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Parkinson’s disease (PD) is the second most common neurological disease having no

specific medical test for its diagnosis. In this study, we consider PD detection based

on multimodal voice data that was collected through two channels, i.e., Smart Phone

(SP) and Acoustic Cardioid (AC). Four types of data modalities were collected through

each channel, namely sustained phonation (P), speech (S), voiced (V), and unvoiced

(U) modality. The contributions of this paper are twofold. First, it explores optimal

data modality and features having better information about PD. Second, it proposes

a MultiModal Data–Driven Ensemble (MMDD-Ensemble) approach for PD detection. The

MMDD-Ensemble has two levels. At the first level, different base classifiers are developed

that are driven by multimodal voice data. At the second level, the predictions of the

base classifiers are fused using blending and voting methods. In order to validate the

robustness of the proposemethod, six evaluationmeasures, namely accuracy, sensitivity,

specificity, Matthews correlation coefficient (MCC), and area under the curve (AUC), are

adopted. The proposed method outperformed the best results produced by optimal

unimodal framework from both the key evaluation aspects, i.e., accuracy and AUC.

Furthermore, the proposed method also outperformed other state-of-the-art ensemble

models. Experimental results show that the proposed multimodal approach yields 96%

accuracy, 100% sensitivity, 88.88% specificity, 0.914 of MCC, and 0.986 of AUC. These

results are promising compared to the recently reported results for PD detection based

on multimodal voice data.

Keywords: blending, multimodal data processing, Parkinson’s disease, support vector machine, voting based

ensembles

1. INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative disease of the central nervous system (CNS)
effecting approximately 6.3 million populations worldwide across all genders, races, and cultures.
It causes partial or complete loss of speech, motor reflexes, and behavioral and mental processes
(Jankovic, 2008; Khorasani and Daliri, 2014; Ali et al., 2019b). In 1817, Dr. James Parkinson
described and named the disease (Langston, 2002). Common symptoms of PD include tremor
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at rest, rigidity, bradykinesia, postural instability, visual
problems, dementia, memory loss, and confusion, which
manifest with thinking, judgment, and other features of
cognitive function (Janghel et al., 2017). However, dysphonia
(defective use of the voice), hypophonia (reduced volume),
monotone (reduced pitch range), and dysarthria (difficulty
with articulation of sounds or syllables) are important speech
impairments found in People with Parkinsonism (PWP) (Sakar
et al., 2013). Recently, PD detection through voice data has
drawn significant attention owing to the following reasons. First,
vocal impairments are hypothesized to be earliest symptoms
of the disease (Duffy, 2013). Second, it is claimed that nearly
90% of PWP show voice impairments (Ho et al., 1999; Sakar
et al., 2013). Third, PD detection based on voice data enables
telediagnosis of the disease (Tsanas et al., 2012; Sakar et al., 2013;
Ali et al., 2019a). Till now, there are no blood or laboratory tests
to diagnose PD cases (Li et al., 2019). Therefore, automated
learning system based onmachine learning is required to provide
an efficient way of evaluating the disease (Ravì et al., 2017).

In literature, different studies have been conducted for
automated detection of PD based on voice and speech data
(Das, 2010; Chen et al., 2013; Zuo et al., 2013; Behroozi and
Sami, 2016; Benba et al., 2016, 2017; Gürüler, 2017; Cai et al.,
2018; Ali et al., 2019c,d). Little et al. presented a method to
analyze PD by measuring the dysphonia in vowel “a” phonation
data from 31 subjects and obtained 91% accuracy (Little et al.,
2009). Recently, Sarkar et al. performed a comparative study on
different feature extraction methods for PD detection based on
replicated vowel “a” phonation data and showed that tunable Q-
factor wavelet transform (TQWT) and Mel-frequency cepstral
possess complementary information about PD (Sakar et al.,
2019). Vaiciukynas et al. collected multimodal voice and speech
data for PD detection (Vaiciukynas et al., 2017). They collected
four different modalities of data and extracted 18 different
feature sets. They achieved PD detection performance of 79%.
Almeida et al. utilized the multimodal voice and speech data
collected in Vaiciukynas et al. (2017) and explored feasibility of
different machine learning methods on the 18 extracted feature
sets (Almeida et al., 2019). They obtained highest PD detection
accuracy of 94%.

In recent years, multimodal learning and ensemble learning–
based systems have gained significant attention owing to their
improved performance (Gao et al., 2020c; Gheisari et al., 2021).
Kassani et al. proposed multimodal sparse extreme learning
machine (ELM) classifier for adolescent brain age prediction
(Kassani et al., 2019). Their proposed multimodal sparse ELM
method outperformed conventional ELM and sparse Bayesian
learning ELM method in terms of classification accuracy. Luo
et al. proposed multimodal neuroimaging (fMRI, DTI, sMRI)
data-based prediction of attention-deficit/hyperactivity disorder
(ADHD) (Luo et al., 2020). Their experimental results showed
that bagging ensemble approach with SVM base classifiers
produced promising results. Kumar et al. proposed a hypothesis
that different architectures of convolutional neural networks
(CNNs) learn different levels of semantic image representations
(Kumar et al., 2016). Based on the hypothesis, they developed
an ensemble of fine-tuned CNN for medical image classification.

The ensemble approach outperformed other established CNNs.
Poria et al. proposed multimodal approach for sentiment analysis
(Poria et al., 2017). They utilized audio, video, textual data
modalities. Their results showed that textual modality offered
best accuracy of 79.14%, while fusion of the three modalities
produced accuracy of 87.89%. Recently, Hao et al. proposed
emotion recognition based on visual audio data (Hao et al., 2020).
They proposed blending ensemble approach for the fusion of the
audio and visual data for emotion recognition. Their proposed
method outperformed many state-of-the-art methods.

Motivated by the automated methods based on multimodal
learning and ensemble learning, in this paper we also tried to
explore feasibility of multimodal and ensemble learning for PD
detection. This study deals with two research questions. The
first question in case of PD detection based on multimodal
data is what kind of features and data modality possess better
information about PD. Second, how the multimodalities can be
exploited to improve PD detection accuracy. Hence, this study
has twofold contributions. (1) In this paper, we develop a number
of machine learning models in order to explore the optimal
data modality and features having complementary information
about PD. (2) This paper proposes a MultiModal Data–
Driven Ensemble (MMDD-Ensemble) approach for improved
PD detection. The proposed MMDD-Ensemble has two levels.
At the first level, different base classifiers are developed that are
driven by different types of voice data (multimodalities). At the
second level, the predictions of the base classifiers are fused using
two different methods i.e., blending and voting. The working
of the proposed MMDD-Ensemble approach is more clearly
depicted in Figure 1.

The rest of the paper is organized as follows: In section 2,
the details about the multimodal data and features are given.
Moreover, the proposed method is also discussed in detail. In
section 3, the evaluation measures are discussed, while section 4
discusses results. The last section is about conclusion of the study.

2. MATERIALS AND METHODS

2.1. Multimodal Voice and Speech Data
The data used in this paper were collected by performing
two vocal tasks, namely phonation and speech, which were
treated as two separate modalities (Vaiciukynas et al., 2017).
The speech modality data were collected from a phonatically
balanced sentence in Lithuanian language “granny had a little
greyish goat.” The data of phonation modality were obtained
from voicing of vowel “a,” which was repeated 3 times. Two
more modalities were also obtained for experiments by splitting
the speech data into voiced and unvoiced modalities by utilizing
Praat software. During the data collection process, two types
of channels were utilized, i.e., Smart Phone (SP) and Acoustic
Cardiod (AC). The microphones of both the channels were
located at a distance of 10 cm from the subject’s mouth.

From each type of modality, 18 different kinds of features are
extracted; however, we considered 17 sets for experimentation
in this study. Details of these different types of feature sets
are given in Table 1. The feature sets numbered from 1 to 13
(except 6) in Table 1 are extracted using OpenSMILE toolkit
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FIGURE 1 | Block diagram of the proposed MultiModal Data–Driven Ensemble

(MMDD-Ensemble) model. Di : The ith data modality. DTr
i : Training data of the

ith data modality: DT
i : Testing data of the ith data modality. Ci : ith classification

model. Pi : Predicted output of the ith classification model. PD/H: Final

prediction of the MMDD-Ensemble model, PD for PD patient, and H for

healthy subject.

(Eyben et al., 2013). The feature set numbered 6 in Table 1 was
extracted using Essentia library (Bogdanov et al., 2013). Essentia
is a well-known C++ library developed for the purpose of audio
analysis. The feature set numbered 15 in Table 1 was extracted
using a java-based library namely MPEG7AudioEnc (Crysandt
et al., 2004).

The jAudio features that are numbered 14 in Table 1 were
extracted through a java-based library namely jAudio (McEnnis
et al., 2006). The jAudio library was developed for standardized
features extraction mainly for the purpose of music classification.
The feature set numbered 17 in Table 1 is named YAAFE. It
was extracted using YAAFE features extraction toolbox (Mathieu
et al., 2010). Finally, a feature set based on time frequency
measures was extracted and named Tsanas features (Tsanas,
2012).

2.2. Multimodal Data–Driven Ensemble
Approach
In this study, two types of questions are considered and
addressed. First, what kind of features and data modality possess
better information about PD detection. Previous studies arrived
at conflicting outcomes. Some studies pointed out that Essentia
features provide better PD detection for AC channel (Vaiciukynas
et al., 2017), while other studies concluded that YAAFE features
yield better PD detection accuracy for the AC channel data
(Almeida et al., 2019). Similarly, some studies pointed out that
AC speech modality provides better PD detection (Vaiciukynas
et al., 2017), while other concluded that AC phonation modality
yields better PD detection (Almeida et al., 2019). After critically

TABLE 1 | Features extraction methods and statistical analysis of the features.

No Fea. ext. method Abbreviation Tool/Study

1 Avec2011 AV1 OpenSMILE toolkit Eyben

et al. (2013)

2 Avec2013 AV2 OpenSMILE toolkit Eyben

et al. (2013)

3 Emo_large EL OpenSMILE toolkit Eyben

et al. (2013)

4 Emobase EM1 OpenSMILE toolkit Eyben

et al. (2013)

5 Emobase2010 EM2 OpenSMILE toolkit Eyben

et al. (2013)

6 Essentia_descriptors ED Essentia Bogdanov et al.

(2013)

7 IS09_emotion IS1 OpenSMILE toolkit Eyben

et al. (2013)

8 IS10_paraling IS2 OpenSMILE toolkit Eyben

et al. (2013)

9 IS10_paraling_compat IS3 OpenSMILE toolkit Eyben

et al. (2013)

10 IS11_speaker_state IS4 OpenSMILE toolkit Eyben

et al. (2013)

11 IS12_speaker_trait IS5 OpenSMILE toolkit Eyben

et al. (2013)

12 IS12_speaker_trait_compat IS6 OpenSMILE toolkit Eyben

et al. (2013)

13 IS13_ComPare IS7 OpenSMILE toolkit Eyben

et al. (2013)

14 jAudio_features JA jAudio McEnnis et al. (2006)

15 MPEG7_descriptors MP MPEG7AudioEnc Crysandt

et al. (2004)

16 Tsanas TS Tsanas (2012)

17 YAAFE_features YA YAAFE toolbox Mathieu

et al. (2010)

analyzing the results obtained in these studies, we arrived at the
conclusion that the main reason of such conflicting results is
that the previous methods presented conclusions based on just
one kind of machine learning model. However, one model can
be sensitive to one kind of feature set or data modality while
another model can be sensitive to another kind of feature set or
modality. Hence, a more pertinent solution is to utilize a number
of machine learning models and then decide the optimal data
modality and feature set based on the commutative results of
the models. After exploring a range of machine learning models
under the above discussed framework, we arrive at the conclusion
that the highest or best PD detection accuracy is 88% under
unimodal approach. The low rate of PD detection motivated
the development of a new model that can exploit the benefit of
multimodal data and produce better PD detection accuracy.

The second question that we addressed in this study was how
the effects of multimodalities and multiple types of feature sets
can be exploited to facilitate improved PD detection. Hence,
we developed and evaluated an MMDD-Ensemble. In literature,
two types of fusion methods are used for multimodal data. One
approach is feature level fusion where the features of different
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data modalities are fused and one resultant feature vector is
obtained (Wang et al., 2021). The second approach is decision
level fusion where the multiple types of modalities are processed
independently by machine learning models and the predictions,
i.e., decisions are fused to arrive at final decision (Wang et al.,
2021). In this study, we utilized decision level fusion. The
proposed MMDD-Ensemble exploits the policies of blending
and voting for fusing the decisions of multimodal data–driven
base classifiers. The working of the proposed MMDD-Ensemble
model is described and formulated as follows:

The proposed MMDD-Ensemble works in two levels. At the
first level, base classifiers are developed by utilizing the multiple
types of data modalities. Let D = {D1,D2, ....,Di, ........,Dm} be
a set of multimodal data, where Di denotes ith data modality.
For each data modality, a number of feature sets have been
recorded denoted by F = {F1, F2, ...., Fj, ........, Fn}. In order to
develop the proposed MMDD-Ensemble model, we discarded
those modalities that yield poor prediction accuracy. As a result,
we are left with o number of optimal data modalities. The data
of these modalities are partitioned into training and testing
datasets resulting in DTr = {DTr

1 ,DTr
2 ,DTr

3 , ........,DTr
o } and DT =

{DT
1 ,D

T
2 ,D

T
3 , ........,D

T
o }, where DTr

i denotes the training dataset
of the ith modality and DT

i denotes the testing dataset of the
ith modality.

At the first level, i.e., base level, p number of base classifiers
are developed. The set of n classifiers denoted by C =
{C1,C2, .....,Ck, ........,Cp} is constructed such that Ck is trained
and tested by using one specific type of data modality. That is
each classifier is trained and tested by using the training and
testing dataset of a specific modality. After training the level 1
classifiers (base classifiers), they are tested using the testing data.
Thus, during the testing phase the base classifiers will yield a set
of predictions denoted by PT = {PT1 , PT2 , ...., PTk , ........, P

T
p }, where

PT
k
is the prediction of the classifier Ck.
At the second level (meta-level), we need to fuse the effects or

predictions of the level 1 classifiers to arrive at the final prediction
of the two level MMDD-Ensemble model. In this paper, we
use two different criteria for the fusion of the predictions at
level 2, namely, voting and blending. The voting approach is
simple. During the training phase, the level 1 classifiers are
trained using the training dataset. During the testing phase, the
trained base classifiers are tested on the testing data resulting
in level 1 predictions, i.e., PT = {PT1 , PT2 , PT3 , ........, PTp }. To
evaluate the final prediction by fusing the level 1 prediction, a
majority voting function is applied at the level 1 predictions.
Thus, Pfinal = majority({PT1 , PT2 , PT3 , ........, PTp }). It is important
to note that recently published studies have shown that different
types of voice data are sensitive to different types of features and
classifiers (Ali et al., 2019d; Ali and Bukhari, 2020; Gao et al.,
2020a,b; Ahmad et al., 2021). Hence, based on these findings, for
each data modality, a specific type of feature set and classifier was
utilized at the base level.

In case of blending approach, a meta-classifier denoted by CM

is developed. To train the CM model, the level 1 predictions, i.e.,
P = {P1, P2, P3, ........, Pp} are modeled as input features of CM .
After training the CM model, it is tested using the testing data.

During testing phase, the testing data (original features of the
database) are given to the trained base classifiers, which will yield
a set of prediction, i.e., PT = {PT1 , PT2 , PT3 , ........, PTp }. The set of
prediction acts as set of features (input) for the CM model. Thus,
the meta classifier will produce final predictions for the testing
data. These predictions are compared with the ground truth
values, i.e., true labels of the data and the PD detection accuracy
is obtained. In order to construct an optimal blending model,
it is important to explore the feasibility of different machine
learning models as the CM model. In this study, we evaluated
the feasibility of five renowned machine learning models, namely
Linear Discriminant Analysis (LDA), Gaussian Naive Bayes
(GNB), K-Nearest Neighbors (KNN), Support Vector Machine
(SVM), and Artificial Neural Network (ANN) as the CM model.
The working of the proposed MMDD-Ensemble is more clearly
described in Figure 1.

Algorithm 1 Multimodal Data–Driven Ensemble (MMDD-
Ensemble) approach.

Input: {Multimodal Data Modalities D1,D2, ...,Di, .....,Dm,
Feature Sets F1, F2, ..., Fj, ....., Fn and Classifiers
C1,C2, ....,Ck, .....,Cp }

Output: {Pfinal, i.e., predictions by the MMDD-Ensemble }

1. Preprocessing multimodal dataD1,D2,D3, .....,Dm and Feature
sets F1, F2, F3, ....., Fn
2. Develop ML models C1,C2,C3, .....,Cp

3. Monitor Acc = TP+TN
TP+TN+FP+FN for different Di under Fj and Ck

4. Discard Di with poor Acc
5. Perform data partitioning: DTr = {DTr

1 ,DTr
2 ,DTr

3 , ........,DTr
o }

and DT = {DT
1 ,D

T
2 ,D

T
3 , ........,D

T
o }, DTr

i : Training dataset of the
ith modality, DT

i : Testing dataset of the ith modality. o: optimal
number of modalities.
6. Fit base classifiers: mi = fit Ci(D

Tr
i , Fi,Yi). mi: ith trained

classifier, Yi: labels of the ith modality training samples.
7. Pi =mi(D

Tr
i )

8. PTi =mi(D
T
i )

9. Evaluate final predictions:
Method 1: Voting
Pfinal = majority({PT1 , PT2 , PT3 , ........, PTp })

10. Method 2: Blending
CM = fit(P,Y) where CM : Metaclassifier. P: Predictions

of base classifiers on training data, Y : Training data labels.
Pfinal = CM(DT)

3. VALIDATION AND EVALUATION

To validate the performance of different methods, in this paper
we utilized train-test holdout validation approach. Following the
approach of Almeida et al. (2019), the dataset is divided into
two parts, i.e., training and testing parts, 75% of the data is
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TABLE 2 | Performance of different models at different extracted features for

speech (S) modality obtained from SP channel.

Feat. set SVM GNB LDA KNN NN

1 64 56 72 68 64

2 64 56 76 68 64

3 64 56 76 64 60

4 64 76 76 68 36

5 66 88 68 64 36

6 64 60 72 64 32

7 64 72 48 64 36

8 64 84 72 64 40

9 64 76 76 64 56

10 64 60 80 64 44

11 64 40 76 64 36

12 64 40 76 64 36

13 64 40 84 64 68

14 64 60 60 72 36

15 64 60 64 64 36

16 64 56 80 64 28

17 64 84 84 64 48

TABLE 3 | Performance of different models at different extracted features for

voiced (V) modality obtained from SP channel.

Feat. set SVM GNB LDA KNN NN

1 64 64 80 64 64

2 64 64 80 64 44

3 64 56 72 60 48

4 64 72 80 72 36

5 64 72 80 64 36

6 64 52 72 64 44

7 64 68 72 64 36

8 64 76 76 60 36

9 64 72 80 64 48

10 64 36 80 64 64

11 64 64 72 64 40

12 64 64 64 64 48

13 64 40 76 64 68

14 64 52 72 60 36

15 64 64 68 64 68

16 64 56 64 64 36

17 64 36 80 68 36

used for training the above-mentioned machine learning models
and the 25% of the holdout data is used for testing the trained
models. For evaluation of the constructed models, classification
accuracy (CA), specificity (Sp), sensitivity (Sn), and Mathews
Correlation Coefficient (MCC) are brought into account. These
parameters are formulated using variables like true positives (a),
true negatives (b), false positives (c), and false negatives (d).

CA =
a+ b

a+ b+ c+ d
(1)

TABLE 4 | Performance of different models at different extracted features for

unvoiced (U) modality obtained from SP channel.

Feat. set SVM GNB LDA KNN NN

1 64 60 72 64 64

2 64 60 72 64 64

3 64 48 60 56 64

4 64 68 88 60 64

5 64 64 64 64 32

6 64 64 64 68 68

7 64 48 60 60 36

8 64 64 68 64 60

9 64 68 68 52 32

10 64 68 64 64 56

11 64 44 48 64 36

12 64 48 60 64 56

13 64 44 60 64 44

14 64 56 64 76 48

15 64 48 80 64 36

16 60 52 76 60 40

17 64 40 76 64 32

TABLE 5 | Performance of different models at different extracted features for

phonation (P) modality obtained from SP channel.

Feat. set SVM GNB LDA KNN NN

1 65.33 64 61.33 68 61.33

2 65.33 64 73.33 68 65.33

3 65.33 50.66 74.66 61.33 52

4 65.33 65.33 72 65.33 34.66

5 65.33 62.66 64 65.33 34.66

6 65.33 42.66 74.66 65.33 42.66

7 65.33 56 68 69.33 61.33

8 65.33 58.66 69.33 64 57.33

9 65.33 62.66 73.33 64 68

10 65.33 40 65.33 66.66 57.33

11 65.33 38.66 64 65.33 36

12 65.33 38.66 58.66 64 38.66

13 65.33 38.66 68 65.33 65.33

14 65.33 45.33 73.33 65.33 34.66

15 65.33 65.33 57.33 65.33 34.66

16 65.33 69.33 57.33 68 32

17 65.33 66.66 64 64 64

Sn =
a

a+ d
(2)

Sp =
b

b+ c
(3)

MCC =
a× b− c× d

√
(a+ c)(a+ d)(b+ c)(b+ d)

(4)
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TABLE 6 | Performance of different models at different extracted features for

speech (S) modality obtained from AC channel.

Feat. set SVM GNB LDA KNN NN

1 64 68 68 64 40

2 64 68 76 64 64

3 64 68 76 64 56

4 64 80 76 60 36

5 64 68 76 64 36

6 64 60 72 80 48

7 64 56 72 64 36

8 64 72 76 64 36

9 64 64 76 64 36

10 64 40 72 64 64

11 64 44 76 64 36

12 64 40 76 64 36

13 64 40 76 64 64

14 64 44 72 52 36

15 64 72 68 64 36

16 64 40 76 64 32

17 64 76 84 64 64

TABLE 7 | Performance of different models at different extracted features for

voiced (V) modality obtained from AC channel.

Feat. set SVM GNB LDA KNN NN

1 64 68 56 64 64

2 64 68 72 64 64

3 64 68 64 64 60

4 64 72 68 60 36

5 64 68 60 64 36

6 64 68 68 64 44

7 64 64 52 64 36

8 64 72 68 76 36

9 64 68 76 64 36

10 64 68 36 68 56

11 64 68 60 68 36

12 64 68 56 68 36

13 64 32 48 68 64

14 64 40 68 52 36

15 64 64 56 48 52

16 58.3 54.1 62.5 58.33 50

17 64 64 84 72 36

4. EXPERIMENTAL RESULTS AND
DISCUSSION

In order to evaluate the effectiveness of the proposed
multimodal-based framework and to compare it against
the best unimodal frameworks, we utilized receiver operating
characteristics (ROC) curves and area under the curve (AUC)
along with the above-discussed evaluation measures. All the
experiments were simulated using Python software package and
scikit-learn library (Pedregosa et al., 2011).

TABLE 8 | Performance of different models at different extracted features for

unvoiced (U) modality obtained from AC channel.

Feat. set SVM GNB LDA KNN NN

1 64 40 64 64 64

2 64 40 44 64 64

3 64 76 68 68 68

4 64 64 72 64 40

5 64 68 76 60 40

6 64 72 68 76 56

7 64 60 72 56 36

8 64 64 72 60 68

9 64 72 80 44 36

10 64 36 60 64 64

11 64 36 60 64 36

12 64 36 68 64 52

13 64 36 76 64 64

14 64 56 68 60 40

15 64 64 60 68 36

16 62.5 54 83.33 62.5 41.66

17 64 36 76 56 64

TABLE 9 | Performance of different models at different extracted features for

phonation (P) podality obtained from AC channel.

Feat. set SVM GNB LDA KNN NN

1 65.33 65.33 66.66 64 65.33

2 65.33 65.33 66.66 64 66.66

3 65.33 44 74.66 56 60

4 65.33 56 73.33 66.66 62.66

5 65.33 57.33 72 66.66 37.33

6 65.33 40 76 70.66 52

7 65.33 48 58.66 65.33 61.33

8 65.33 58.66 70.66 66.66 53.33

9 65.33 53.33 64 66.66 50.66

10 65.33 64 62.66 66.66 60

11 65.33 64 69.33 60 34.66

12 65.33 64 68 60 37.33

13 65.33 64 64 65.33 40

14 65.33 60 74.66 70.66 34.66

15 65.33 72 66.66 65.33 65.33

16 65.33 68 58.66 68 32

17 65.33 74.66 84 69.33 34.66

4.1. Experimental Results for Unimodal
Data Obtained Through SP Channel
In this section, we perform experiments using the four unimodal
datasets obtained through SP channel. The main objective of this
experiment is to explore the optimal data modality and optimal
feature set in terms of PD detection. In this experiment, we
developed five different machine learning models namely LDA,
GNB, KNN, SVM, andANN. The results in terms of PD detection
accuracy by each of the five developed model for the S modality
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TABLE 10 | Best performance offered by individual modalities.

Modality Channel Feat. set Model Acc (%) Sen (%) Spec. (%) MCC

P AC 17 LDA 84.00 87.75 76.92 0.646

S AC 17 LDA 84.00 93.75 66.66 0.645

U AC 16 LDA 83.33 86.66 70.00 0.644

V AC 17 LDA 84.00 100 55.55 0.666

P SP 3 LDA 74.66 71.42 80.76 0.497

S SP 5 GNB 88.88 93.75 77.77 0.736

U SP 4 LDA 88.88 93.75 77.77 0.736

V SP 4 LDA 80.00 81.25 77.77 0.578

Sensitivity; Spec. (%), Specificity. Feat. Set, The type of feature set used; AC, Acoustic

Cardioid; SP, Smart Phone; Acc(%), Classification accuracy; Sen. (%).

TABLE 11 | Performance offered by the proposed multimodal approach using AC

channel.

Fused modalities Method M.Model Acc (%) Sen (%) Spec. (%) MCC

V+S Voting - 84 100 55.55 0.666

V+U+S Voting - 84 100 55.55 0.666

U+S+P Voting - 80 100 44.44 0.581

V+U+S+P Voting - 88 100 66.66 0.749

V+S Blending KNN 84 100 55.55 0.666

V+U Blending KNN 92 100 77.77 0.831

V+U+S Blending GNB 92 100 77.77 0.831

V+U+S+P Blending GNB 92 100 77.77 0.831

Method, Fusion method; M. Model, Meta Model; Acc(%), Classification accuracy; Sen.

(%), Sensitivity; Spec. (%), Specificity.

TABLE 12 | Performance offered by the proposed multimodal approach using SP

channel.

Fused modalities Method M. Model Acc (%) Sen (%) Spec. (%) MCC

V+S Voting - 92 100 77.77 0.831

V+U+S Voting - 96 100 88.88 0.941

S+P Voting - 92 93.75 88.88 0.826

V+U+S+P Voting - 96 100 88.88 0.941

V+S Blending ANN 92 93.75 88.88 0.826

V+U+S Blending ANN 96 100 88.88 0.914

V+U+S+P Blending ANN 96 100 88.88 0.914

Method, Fusion method; M. Model, Meta Model; Acc(%), Classification accuracy; Sen.

(%), Sensitivity; Spec. (%), Specificity.

are tabulated in Table 2. The best accuracy of 88% is obtained
using GNB model and YAFFE features.

The same five machine learning models were also developed
for the phonation (P), unvoiced (U), and voiced (V) modalities
collected through the SP channel. The results for the V, U, and
P modalities are tabulated in Tables 3–5, respectively. For the U
modality, best accuracy of 88% is produced by the LDA model.
For the P and V modalities, LDA model yields 74.66 and 80%
accuracy, respectively.

4.2. Experimental Results for Unimodal
Data Obtained Through AC Channel
In this section, we perform experiments using the four unimodal
datasets collected through the SP channel. The main objective
of this experiment is to explore the optimal data modality and
optimal feature set that would provide better PD detection
accuracy for the data collected through AC channel. Again, we
developed the five machine learning models, i.e., LDA, GNB,
KNN, SVM, and ANN for each data modality. The results in
terms of PD detection accuracy by each of the five developed
models for the S modality are tabulated in Table 6. The best
accuracy of 84% is obtained using the LDA model.

The above-discussed machine learning models were also
developed for the phonation (P), unvoiced (U), and voiced (V)
modalities collected through the AC channel. The results for the
U, P, and V modalities are tabulated in Tables 7–9, respectively.
For the U modality, best accuracy of 83.33% is produced by
the LDA model. For the P and V modalities, LDA model yields
84% accuracy.

4.3. Evaluation Measures for the Best
Unimodal Results
In this section, we calculate the different evaluation measures
discussed above for the best results obtained under the
conventional unimodal approach. These results for the unimodal
data of both the channels, i.e., AC and SP are tabulated in
Table 10. It can be seen from the table that for the AC channel
the best performance offered by the phonation modality and
voiced speech modality is 84% of PD detection accuracy. On the
other hand, for the SP channel the best performance offered by
the phonation modality and voiced speech modality is 88% of
PD detection accuracy. From the results of unimodal data, it is
evident that better PD detection is obtained using YAFFE features
for the AC data and for SP data, better results are produced by
EM features.

4.4. Results Produced by the Proposed
MMDD-Ensemble Approach
4.4.1. Experimental Results Produced by Fusing the

Multimodalities of AC Channel Through the Proposed

Approach
In this experiment, fusion of the multimodalities collected
through the AC channel is carried out by using two different
approaches, i.e., voting and blending. The experimental results
are given in Table 11. Under the voting criterion, optimal
performance of 88% of PD detection accuracy is obtained while
the blending approach produced 92% of PD detection accuracy.
By comparing the results offered by the proposed multimodal
approach with the best results offered by optimal unimodal data,
it is evident that the proposed approach improves PD detection
accuracy by 8% for the data collected through AC channel.

In machine learning, ROC curve is a more robust evaluation
metric that is used to check the robustness of a developed
model against baseline models. A model having an ROC curve
with more AUC is declared robust compared to models having
ROC with less AUC. Hence, to validate the effectiveness of
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FIGURE 2 | (i–vi) Receiver operating characteristics (ROC) curves of four unimodal AC channel data–driven systems and two multimodal data–driven blended

systems.

the proposed multimodal approach, we plot the ROC curves
of the four unimodal and two multimodal systems for the
data of AC channel (Figure 2). It is evident from the ROC
curves that the best AUC is offered by the P modality of AC
channel, which is 0.883 (Figure 2i). On the other hand, an
AUC of 0.986 is produced by two blended multimodalities, i.e.,
P+S+U+V and S+V+U (Figures 2v,vi). Hence, the effectiveness
of the proposed multimodal approach is validated from both
aspects, i.e., accuracy and AUC.

4.4.2. Experimental Results Produced by Fusing the

Multimodalities of SP Channel Through the Proposed

Approach
In this experiment, fusion of the multimodalities collected
through the SP channel is carried out. Again, two different
approaches, i.e., voting and blending were adopted while fusing
the multiple types of modalities. The experimental results are
given in Table 12. Both the voting and blending criteria yielded
PD detection accuracy of 96%. However, the best PD accuracy
with unimodal approach is 88%. By comparing the results offered
by the proposed multimodal approach with the best results
offered by optimal unimodal data, it is evident that the proposed
approach improves PD detection accuracy by 8% for the data
collected through AC channel.

For the data collected through the SP channel, to validate the
effectiveness of the proposed multimodal approach, we plot the
ROC curves of the four unimodal data–driven systems and two

multimodal data–driven systems (Figure 3). It is evident from
the ROC curves that the best AUC is offered by the S modality
of SP channel, which is 0.944 (Figure 3ii). On the other hand,
an AUC of 0.986 is produced by blended multimodalities, i.e.,
P+S+U+V and AUC of 0.962 by the blended multimodalities
S+V+U (Figures 2v,vi). Hence, the effectiveness of the proposed
multimodal approach is also validated for the SP channel data.

4.5. Comparative Study With
State-Of-The-Art Ensemble Learning
Models and Recently Published Work
In order to further validate the effectiveness of the proposed
multimodal approach, a comparative study is conducted with
recently published work (given in Table 13) and with other state-
of-the-art ensemble learning models. The renowned ensemble
machine learning models, namely Adaboost ensemble model,
Random Forest (RF) ensemble model, and Gradient Boosting
Ensemble model, were developed. The Adaboost ensemble
model produced optimal performance of 89.33% accuracy and
AUC of 0.936 for the P modality of the AC channel. The
Gradient Boosting model achieved 86.48% accuracy and 0.921
of AUC. Finally, the RF model resulted in 88% of accuracy
and 0.910 of AUC for the S modality of the SP channel. After
comparing and analyzing the results of the proposed MMDD-
Ensemble approach and other ensemble learning approaches,
it is clear that the proposed approach yields better results.
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FIGURE 3 | (i–vi) ROC curves of four unimodal13 SP channel data-driven systems and two multimodal data–driven blended systems.

Although the proposed approach uses simple fusion approaches,
it still enhances the performance. The main reason for yielding
improved results is that the different base classifiers of the
MMDD-Ensemble method are driven by different types of
optimal data modality. Hence, the optimal results of unimodal
data are fused or ensembled, consequently the final results
are better than the optimal unimodal results. On the other
hand, conventional ensemble methods (i.e., Adaboost, RF etc)
are unimodal data–driven approaches; hence, their results are
comparable with optimal unimodal results but poor compared
with the results of the MMDD-Ensemble method.

5. CONCLUSION AND FUTURE STUDIES

In this paper, PD detection based on multimodal voice and
speech data was considered. Data were collected from two
channels, i.e., AC and SP. After developing and exploring
performance of different machine learning models, it was
observed that the best PD detection accuracy of 84% and 88% is
obtained under unimodal approach for the AC and SP channels
data, respectively. In order to improve the PD detection accuracy,
we developed an MMDD-Ensemble approach. The proposed
approach produced PD detection accuracy of 92% and 96% for
the AC and SP channel data, respectively. Thus, it was pointed out
the proposedmultimodel approach outperformed the best results
offered by optimal unimodal approach. Moreover, the proposed

TABLE 13 | Comparative study with recently published work.

Study/Model (year) Method Accuracy (%) AUC

Adaboost Ensemble MP+Adaboost+AC 89.33 0.936

Random Forest TS+Random Forest+SP 88.00 0.910

Gradient Boosting

Ensemble

YA+Gradient Boost+AC 86.48 0.921

Vaiciukynas et al. (2017) TS+Random Forest+SP 79.00 –

Vaiciukynas et al. (2017) IS5+Random Forest+AC 62.40 –

Almeida et al. (2019) IS6+SVM+AC 76.00 0.780

Almeida et al. (2019) MPEG7+KNN+SP 72.00 0.740

Almeida et al. (2019) KTU+KNN+SP 94.00 0.870

Almeida et al. (2019) YAFFE+KNN+AC 92.00 0.920

This study (2020) Multimodal ensemble approach 96.00 0.986

method showed better results than other renowned state-of-the-
art ensemble models and previously reported methods. On the
basis of experimental results, the effectiveness of the proposed
multimodal approach was validated.

The proposed MMDD-Ensemble approach yielded better
performance; however, the fusion approaches used are simple.
Therefore, in future studies, somemore advanced fusionmethods
like graph fusion (Mai et al., 2020) and tensor fusion (Zadeh
et al., 2017) can also be explored. Additionally, in future, the focus
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should be on collection of large scale datasets and deep neural
network based base classifiers.
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