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Stllnmal~ 
Structural diversity enables class Ia molecules to present a diverse repertoire of peptides to the 
T cell receptor. This diversity is thought to be generated by recombinations between class I genes. 
We have found that two dass Ib Q2 alleles exhibit extremely high sequence diversity, even higher 
than class Ia alleles. Clustered nudeotide differences between Q2 b and Q2 k suggest that this 
sequence diversity was generated by microrecombinations between Q2 genes and other class I 
genes. The relatively high expression of Q2 b in the thymus may be significant and perhaps 
suggests a novel role for a Q2 b product in the education and selection of the T cell repertoire. 

E xtensive sequence diversity among alleles of the poly- 
morphic MHC  class Ia loci (H-2 K, D, L; HLA-A, B, 

C) provides the structural basis for the presentation of a wide 
array of peptide antigens to the cellular immune system (1). 
Despite structural homology to class Ia, the restricted tissue 
distribution, limited polymorphism, and sequence conserva- 
tion among class Ib loci (Oo TL, M) were thought to pre- 
clude an immunologic role for these molecules. More recently, 
M molecules have been found to present prokaryotic and mi- 
tochondrial peptides to the immune system (2, 3). Further, 
TL products have been identified as target molecules for both 
or~3 and 3'/5 T cell clones (4-6). Although known to be 
targets of H-2-unrestricted CTL, Q molecules have an as yet 
unknown function (7). We now report that alleles of the Q2 
locus exhibit greater sequence diversity than either class Ia 
or class Ib alleles and appear to have participated in many 
gene conversion-like (microrecombination) events. Q2 b ex- 
pression in the thymus suggests a novel role for this unusual 
class Ib in the formation of the T cell repertoire. 

Materials and Methods 

Genes. The Q1 b and Q2 b genes from cosmid clones LSHT36 
and H26, respectively, were obtained from Dr. R. Flavell (Yale 
University, New Haven, CT) (8), and were digested with BamHI, 
subcloned into pBLUESCILIPT (Stratagene, La JoUa, CA), and 
dideoxy sequenced (Sequenase; United States Biochem. Corp,, 
Cleveland, OH) using gene- and vector-specific primers. 

RNA Preparation and PCR Analysix The preparation of whole 
cellular P, NA was as previously described (9). eDNA was prepared 
by incubating 2/zg of KNA with 100 ng of Q2 b 3' primer (CCT- 
GCGCTTCTCTGCAAG, positions 152-157) or K s 3' primer 

(tacgagaatCTGAGTCTCTCTGCTTCACCAGC, positions 150- 
157) in 20/zl of 1 x PCR buffer (PEXPRESS, Norwalk, CT) with 
additional MgC12 to 6,5 mM and 20 U reverse transcriptase (RT) 
(Life Sciences, Inc., St. Petersburg, FL) for 30 rain at 50~ fol- 
lowed by 95~ for 5 rain. Nucleotide sequence in lower-case letters 
at 5' of the oligonucleotides represents added restriction enzyme 
sites. After the addition of 400 ng 3' primers, 500 ng of Q2 b 5' 
primer (tctggagaattCCCTGAAAC'IGACTGAGACA, positions - 3 
to -9) and K b 5' primer (ttcaagaattCCCTGGCTCCGACT- 
CAGA, positions -3  to -9) 2 U Taq polymerase (PEXPRESS), 
and 1 x PCR buffer to 100 #1, amplification proceeded by incuba- 
tion at 94~ for 30 s, 55~ for 30 s, and 72~ for 1 min. After 
15 cycles, 5 #1 was removed and used as input DNA for an addi- 
tional 25 cycles. Fractionation by agarose gel electrophoresis, transfer 
to GenScreen (New England Nuclear, Boston, MA), and hybrid- 
ization analysis with specific probes was as previously described 
(9). Q2 b- and Kb-specific RT-PCR were carried out in the same 
or in different amplification tubes with similar results. 

Results and Discussion 

Q1 Alleles Are Conserved. Sequence analysis of the Q genes 
of the C3H mouse indicated that Q1 k, while potentially 
coding for an intact class Ib molecule, is one of the most 
divergent Q genes (10). Sequence analysis of exons 1-3 of 
the Q1 b gene demonstrates that the two alleles are almost 
identical, with only two nucleotide differences (Fig. 1 and 
Table 1). This finding extends the previous observation of 
allelic sequence conservation of Q loci (4, 11). 

Q2 s and Q2 ~ Are Alleles and Exhibit Sequence Diversity. 
In contrast to Q1, a nucleotide sequence comparison between 
Q2 b and Q2 k reveals that the two alleles differ from each 
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EXON1 

-21 A 1 
M A L R R L L L L L V A A L K L T E T R 

Q2 b ATGGCGC~CGAAGGCTGCTCCTGCTG~TGGCCGC CCTGA.%ACTGACTGAGACACG CGCGG 

Q2 k ............. C ............. C---C .......... '''---'---'--'--'- 

Q1 b ..... A---G ................. C---CA .......... CC ..... CA-A--CG-A .... 

Q1 k ..... A---G ................. C---CA .......... CC ..... CA-A--CG-A .... 

170 l~0 

E V D C L T W L R R Y L E L G K E T I, [, }I 'I 

Q2 b AGGTCGAT'Iq~CTTGACGTGGCTCCGCAGATACCTGGAGCTCGGGAAGGAGACGCTG CTG CACACAG 
Q2 k ---G---G---G--CA--C ......................................... G ..... 

Q1 b ---G-A-G---C---T ........ A .......................... T ........ G ..... 

Q1 )~ - --G-A-G---C---T ........ A .......................... T ........ G ..... 

EXON2 
1 i0 20 

G S H S L R Y F T T A V S R P G L G E P R F I I 

Q2 b GCTCACACTCGCTGCGGTAT~CACCACCGCCGTGTC CCGGCCTGGCCT CGGGGAGCCCCGGTTCATTAT 

Q2 k ........... A ........... GAG .... T ............ G ................... A-G-CTC 

Q1 B ...................... -GAG---T-G ........... C---T ..... A ............. CTC 

Q1 k ....................... GAG---T-G ........... C---T ..... A ............. CTc 

30 40 

V G Y V D D T Q F V R F D S D A E N P R M E P 

Q2 b CG"/M~CTACGTGGACGACACGCAGTTCGTGCGC'~ACAGCGACGCGGAGAATCCGA~AGC~ 

Q2 k T ..................... G ............................... A ...... TAT ...... 

Q1 h ........................... T ..................... A .......... ATAT ...... 

Q1 k ........................... T ..................... A .......... ATAT ...... 

5 0  6 0  7 0  
R A P W M E Q E G P E Y W E R N T Q V S K E N 

Q2 b CGC.GCG CCGTC.GAT~AGCAGG~C.GGGCCGGAGTATTGGGAC~AACACACAGGTCTC C A A ~  

Q2 k ....... G ..................................... GTG--G---A--G ...... GCC--- 

Q1 b ......................................... A .......... G-AGAGT ..... GC-G-- 

Q1 k .................................................... G-AGAGT ..... GC-G-- 

80 90 

E Q S F R V S L G T A L S Y Y N Q S K G 

Q2 b AGCAGAGTTTCCGAGTGAGCC~ACCGCACTGAGCTACTAC~CCAGAGCAAGGGAG 

Q2 k ..... T-G ............... A---AACTG--AG ................. GC---C- 

Q1 b --A .... A .... A--A ....... A-C---CTG--C ....................... C- 

Q1 k --A .... A .... A--A ....... A-C---CTG--C ....................... C- 

EXON3 
92 i00 II0 

G S H T L Q W L V G C D L G P D G S L L R G Y E 

Q2 b G CT CTCACACTCTCCAGTGGTTGGTTGGCTGTGACCTGGGGCCAGACGGAAGCCTACTCCGAGGGTATGA 

Q2 k -T ........ A ...... GA-A--TA ......... TG .... AT-G ..... GC .... C ..... C ..... CCG 

Q1 b --AT ...... CT ..... AA .... TC ......... T ...... T .... T--GC .... T-AAA-C ..... CCT 

Q1 k --AT ...... CT ..... AA .... TC ......... T ...... T .... T--GC .... T-AAA-C ..... CCT 

120 130 

Q S A Y D G R D Y L A L N E D L I T W T A A D 

Q2 b G CAGTC'IN~CC'rACGATC~GCCGCGATTACCT CGCCC'TGAATGAGGAT~ATAACGTGGACAGCGGCGGAC 

Q2 k ...... C ..... T ...... T ........ A-T ........ C--A--C .... A---C ..... T---AA---T 

Q1 b ..... TC ..... T ....... TT ...... A ............. A-~C .... A---C ........ A--A--T 

Q1 k ..... TC ..... T ....... T~f ...... A ............. A--C .... A---C ........ A--A--T 

140 150 160 

L A A L K T R S K L E Q A G L A E K R R A Y L 

Q2 b CTC~G CAG CA CT~ AAG ACCCG~GCAAGTTGGAG CAG G CT GGT C'i~I~G CAGAG~%AG CG CAG GG CCTA CCTGG 

Q2 k G ....... G .... TC-~-A--C ...... G ........ A .... GC ....... T-TTA--A---T- --A--- 

Q1 b G ....... T-A-G-A ...... C ...... G ............. GC---T ..... A-A .... A ......... 

Q1 k G ....... T-A-G-A ...... CA ..... G ............. GC---T ..... A-A .... A ......... 

Exon4 
184 190 200 

D P P K A H V T H H P S S Q G D V T L R C W A L  

Q2 b ATCCCCCAAA~CGCATGTGACCCATCACCCCAG~C~GGTGATGTCACCCTGAGGTGCTGGGCCCT 
Q2 ~ ............. A .................... A---G ..... A-A--A--T ................ 

210 220 

G F Y P A D ~ T L T W Q W N G E D L T Q D M E  

Q2 b GGGCTT~ACC~GCTGACATCACC~GACCTGGCAGTGG~TGGGGAGGACCTGACCCAGGACATGGAG 
Q2 k A .................................................. G .................. 

230 240 250 

L V E T R P S G D G T F Q K W A S V M V P F G  

Q2 b CT~TGGAGACCA~CCTTCAGGGGATGG~CC~q'CCAG~GTGGGCAT~GTGATGGTGCC~GGGG 
Q2 k .................. G ............................. G ..... G ........ C ..... A 

2 6 0  2 7 0  
E E P R Y T C H V E H E G L P E P L T L R W  

Q2 b AGGAGC~AGATACACATGCCATG~G~CATGAGGGG~GC~GAGCCC~CACCCTGAGATGGG 
Q2 k ...... AG-AT ............... C-C ..................................... 

EXON5 
276 280 290 

E P P P S T D S Y M V I I A V L V V L G A V V 1 

Q2 b AG CC~DCC"I'CCAT CCACTGACTCTTA CATGGTGATCATTf~CTGR"I~ CT GGTTGTC CTT GG A G CTG T G AT CAT 
Q2 k .................. T---CA ....... A ...................................... 

300 310 

I G A V V A F V M K R G R N T 

Q2 b CAT~G AGCTGTGGTGGCTgY~GTGATGAA~GAGG GAGA~ CAC A G 
Q2 k ............................................... 

EXON 6 
315 320 

G G K V R D Y A Q D P 

Q2 b GTGGAAAAGTAAGAGACTA CG CTCAAG ATC C A G 

Q2 k ................. A--C .... G ....... 

EXON 7 

326 330 340 

G R D S P Q S S D I S L L E L T R M  

Q2 b GCAGGGACAGCCCCCAGAGCTCTGATATCTCTCTCCTAGAATTGTAAAG 
Q2 k -C--A ...... G ......................... * ....... 

8 

Q2 k ................................ 

Figure 1. Sequence comparisons of Q1 and Q2 genes. Sequences are presented according to the exon organization of the K b gene. Letters on top 
of nucleotide sequences are the symbols for amino acids coded for by Q2 b, and numbers on top of the symbols indicate residue number according 
to the K b sequence (24). Negative numbers on top of exon 1 reflect a cleaved leader peptide. Q1 k and Q2 k sequences are from Watts et al. (10). Dashes 
beneath the Q2b sequence indicate identity to Q2 b. The asterisk at position 338 of Q2 k indicates the position of a single base insertion in Q2 b. These 
sequence data are available from EMBL/GenBank data libraries under accession numbers X70381-X70390. 

Table  1. Sequence Differences between Allelic Genes in the 1-1-2 ~ and 1-1-2 k Haplotypes 

No. of amino acid differences in: 
No.  of nucleotide 

differences in Domains 
Alleles exons 2 and 3* 1 and 2* ARSS FrameworkJl 

Kb/K k 51 27 14 13 

Db/D k 63 31 14 17 

q4b /Q4  k 1 0 0 0 

QlOb/QlO k 1 1 0 0 

Qlb /Q1 k 2 1 1 0 

Q2b/Q2 k 97 46 27 19 

DNA sequences other than Q1 b and Q2 b are from Kuhner and Goodenow (13). Amino acid sequences other than Q1 b and Q2 b are from Watts 
et al. (18). 
* The number of differences between listed alleles in the 546 nucleotides that make up exons 2 and 3. 
* The number of differences between listed alleles in the 182 amino acids that make up domains 1 and 2. 
S The number of differences between listed alleles in the 57 amino acids that make up the AR$ in domains 1 and 2 (1). 
II The number of differences between listed alleles in the 125 amino acids that make up the non-ARS positions in domains 1 and 2. 
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other by 97 of the 546 nucleotides in exons 2 and 3 (com- 
prising the a l  and or2 domains), resulting in 46 amino acid 
replacements (Fig. 1 and Table 1). This level of allelic diver- 
sity is even greater than that observed at H-2 loci (Table 1). 

The allelic relationship between Q2 b and Q2 k is supported 
by both physical mapping studies and critical sequence ho- 
mologies. Both genes have been cloned in cosmids that are 
part of large, defined contiguous genomic segments that en- 
compass the entire Q region of their respective haplotypes 
(8, 10). Q2 b and Q2 k map as the first genes telomeric (~20 
kb) to the Q1 genes in each haplotype (8, 10). Given the 
conserved nature of Q1 alleles as a benchmark, the mapping 
data support the idea that Q2 b and Q2 k are alleles. 

Striking sequence homologies further support the allelic 
relationship between Q2 b and Q2L Flanking Q2 k (and Q1 k) 
are a unique 5' sequence of '~650 nucleotides (beginning 82 
nucleotides upstream of the initiation codon and continuing 
in the 5' direction) and a unique 3' sequence of ~500 nucleo- 
tides (beginning "~100 nucleotides downstream of the ter- 
mination codon) (10). Neither of these sequences has a coun- 
terpart in the GenBank data library (10). Q2 b contains the 
almost identical unique sequences at precisely the same posi- 
tions, suggesting an aUelic relationship between the two genes 
(Lapierre, L. A., andJ. Geliebter, manuscript in preparation). 

Further, coding and intron sequence homologies also sug- 
gest an allelic relationship between Q2 b and Q2 k. It has pre- 
viously been shown that class I alleles exhibit sequence con- 
servation in the 3' portion of their genes, while nonallelic 
genes often display sequence diversity (12, 13). For example, 
in exon 5 of the H-2 b and H-2 k haplotypes, K, D, Q4, and 
Q10 loci display >95% allelic sequence conservation, but 
<86% sequence identity between nonaUelic genes (13). Q2 b 
and Q2 k are ",,95% identical in exons 5-8, and introns 5-7, 
which is in line with expectations for alleles (Fig. 1, and un- 
published data). Therefore, based on sequence conservation 
and physical mapping it can be inferred that Q2 b and Q2 k 
are alleles. 

With the exception of CCAAC (instead of CCAAT) and 
TATAA sequences, none of the usual H-2 and Q regulatory 
sequences have been found in Q2 b or Q2 k, a situation also 
found in TL region genes (10, 11, and Lapierre, L. A., and 
J. Geliebter, manuscript in preparation). Splice donor and 
acceptor sites are intact in all seven introns (data not shown), 
and Q2 b would be expected to code for a 339-amino acid 
integral membrane glycoprotein. It is also possible that Q2 b 
could be anchored to the membrane by a phosphatidylino- 
sitol (PI) linkage as with the Qa-2 protein (gene QT) (11). 
Due to a single base insertion in exon 7, Q2 b translation 
would terminate at the TAA after position 339. Q2 b has 
only one N-linked glycosylation site at position 86, having 
lost a site at position 256 that is common to most D and 
Q region genes, but not present in most K alleles (13). 

Despite the extreme diversity of Q2 b, there are no obvious 
amino acid substitutions that would preclude its assuming 
the usual class I conformation. Most amino acid replacements 
are either conservative and/or found in other class I genes 
of various species. For example, Gly 79, Trp 219, and Arg 

256 are not found in any other murine H-2, Oo TL, or M 
genes, but can be found in some or all HLA class Ia or Ib 
genes (11, 13-15). Other residues, such as Leu-124, were pre- 
viously found only in M region molecules (13, 16). Con- 
served amino acid positions that are presumed to be critical 
in the folding of class I molecules and binding 32- 
microglobulin are also found in Q2 b. These include His 3, 
Thr 10, Pro 15, Asp 29, Gin 96, Cys 101, Gly 120, Asp 122, 
Cys 164, Pro 185, Phe 208, Tyr 209, Pro 210, Pro 235, Arg 
234, Pro 235, Asp 238, Gin 242, Cys 259, Val 261, Leu 266, 
and Pro 269 (17-19). Taken together, these findings suggest 

EXON 2 

Qak 
Q2P 
Q8 D 

20 26 

CCCCGGTACGTCTCTGTCGGC 

....... T-A-TATC ...... 

....... T-A-TATC ...... 

EXON a 
42 47 

Q2~ AAACCGAGGTATGAGCCG 
Q2 D --T ...... ATG ...... 

Q7'8 b --T ...... ATG ...... 

EXON 2 

80 84 

Q2k AAACTGCTAGGCTAC 

Q2 D . -CCGCA--GA ..... 

Q7b,8 D -CCGCA-AGA ..... 

EXON 3 

Qa~ 
Q2 K . 

Ql0k, D 

EXON 4 

Q2} 
Q2 D 

K1 

151 156 

GGTCTTGCAGAGAAGCGCA 

---GC ....... T-TTA-- 

---GC ....... T-TTA-- 

191 202 

CATCACCCCAGATCTGAAGGTAAAGTAACTCTGAGG 

........... T---C ..... G-T--C--C ...... 

........... T---C ..... G-T--C--C ...... 

EXON 5 

280 284 

Q2~'", d ACTGTCTCCAACATG 

Q~D .... A---TT ..... 

D u .... A---TT ..... 

INTRON 2 

Qa. k 
TCGGAGGTCAGG*CCCCTCCACTTCCC 

.......... C-A ......... G .... 

.......... C-A ......... G .... 

Figure 2. Potential microrecombination sites in the Q2 gene. Numbers 
on top of nucleotide sequences indicate residue number according to the 
K h sequence. Dashes beneath the top sequence indicate identity to that 
sequence. Sequences other than Q2 b are from Kuhner and Goodenow (13) 
and Brorson et al. (25). The asterisk in the intron 2 sequence of Q2 k in- 
dicates the position of a single base insertion in Q2L Data are not meant 
to imply that all or any of the differences between Q2 b and Q2 k were 
generated since the establishment of inbred mouse strains, rather that poten- 
tial donor sequences, are available. 
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Figure 3. Transcription of the Q2 b gene. (a) Hybridization of RT-PCR 
products with a Q2b-specific probe (TGGGAGACCTGTGTGTTCCG, 
positions 62-68) at 60~ identifies an ,,o550-nucleotide-long band. Similar 
results were obtained with another Q2b-specific probe (GCCAACCAAC- 
CACTGGAGA, positions 94-100). Lane 1, no RNA; lane 2, brain; lane 
3, heart; lane 4, kidney; lane 5, liver; lane 6, lung; lane 7, lymph node; 
lane 8, skin; lane 9, spleen; lane I0, thymus; lane 11, tongue. (b) Hybrid- 
ization of RT-PCR products with a Kb-specific probe (GGTACATG- 
GAAGTCGGCTAC, positions 21-27) at 60~ identifies an ~o550- 
nucleotide-long band. This controls for the integrity and quantity of RNA 
in each sample. Samples in lanes are the same as in a. 

that Q2 b may be expressed on the cell surface and function 
as a recognition structure. 

Q2 Appears to Have Undergone Multiple Microrecombina- 
tions. Many of the nucleotide differences between Q2 b and 
Q2 k are clustered and can be found at homologous positions 
in other class I genes (Figs. 1 and 2). These characteristics 
are taken to reflect past microrecombination or gene conver- 
sion-like events with nonallelic class I genes (20). Kuhner 
et al. (21) analyzed sequences from 24 class I genes using a 
statistical algorithm and detected 25 past conversion events 
among all the genes analyzed. Visual examination of Q2 b, 
Q2 k, and six class I sequences of the H-2 b haplotype revealed 
evidence for more than six events (Fig. 2). 

While most examples of past Q2 b microrecombination 
events are in exons 2 and 3, examples are seen in introns and 
the transmembrane exon 5 (Fig. 2). It is not always certain 
which Q2 gene was the recipient of genetic information. How- 
ever, in exon 5, Q2 b differs from the published sequences of 
both Q2 k and Q2 a by the same nucleotides that are found 
in the D b gene. This implies that Q2 b was probably the re- 
cipient of genetic information in a microrecombination event 
with a Db-like gene. 

Q2 Sequence Diversity Appears to Be the Result of Selec- 
tion. The reassortment of class I sequences into H-2 genes 
has been suggested to provide the raw material for diversifi- 
cation, to be acted upon by natural selection (22). Selection 
for many aUelic variants, each binding and presenting different 
repertoires of antigenic peptides, would result in the extant 
diverse and polymorphic class Ia alleles. 

The lack of diversity and polymorphism of Q loci may 
reflect a unidirectional bias in conversion from Q genes to 

H-2 genes (22). Alternatively, since most conversion events 
are lost in the absence of selection for the novel products, 
Q gene sequence conservation may simply reflect the lack 
of strong sdection pressure for diversification (20). If the latter 
is correct, Q2 gene diversity and apparent maintenance of 
microrecombination products may reflect selection and imply 
a function more dosely related to class Ia molecules than class 
Ib molecules. This notion is supported by two related obser- 
vations; a very high percentage of amino acid replacements 
between the two alleles are in the antigen recognition site 
(ARS), and an unusually high percentage of nucleotide sub- 
stitutions in the AKS result in amino acid replacements (see 
below). 

The c~1 and c~2 domains of class Ia molecules contain 182 
amino acids. Of  these, 125 are in framework positions, and 
57 are designated AKS positions (1). Of  the ~30 amino acid 
differences between K b and K k or D b and D k, 50% are in 
the ARS, despite ARS positions constituting only 31% of 
positions (Table 1). Likewise, of the 49 amino acid differ- 
ences between Q2 b and Q2 k in the or1 and o~2 domains, 
57% are in the ARS (Table 1). Thus, aUelic differences between 
H-2 and Q2 molecules are predominantly in the ARS, where 
they affect peptide binding and interactions with the TCK. 

A high ratio of nonsynonymous to synonymous nucleo- 
tide substitutions in the AKS is consistent with positive se- 
lection for sequence diversity. For class Ia, in the AKS, the 
rate of nonsynonymous substitutions per nonsynonymous site 
(dN) is 21.4 _+ 2.4, while the rate of synonymous substitu- 
tions per synonymous site (ds) is 13.8 _ 3.2, indicating 
positive selection for diversification (23). Comparing Q2 b 
and Q2 k under the same analysis yields a dN of 38.2 + 6.8 
and a ds of 22.15 + 8.2, also indicating selection for diver- 
sity between the two aUeles (Lorraine Flaherty, personal com- 
munication). 

These data indicate that like class Ia, structural differences 
between Q2 aUeles could result in functional diversity, and 
that these differences may be maintained by natural selection. 

Q2 b Is Transcribed in Various Tissues. cDNA synthesis fol- 
lowed by RT-PCR of Q2 b mRNA indicates that Q2 b tran- 
scription is highest in the thymus (Fig. 3). Lower expression 
was also observed in the lung and kidney, and with prolonged 
exposure of the hybridized filter to film, most tissues showed 
a band of the appropriate size (PCR controls remained nega- 
tive). Since RT-PCK is not quantitative and tissues were not 
perfused, weak expression in some tissues may reflect a dis- 
proportionate contribution of certain cell types. Yet, the above 
data do clearly show that Q2 b is transcribed and may be 
translated. The relatively high expression of Q2 b in the 
thymus may be significant and perhaps suggests a novel role 
for a Q2 b product in the education of and selection of the 
T cell repertoire. 

We thank Dr. Lorraine Flaherty for the analysis of synonymous and nonsynonymous nucleotide substitu- 
tions in the Q2 b and Q2 k genes. We also thank Dr. Richard A. Flavell for generously providing cosmid 
clones of Q1 b and Q2 b. 
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