropical forests (21, 22). In such areas, conservational efforts may be better targeted towards
protecting remaining patches of threatened bioregions rather than focusing on particular
species. In this sense, bioregions may be considered analogous to Biodiversity Hotspots, a
concept based on species richness, endemicity and threat, which has received enormous
attention in ecology, biogeography and conservation in the last decades (23).

Many studies take for granted the identity and delimitation of biogeographical regions
around the world. Yet, there is little agreement on how to best classify and name such
regions, with several conceptually related terms being used, often interchangeably (24, 25).
These include biome, ecoregion, realm, province, zoo/phytogeographic region, ecosystem,
ecozone, chorotype, dominion, areas of endemism, concrete biota, chronofauna, nuclear
area, horofauna, cenocron, phytocorion, generalised track, biogeographical/taxonomic/
species assemblage, and domain. Regionalisation concepts vary among disciplines (e.g.
between zoology and botany) and regions, with e.g. Africa having a generally accepted
system for plants (26), whereas South America lacks a unified, congruent floristic
classification (22, 27). Moreover, different names may apply to the same unit; examples in
South America include the Cerrado vs the Brazilian savanna, and the Paramo vs high
altitude Andean grasslands (e.g. 28).

One common feature in most schemes of bioregionalisation (the scientific discipline that
deals with identifying, delimiting and naming biogeographical regions) is an internally
implied hierarchy. This is for instance evident in the terrestrial classification system of Olson
et al. (12), which is the one adopted by the World Wide Fund for Nature (WWF) and
recognises 8 realms, nesting 14 biomes which in turn contain 867 ecoregions. In that
scheme, ecoregions are defined as " relatively large units of land containing a distinct
assemblage of natural communities and species, with boundaries that approximate the
original extent of natural communities prior to major land use change” and

reflecting " distributions of a broad range of fauna and flora across the entire planet”. This
and other classification systems widely used in biogeography (e.g. (8)) include a key
taxonomic component, thus contrasting with purely abiotic approaches such as the Képpen-
Geiger Climate Classification (29), which in its latest update (30) is based solely on ranges
of temperature, precipitation, and their distribution over the year.
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Perhaps more importantly than the lack of consensus in terminology and classification
system used for biogeographical regions, which is to some extent more of a semantic issue
rather than a true biological problem (25), there remains controversy on how to best identify
and delimit these regions — regardless of hierarchical status. In the last decades, deductive
approaches have started to be replaced by more analytical, transparent and reproducible
methods (31-33). However, bioregionalisation based on species distribution data needs to
deal with particular challenges such as biased taxonomic sampling. Even so, it has been
shown to outperform even high resolution remote sensing techniques that rely on structural
differences in vegetation (22) and may therefore be more sensitive to human mediated
effects on the landscape, such as changes in land use and land cover (e.g. clearing,
plantations, irrigation, drainage and urbanisation).

The detection of bioregions is impacted by how we choose to quantify biogeographical
structure, which up to now has been chiefly a variety of species turnover measures based
theoretically on beta diversity (31, 32, 34). Species turnover, as measured by set based
similarity measures such as the Jaccard (35), Serenson (36), and S-similarity (34, 37),
quantifies the relationship of one region to another, typically by dividing the nhumber of
shared species between two regions by some measure of the total species in both regions
(38).

Despite their widespread use, species turnover measures can miss intricacies of
distributional data that are relevant for bioregion detection. First, species turnover tends to
increase with greater geographical distance from a source, bringing into question whether
bioregions are determined by distance alone or real changes in taxonomic affinities (39).
Second, for small spatial scales turnover can overestimate disparity due to competitive
exclusion, spatial clustering, and environmental gradients (40). Although this problem can
be reduced with large plot sizes, it is expected to persist even for large spatial scales.
Furthermore, competitive exclusion can create geographical boundaries between species that
cohabit the same bioregion. 7#ird, some generally recognised bioregions span many degrees
of latitude, such as the North American Rocky Mountains and the American Great Plains,
and may contain climatic and environmental heterogeneities that can cause narrowly
distributed taxa to occupy non overlapping fractions of the same bioregion (Fig. 1). Fourth,
differences in taxonomic sampling are expected to inflate turnover. For example, taxonomic
standards may differ within bioregions for rare species. For deep time studies, marine fossil
assemblages may for instance not co-preserve aragonitic and calcitic shells. These processes
collectively bias turnover measures, because the number of shared species cannot always be
trusted as good gauge of bioregion identification.

Here we present a data driven approach that uses associational networks to minimise the
problems described above and to extract more community level information from species
occurrence data. We show that this method can be used to successfully detect
biogeographical regions in two well validated empirical datasets: all amphibians of the
world, and all vascular plants of the United States of America. The empirical datasets
provide contrasting examples of how biodiversity data is currently available: they are
aggregated at different scales (global and national), grain sizes (two degree grid cells vs US
counties), and were constructed under different sampling methodologies. We then further
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validate our method on a hypothetical dataset containing a zone of biotic transition. Our
results are strikingly congruent with opinion generated bioregion delimitations, indicating
that the network method developed here holds the potential to greatly improve the
identification and delimitation of the world’s biogeographical regions.

of the world

In an occurrence network (Figure 2A), bioregions appear as groups of localities and taxa that
are highly interconnected. Figure 2B shows a visualisation of the network of all native
amphibian species of the world. In this network, the broad spatial separations of clusters are
closely equivalent to realms (8, 33), while the bioregions are coloured differently within
each larger cluster. The links that cross between realms correspond to the relatively few
widespread species that inhabit multiple bioregions on multiple realms and continents.

Our analysis identified 10 major bioregions (closely equivalent to zoogeographical realms)
and 55 smaller biogeographical regions as the optimal representation of the full amphibian
dataset (Figure 3A). This differs from the approach in Holt ef a/. (33) using a species
turnover measure, which identified 19 bioregions as optimal. These results differ also
qualitatively, showing some differences in the boundaries of the biogeographical regions
detected. For instance, the network method is able to successfully detect Wallacea, a well
known and thoroughly studied biogeographical region situated between Wallace’s and
Weber’s line (42, 43) (thick black lines in Fig. 3A). Weber’s line emerges as the major
boundary between the Oceanian and Oriental faunas, corroborating the results by Holt et al.
(33) which however did not recover Wallacea under the analysis of amphibian data. To
illustrate how well range limits reflect bioregion structure, we coloured geographical ranges
by the region they were assigned to (Fig. 3B).

Vascular plants

Comparing species turnover visually between different distance metrics is one way to build
intuition about the differences between those metrics. Many network clustering methods do
not use an explicit distance measure, but one can be derived to compare bipartite networks
against the similarity approach. One such measure can be created as follows for the plant
data: for a given focal county, extract its occurrence list. Now, for each species 7in the

occurrence list, give ni vote to each county that species 7is distributed in, where 7;is the
i

number of counties species 7occupies. This builds a distance measure for the focal county
against all other counties that share the focal county’s species. Fig. 4 shows this approach
applied to the plant data, revealing more localised distribution patterns than the similarity
approach. We suggest this leads to a sharper delimitation of biogeographical regions (Fig.
4A) as compared to distributional data clustered by a similarity index, in which the
taxonomic affinity of grids decreases gradually across space, diluting biogeographical signal
(Fig. 4B).

Applying a commonly used similarity approach to our three USDA datasets of native plants,
the number of clusters selected as optimal was 11 for all plants, 22 for trees, and 14 for non
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trees. The resulting optimal partition of counties for all datasets (Fig. 5, middle column)
reveals little biogeographical structure. For all native plants, the boundary between the two
largest clusters approximates the boundary between the American Great Plains and Eastern
Temperate Forests, but it is dominated by rigid state boundaries and fails to distinguish, for
example, the Everglades in southern Florida, the Pacific Coast, and the Rocky Mountains.
The tree dataset separates the Everglades from the rest of the United States, and the non tree
dataset mimics the major boundaries in the all plant dataset but contains more clusters that
are also US states.

To explore whether the similarity approach could be arbitrarily forced to unveil deeper
structure, we also chose to visualise the partitions with 40 clusters selected, although this
delineation is not optimal (Fig. 5, right column). Some biogeographical structure becomes
apparent at this level — the American Great Plains is cleanly separated from the American
West, although this bioregion unrealistically extends into the American Southwest desert.
The reconstruction based on these 40 clusters is also plagued by a number of boundaries
coincident with US state boundaries in the American midwest. In the tree level data, the
Great Plains division becomes apparent, as well as a clean separation of the Southwest
desert from the American West. In the non tree dataset, a latitudinal boundary is evident in
the Eastern Temperate Forests bioregion, but also contains ample state level biases.

To test the application of our network method on vascular plants, we generated a network
dataset from the same USDA plant data, with county nodes connected to species nodes if the
species was identified as natively present in that county. We clustered these data with the
map equation — an algorithm that detects community patterns in networks (44-46). A pilot
analysis revealed little hierarchical structure in the dataset, so we opted to use a two level
implementation of the map equation, which produces & clusters instead of hierarchically
nested groups of clusters (44). The apparent lack of hierarchy in the dataset is likely an issue
of large grain and low scale (counties within a single country). Higher resolution data, such
as a database produced from geographical coordinates, might produce greater subdivision.
Applied to the three USDA datasets of native plants, the number of clusters selected as
optimal by the map equation was 25 for all plants, 19 for trees, and 16 for non trees. Because
the algorithm that seeks the best partition is stochastic, we ran it 1000 times and selected the
partition that minimised the scoring function in the map equation.

Broad similarities are evident across the network clustering results for all native plants, trees,
and non trees (Fig. 5, left column). There are, however, a number of differences. For
instance, the Everglades are only evident from the tree only dataset. The West Coast forms a
separate bioregion under the analysis of all plants as well as all non trees, but the Pacific
Northwest is omitted from this bioregion when only trees are considered. In the American
midwest, the American Great Plains appear much smaller when only trees are considered.
These differences may reflect intrinsic biological differences among the datasets analysed
(e.g. differences in ecological niche conservatism, edaphic adaptations, dispersal ability), but
sampling issues are also apparent. For instance, the southern deserts of Arizona and
surrounding areas follow some rigid state boundaries, suggesting that large county sizes in
the area obscure finer demarcation. State level biases are also evident in Lousiana for the
native tree data, but not for the other two datasets.
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Hypothetical dataset

We compared the performance of the species turnover and the network approaches on a
simulated dataset. Using gB-similarity and UPGMA on the hypothetical dataset of Kreft &
Jetz (47), the transition zone is engulfed by the Northern realm for a choice of two clusters,
and it is a distinct cluster if three clusters are chosen (Fig. 6B). The data are symmetric, so if
the matrix rows are swapped the transition zone is engulfed by the Southern realm.

Applying the network method to the same data results in an optimal partition of four
clusters: one contains all of the Southern fauna and grid cells 1-14, one contains all of the
Northern fauna and grid cells 17-30, while grid cells 15 and 16 each form their own cluster
(Fig. 6C). This partition is slightly preferred over a two cluster solution, which cuts the data
evenly into two biogeographical zones. This example reveals the benefit of clustering both
species and grid cells together as under the network method, as opposed to clustering grid
cells with distances proportional to the number of shared species; grid cells 15 and 16 can
easily be identified as transition zones because no species are clustered with them (Fig. 6C).

Discussion

Our network analyses of empirical and hypothetical datasets reveal important differences as
compared to approaches based on species similarity. These are not only quantitative in terms
of resolution — i.e. the total number of regions identified — but also qualitative, affecting both
the areas and the boundaries of biogeographical regions.

For the amphibian dataset, the differences in number of zoogeographical realms and
bioregions found by our network method as compared to the similarity analysis by Holt et a/.
(33) do not arise from a lower cutoff threshold for our approach, because we followed their
procedure for merging regions with less than 10 grid cells into the closest regions. Rather,
we interpret this difference as stemming from a fundamental difference in methodology —
our approach clusters patterns of presence-absence relationships, while theirs identifies
clusters of grid cells with low distributional and phylo-distributional turnover.

Our results suggest that, at least for amphibians, turnover measures based on species
distribution data alone may be sufficient to identify realm boundaries. This conforms with
the distribution only approach undertaken in Holt ef a/. (33), which similarly identifies
Weber’s line as the realm boundary between the Oriental and Oceanian faunas, although it
does not identify Wallace’s line. This suggests that Weber’s line may be more robust and
independent of methodology than Wallace’s line.

At a finer scale, our analysis was able to recover many expert based biogeographical regions
around the world. Taking South America as an example, our analysis not only identified the
2-3 major regions found by Holt et a/. (33), but also successfully recovered climatically and
physiognomically distinct bioregions — roughly equivalent to biomes in WWF’s
classification (12). These include the seasonally dry and fire prone Brazilian Cerrado, the
evergreen Atlantic forest of eastern Brazil, and the geologically old and nutrient poor
Guianan highlands, among several other regions that were not recognised by our benchmark
example using similarity (33). We also note some important differences in the area and
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delimitation of these bioregions. The western limits of the Amazonian region inferred by
Holt et al. (33), for instance, cuts across the Andean mountains, despite the enormous
altitudinal and physiological differences between these two regions. Our delimitations better
conform to the commonly recognised boundaries between the Andes and Amazonia (48),
thus reflecting not only taxonomic differences but also current topography, climate, and
evolutionary history (49).

The inference of biogeographical regions for vascular plants of the USA led to similar
methodological differences as compared to the analysis of amphibian data. In particular, the
species clustering approach based on similarity exhibited both quantitative as well as
qualitative shortcomings: it was unable to distinguish more than a few biogeographical
regions under its optimal clustering, and it was heavily biased by political state boundaries

(Fig. 5).

These shortcomings are perhaps unsurprising given a few challenges of the task, which we
chose to illustrate the potential pitfalls encountered in empirical datasets of species
distribution. First, we clustered raw occurrence data as presence or absence of a species in a
county. This becomes evident in the output of the similarity analyses, as presence/absence
data is often compiled at the state rather than the county level, producing apparently unique
floras at the state level (mostly evident in Fig. 5, right column). Second, county sizes differ
substantially, creating an artifactual richness bias that is correlated with county size
(Supplementary Fig. 1). This pitfall might have been avoided by re-aggregating data by
evenly sized grid cells and using an equal area coordinate system to remove latitudinal
biases, but it should be already minimised by the Simpson’s similarity index utilised. The
compilation of spatial data under different aggregation schemes is well known to produce
systematic biases in spatial analyses, a phenomenon termed the Modifiable Areal Unit
Problem (50, 51).

In cases where the taxa studied show clear geographical biases, such as American plants
(52), species distribution models (SDMs) could have been used as an alternative to range
maps. This would have reduced the bias of identifying political state boundaries as bioregion
limits in our empirical example using the similarity approach (Fig. 5). However, we identify
two inherent pitfalls. First, SDMs are still largely sensitive to the data and methodology used
(53), carrying their own sets of problems and assumptions — such as reliance on interpolated
climatic data, general unavailability of non climatic niche variables, and exclusion of
potentially crucial lineage specific traits such as dispersal ability, biotic interactions,
population dynamics and evolutionary history (54). Second, using SDMs for bioregion
inference could become conceptually circular. If we are to understand how species cluster
into distinct bioregions, and how the boundaries of these bioregions relate to environmental
gradients, this comparison needs to be post hoc. We cannot use SDMs to delineate the same
bioregions that are then used to compare their correspondence to environmental variables,
because these variables are already the major component of SDMs.

Considering these pitfalls, we argue that new methods for biogeographical delineation must
be designed around the current challenges offered by real occurrence data — which are
geographically and taxonomically biased, but nevertheless constitute the most reliable
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evidence on where species occur. Here we have provided evidence that the network
approach presented here outperforms current methods based on similarity.

Delimiting bioregions with networks

To classify bioregions based on species distribution data we hierarchically classify groups of
species and grid cells into biogeographical regions. To achieve this goal we borrow from the
techniques developed in network science to create a network that will be meaningful for
biogeographical analyses, and then use network clustering algorithms to hierarchically
partition groups of nodes into clusters. In this paper we adapt the methodology presented by
Vilhena et al. (55) and Sidor et al. (46) for modeling species distributions as a network. We
first build the network to be clustered, and then we choose the best clustering algorithm to
infer bioregions.

A bipartite network (Fig. 2) has two disjoint sets of nodes with no links between nodes of
the same set. Many biological systems have been abstracted as bipartite networks, such as
plant-pollinator interactions inferred by visitation (56), sexual contact between heterosexual
partners (57), and interactions between prey and bait proteins generated by yeast two-hybrid
screening, an experimental method to test whether pairs of proteins interact (58).

The geographical relationships between species and localities can also be abstracted as a
bipartite association network, where links are the occurrences of species within geographical
locations. Interpretations derived from analyses of presence-absence networks are
comparable with plant-pollinator networks, because relationships between entities of the
same set are associational, such as co-visitation and co-occurrence. Second order
relationships in presence-absence networks are paths of length two, or 2-paths. The number
of 2-paths between species is the number of times those species co-occur, while the number
of 2-paths between a pair of localities, regions, or grid cells is the number of species shared
by both grid cells. Although second order range overlaps between two species may not be
directly intuitive biologically, in practice it should allow the delimitation of bioregions
comprised of only partially overlapping species. Partial occupancy of a species’ potential
range (Fig. LA) may be due to intrinsic traits (e.g. dispersal ability, tolerance to specific
climatic and environmental variables, ecological interactions) as well as the region’s
physical features (e.g. soil and climatic heterogeneity, geological history, presence of
dispersal barriers).

A more complicated pattern is the number of joint occurrences, where two species occupy
the same two localities. This can be measured as the number of 4-paths that complete a loop
(Fig. 2A). These relationships can be combined to reveal properties of geographical ranges.
For example, the number of 3-paths between a species A and locality B divided by the
number of 2-paths exiting from species A is the fraction of co-occurrences of species A that
also occupy locality B. By setting up the machinery to capture “higher-order” patterns, we
can detect complex patterns of presence-absence.
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The adjacency matrix A of this network formally expresses species occurrences, and is
written

1 if node i is linked with node j

1)

ij 0 otherwise.

For the rows and columns of this matrix, we order first by species (1...7) and second by grid
cells (n+1...n+ m), producing a square matrix with 7+ mrows and 7+ mcolumns. This is
expressed

. @

where B s the binary presence-absence matrix, in which rows are taxa and columns are
localities. The upper left block and lower right block in this matrix are zeroes, because
species cannot occur in species and localities cannot occur in localities. The square of the
adjacency matrix A gives the co-occurrence matrix C between taxa as the upper left square,
or number of co-occurrences between pairs of species, and the matrix of shared species Sas
the bottom right square, or number of shared species between pairs of grid cells

eefs) o

where elements in the upper right and lower left squares of the matrix are zeroes because 2-
paths are exclusively between two species or between two localities. Total paths of length 7
between nodes can be expressed by raising the matrix to the th power. By formulating the
data in this way, new measures can be derived and tools from network theory can be readily
applied. In the next section we apply a common clustering algorithm to this bipartite
network.

Clustering the bipartite species network

Among candidate clustering algorithms, the map equation is the most suitable approach to
be extended to bipartite networks (44-46). The map equation is a general approach that, for
our purposes, corresponds to an intuitive process. First, the algorithm chooses a random grid
cell. 1t then randomly chooses a species found in that grid cell, examines the geographical
range of that species, and selects a grid cell at random within its geographical range. It
repeats this process iteratively and exhaustively. In biota with substantial biogeographical
structure, the algorithm would spend long time intervals within bioregions, crossing only
when it selected a cross-bioregion species.

If the algorithm would be requested to report a list of the grid cells and species chosen, it
would save time to simply list the bioregions visited. The map equation quantifies the
tradeoff between losing detail from all visits and saving time by communicating a shorter
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list; in biota with strong biogeographical structure, it will be better on average to
communicate a shorter list of visits. The map equation has been extended to deal with
hierarchical partitions, which we use to reveal biogeographical regions (44, 45). The
software packages for the two level and hierarchical approaches are available online (http://
WWW.mapequation.org).

Method validation and performance

As a first empirical test case, we apply the network clustering method to the International
Union for Conservation of Nature (IUCN) amphibian database, which contains range shape
files for each of the world’s c. 6,100 included species. We use only native ranges for the
analysis. We choose to analyse distributional data for amphibians (59) because /) we
consider this database to be thoroughly verified by the scientific community; 77) we expect
that the eco-physiological tolerance of the amphibians should be narrower than that for e.g.
mammals or birds, and therefore more closely represent generally recognised
biogeographical regions; and /) this would allow a direct comparison with a recent study by
Holt et al. (33), where both species distribution data alone and combined with phylogenetic
information was used to infer zoogeographical regions and realms at a global scale.

Our second empirical test is performed using the United States Department of Agriculture
(USDA) plant database, which contains the presence or absence of 22,918 native vascular
plant taxa (corresponding to 17,600 species) spread through 50 states and 3143 counties of
the USA. We use only the range of native plants, delineating bioregion structure for all
plants, only trees, and all plants except trees (i.e. herbs, lianas, shrubs, subshrubs and vines).
These data are ideal as a benchmark because they contain several challenges for
computational methods. First, United States county areas are longitudinally biased, with
larger counties in the west and smaller counties in the east (Supplementary Fig. 1). Second,
plant distributions are aggregated differently across states, causing systematic compositional
biases across state borders. 7Aird, counties are unevenly sampled. To our knowledge, no
quantitative bioregion delineation of these data are available for direct comparison.

Lastly, we use a recent hypothetical dataset to illustrate key differences between our network
method and species similarity approaches. In a recent commentary by Kreft & Jetz (47), this
dataset was created to showcase potential pitfalls for selecting the wrong number of clusters.
The hypothetical data contains a transition zone, where the most widespread species in a
Northern and Southern biota co-occur (Fig. 6A). In their analysis (47), the number of
clusters selected as optimal was shown to fully determine whether or not the transition zone
appeared as distinct biogeographical regions. This result was used to illustrate the danger of
classifying transition zones as distinct biogeographical regions, but also highlights the
sensitivity of inferring biogeographical regions based on species similarity measures.

To assess the performance of our network based clustering with a conventional species
similarity approach, we opted for the methodology selected as best in a recent methods
review by Kreft & Jetz (32). To apply that approach to our plant data, we created a matrix of
counties and computed the species similarity between each pair of US counties with species

a

PTCRET Here ais the

data. We applied the B, index to the different datasets, written 1 —
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number of shared species between two species assemblages and & and care the total unique
species to either assemblage (quadrat, locality, grid cell, etc). Note that Bs;n, is 0 when the
species assemblages are either identical or the smaller assemblage is a subset of the larger
assemblage, and B, is 1 when the assemblages contain no shared species. This measure is
considered ideal over more conventional measures (such as the Jaccard) because it is less
sensitive to differences in species richness (32).

To further illustrate how the network measure compares with g-similarity, we calculated
taxonomic plant similarity between each US county and an arbitrarily selected focal grid
(the Mohave County in Arizona), following a similar methodology as described in previous
studies (10, 32, 60). We then performed the same calculation using the network measure and
projected the results on a map. Finally, we clustered the full species similarity matrix with
the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) approach to generate
a hierarchical dendrogram that summarises the distances between counties. From this
dendrogram, we selected an optimum number of clusters by finding the “knee” in the
evaluation curve (61), with the average percentage of county level endemics as our
evaluation measure (32).

The tendency of species to remain in their optimal environment over evolutionary time has
been suggested as a crucial feature shaping the uneven distribution of the world’s biota (13,
18, 62), including the establishment and maintenance of the tropical gradient in species
richness. The origin and evolution of bioregions is also gaining focus in macroecological
meta-analyses using phylogenetic, palaeontological and distribution data (14, 33, 49).

Phylogenetic turnover measures have been used as alternative to (63), as well as in
combination with (33), species distribution data. However, they rely on robust and well
sampled species level phylogenies (which are currently lacking for many organismal groups)
and may introduce circularity when using the identified bioregions for measuring the degree
of phylogenetic niche conservatism as shifts in bioregions are commonly associated with
speciation events. Phylogenies, especially when time calibrated, can be subsequently used to
shed light on the temporal origin, evolution, and phylogenetic relatedness of bioregions.

Important challenges, however, remain in order to further advance bioregionalisations:

1. Quantity and quality of species occurrence data. Mapping the distribution of the
world’s estimated 8.7 million species (64) constitutes a major challenge in
biological research (65) and is paramount for bioregion delineation. The ever
increasing digitisation of natural history collections worldwide now offers access
to over 500 million records at the Global Biodiversity Information Facility
(www.gbif.org), but this figure is still far from the estimated total of one billion
specimens. It is clear that the occurrence data currently available contain
substantial spatial, taxonomic and temporal biases (66), besides a certain
proportion of errors (e.g. misidentified specimens and poorly or wrongly
annotated locality information). Substantial efforts are required to revise such
raw occurrence data and combine them with field observations and expert
knowledge, for producing GIS based polygons of species distribution ranges (e.g.
IUCN, www.mappinglife.org/).
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2. Methodological development and integration. Bioregionalisation will greatly
profit from bringing together different techniques, data and disciplines. These
could include remote sensing, climatic mapping and bioregion modelling based
on key species (22). New methodologies for bioregion delineation need to be
reproducible and transparent about their assumptions. They should offer
measures of reliability regarding the number and boundaries of species clusters
identified, e.g. through bootstrapping techniques. For instance, the delimitation
of the same bioregion may be more or less robust along different edges. Finally,
they should be regularly validated through ground truthing.

3. Theory vs reality. Are biogeographical regions real and natural entities, how
were they formed, how are they maintained through time and space? We still lack
an elementary ecological theory for addressing these questions, despite the fact
that few people contest their existence. We also need to understand how extrinsic
(e.g. climate, geological history, soils) and intrinsic (e.g. functional traits, biotic
interactions, physiology) variables interplay to produce the differences we
observe in the number and delimitation of bioregions based on data from plants,
birds, amphibians, and mammals (33, and this study) — and expand our
inferences to many other understudied groups.

More than a century after the first biogeographical regions were proposed (8), we may now
have enough data to delimit the world’s biogeographical regions in greater detail than
Wallace could ever envision. Our study however illustrates that new methodologies play a
crucial role in this process, and that network methods offer a new set of exciting tools to
classify, delimit and better understand biodiversity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Comparison between similarity based clustering and the network method.

A) Three species (Spl, Sp2, Sp3) occur in the generally recognised Bioregion X, which
spans a large latitudinal gradient. Species diversity is measured from five grid cells
(numbered 1-5). Note that there is little geographical overlap between the species ranges,
represented by circles. B) Diversity similarity (set measures) between grid cells, which
computes the similarity in number of shared species (the Jaccard index is shown here). Note
that the distance between grid cell 1 and 5 is zero, since they do not share any species. C) In
the network method, connectivity between grid cells is established through the species they
contain. In this case, grid cells 1 and 5 are “connected” by a single step through one species
(Sp2), which does not occur in either cell but occurs in other cells (2 and 4) occupied by
species that also occur in cells 1 and 5 (Sp1 and Sp3, respectively).
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Fig. 2. Bipartite occurrence network.
(a) Schematic representation showing the different classes of network connectivity that can

be formed. Species 1 and 2 jointly occur in Locality 1 and 2, which creates a 4-path that
loops, while Species 3 and 4 share a 4-path that does not loop, revealing that the species
range of an intermediary species (Species 2) “connects” the two. (b) A visualisation of the
global amphibian network analysed here (N=6,100 species). The geographical ranges of
widespread species act as highways between biogeographical regions, creating links
between clusters. Each cluster received a different, arbitrarily defined colour to increase
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contrast. Node positions were determined by the Force Atlas algorithm in the Gephi package
(412).
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Fig. 3. Results from the network analyses for the world’s amphibians.
A) Amphibian biogeographical regions of the world determined from geographical range

data. Similar colours indicate membership to a higher level clustering, in this case equivalent
to realms. The analysis used a resolution of two degree grid cells. B) Species range limits
coloured by region. Geographically close and neighbouring regions were given contrasting
colours to highlight boundaries and boundary mixing. Each geographical range polygon was
plotted with a low opacity (0.1), from largest to smallest on a global level, so that regions
with more species appear brighter. (N=6,100 species)
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(Similarity)

Focal grid

Fig. 4. Species turnover of vascular plants.
Map of the USA showing how affinity decreases relative to an arbitrarily chosen county

under A) a network measure of distance and B) a species similarity measure (here g
similarity). The colour gradient ranges from dark (high similarity) to light (low similarity).
The network measure allows mid to narrow ranged species to contribute more strongly to the
metric, revealing sharper boundaries of biogeographical regions.
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Fig. 5. Biogeographical regions of plants in the USA.
The maps show demarcations for three subsets of the USDA plant database: all native plants,

native trees, and native shrubs and herbs. The left column was determined by the map
equation (under the optimal number of clusters in each analysis), while the middle and right
columns were determined by a similarity approach (optimal number of clusters and an
arbitrarily finer scale delineation, respectively). In each map, biogeographical regions were
coloured differently to aid visualisation (rather than reflect identify). Overall, the network
approach captures with broad brushstrokes the patterns of the generally recognised biomes
and biogeographical regions of the USA. Although state level biases are apparent from both
methodologies, they are strikingly more recurrent in the similarity approach. (N=17,600
taxa)
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Fig. 6. Hypothetical transition zone.

A) Species range data across a line of grid cells. These data represent two biotic
assemblages that blend together in a transition zone. B) After clustering these data with
UPGMA+g-similarity, the best representation of these data are as two or three clusters, but
three clusters causes the transition zone to appear as a distinct biogeographical region. C) In
the network clustering, the best representation is as two or four clusters, with four being
optimal (shown). In this optimal partition scheme, the transition zone is composed by two
clusters, each containing a single species — correctly indicating that none of them can be
confidently assigned to any of the major biotic assemblages. In the two cluster solution, the
grid cells are divided evenly between the zones. Colours indicate the number of links that
each node has: grid cells with higher richness and species with larger ranges are redder,
while grid cells with less richness and species with smaller ranges are bluer. The sizes of the
nodes are similarly proportional. “G” denotes grid cell, “N” denotes Northern species, and
“S” denotes Southern species. Node positions were determined with the Force Atlas
algorithm in the Gephi software package (41). (N=30 species)
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