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Abstract

Understanding the requirements and tolerances of the seedlings of climax species is funda-

mental for tropical forest restoration. This study investigates how the presence and abun-

dance of seedlings of a previously dominant, now threatened species (Dipterocapus dyeri

Pierre), varies across a range of environmental conditions. Dipterocapus dyeri seedling

abundance and site characteristics were recorded at 122 observation points (4 m2) at nine

clusters from two sites. Seedling presence (p = 0.065) and abundance varied significantly (p

= 0.001) between the two sites, and was strongly correlated with adult D. dyeri dominance

and lower soil pH, and weakly correlated with canopy openness and total stand basal area.

Dipterocarpus dyeri seedlings were also grown in shade houses with three light levels on

two soils. Seedling survival was significantly lower at the lowest light level (<10% full irradi-

ance) at 13% for the forest soil and 25% for degraded soil. At higher irradiance the seedling

survival rates were greater than 99%. Moisture levels remained high at the lowest light level

and many seedlings died from fungal infection. We concluded that secondary forests which

contain adequate numbers of adult D. dyeri as seed sources, light availability, soil pH of <
5.0, and good drainage strongly favour survival and growth of D. dyeri seedlings. Histori-

cally, D. dyeri was dominant in moist deciduous tropical forest across south-eastern Viet-

nam, but today it is rare. Active management of these recovering forests is essential in order

to recover this high-value, climax forest species.

1. Introduction

Water, nutrients and light are key elements in plant growth and survival. These resources vary

spatially, often with topographic gradients, and temporally, including as they interact with veg-

etation development. Water and nutrient availability in the soil is largely driven by landscape-

scale factors, such as topography, substrate and climate [1,2]. Light availability on the forest

floor is largely determined by the density of the forest canopy (i.e., local-scale factors), which

changes through time as the forest develops [3,4]. Competition for light is a major influence

on recruitment in old-growth tropical forest [5]. However, in secondary tropical forest,
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competition for water is more important than competition for light and drought tolerance is

critical for survival [6–8]. This is because there is often more light reaching the forest floor,

due to gaps in the canopy. Gap size directly influences light availability at the soil surface,

which not only affects the germination and growth of plants in the understory, but also leads

to changes in underground processes, potentially influencing soil temperature, water and tree

root competition [9]–higher light and temperature at the soil surface increasing the likelihood

of drought [10]. For example, single tree fall gaps can expose high-nutrient soil ideal for germi-

nation [11,12].

The mosaic distribution patterns of tree populations and tree ages in tropical forests are the

results of species-specific and tree age-specific adaptations to the spatial distributions of water

and nutrients [13–16]. Soil type, topography and vegetation structure interact to influence

seedling establishment spatially and temporally [17–19]. The structure and composition of a

vegetation community are maintained temporally by species’ successful regeneration [11]. Dif-

ferent species have different environmental requirements and different levels of tolerance to

the stresses presented by different environments/site-conditions. For example, low soil pH is

tolerated by many conifer species [20]. The optimum range for growing most pine seedlings is

around 4.5 to 5.0 for sandy soils and 5.0 to 5.5 for fine-texture soils containing high levels of

Mn [21]. Wollemia nobilis seedlings, for example, have an optimum soil pH of around 4.3 [22].

Wollemia nobilis, like many other conifers, thrives at light levels higher than typically occurs in

most rainforest understories. In contrast, many broadleaf tropical species seedlings such as

Neolitsea obtusifolia, Hopea odorata and Brosimum alicastrum survive better under conditions

those low light levels [23–26]. In order for recruitment to be successful, seeds need to fall

where light and soil moisture conditions are favourable for germination and growth [6,27]. In

some cases, the original conditions that have led to occupation by a specific vegetation may

change to be no longer suitable for its regeneration. The regeneration of a species in tropical

forest can therefore be discontinuous, with not all life stages of all species present. Mimicking

these natural processes, close-to-natural silviculture techniques and nurse crop establishment

were used commonly in the tropical areas as the foundational practise for middle- or late-suc-

cessional afforestation during their seedling and sapling periods. Then light liberation is

applied as seedling increase in height, depending on specific species light requirements [28–

31].

The key to regeneration may be related to the availability of appropriate microsites i.e.,

small-scale variation in resources and species-specific effects [32,33]. When forest stand struc-

ture influences the distribution of water, nutrient and light at the local scales, the species com-

position showed local ecological intra and inter species effects provided a strong influence on

seedling growth [32]. Conspecific density (also known as congeneric) affects not only seed

availability [34–36], but also physically and biologically affects seed germination, survival and

growth of seedlings through negative-density dependence mechanisms [37–39]. Negative-den-

sity dependence mechanisms were shown to strongly negatively influence same species in

monoculture plantation [37,40,41]. In mixed species natural forests, negative-density depen-

dence trends (from positive to negative) with strength of the negative-density dependence

mechanism on specific-species recruitment strongly depended on the quality and quantity of

adult trees in the site (i.e., density, distribution and size of remnant trees).

Dipterocarpaceae was previously abundant throughout southeast Asia, however most

remaining forests are heavily disturbed and are dominated by deciduous tree species and bam-

boo [42–44]. Dipterocarp species are known to be strongly associated with specific soil and

light conditions, especially as seedlings. Microsite light availability, determined by gap size, is

likely to be the most influential factor in natural regeneration of dipterocarps, as dipterocarp

species’ light requirements change with life stage. They prefer shade for germination, partial
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light during seedling and sapling stages, and full light as mature trees [45–47]. The effect of

light availability appears to be stronger than the effect of foliar herbivory on Dipterocarp seed-

ling survival and growth [48,49]. Understanding patterns of natural regeneration of diptero-

carps will contribute to efforts to restore and re-establish this highly valued and important

type of forest [50–52].

Dipterocarpus dyeri is native to Myanmar, Thailand, Viet Nam, Cambodia and Peninsular

Malaysia. The species has been globally assessed as Endangered in the IUCN Red list [53,54].

Most dipterocarp species, including Dipterocarpus dyeri Pierre, are high value timber species,

and as such, have been selectively logged across South-east Asia [42]. Dipterocarpus dyeri has

been targeted in particular because of its high density wood (~ 0.8 g/cm3) and also their resins

(dammar) which can be extracted for caulking boats, varnish paint, and medicine [42,54–57].

Dipterocarpus dyeri today is one of the rarest species in the forest and there is limited informa-

tion on species ecology regeneration and growing site conditions [54,58].

Seedling recruitment is a crucial process in long term forest dynamics. An accurate under-

standing of tree recruitment patterns in forest stands and microhabitats is required to predict

forest development and optimise forest management to achieve ecological and/or production

goals [59–61]. This study aimed to determine the primary ecological processes driving Diptero-
carpus dyeri seedling establishment and survival. The micro-scale conditions belong to three

main groups: (1) soil, including particle size distribution and chemical properties and encom-

passed in soil type; (2) site, including topographic wetness; and (3) forest stand characteristics,

including canopy openness, basal area, species biodiversity and dominance of adult D. dyeri.
Determining the requirements for D. dyeri seedlings will improve understanding of secondary

forest regeneration. This will help land managers to choose suitable sites to manage regenera-

tion, prepare and plant nursery stock, and develop appropriate silviculture techniques for res-

toration of dipterocarp forests in southeast Vietnam.

2. Methods

2.1. Study sites

The study was conducted in a monsoonal evergreen broad-leaved forest in the Dong Nai Bio-

sphere Reserve (DNBR), Dong Nai Province, Vietnam (Fig 1; the maps were sourced from

Natural Earth [62]), which are licensed under a CC BY-SA 4.0.). The Director of DNBR Dr.

Tran Van Mui, gave permission to conduct this research project in DNBR. The Reserve

extends between 11˚20’50”N– 11˚50’20”N and 107˚09’05”E– 107˚35’20”E [63]. The area is in

the lowland monsoon tropical climate zone with mean annual rainfall of 1,850 mm of which

80% falls in the wet season (from April to October). The mean annual temperature is approxi-

mately 26˚C, with small seasonal fluctuations [64].

Two study sites were established with elevations that ranged from 44 to 130 m asl. A mixed-

bamboo (MB) site (UTM 48N 736532E 1257916N (Plot SK3);> 100 m elevation), at Phu Ly

Commune was in a steep landscape (10-20˚) and a mixed-evergreen (ME) site (UTM 48N

716275E 1236117N (Plot DD2); 70–95 m elevation) occurred on gentle slopes.

The soils at both sites were classified as Acrisols (grey podzolic soils) [65]. The ME site soils

are mapped as Chromic Acrisols (Fp), developed on old alluvium. These soils are yellowish

brown and clayey throughout with a Bts horizon at 30–100 cm depth. The MB site soils are

Endolithic Chromic Acrisols (Fs), which had developed on schist and shales [65]. The soils in

this site are shallow (50–70 cm), yellowish brown sandy clay loam to light clay textures and a

BCts horizon at 30–40 cm above R or C horizons. The soil chemical analysis (S1 Table) showed

a high level of base saturation (more than 50%), indicating both soils might be better classified

as Luvisols [66].
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The forests in the study area are lowland tropical forests dominated by dipterocarp and

Lagerstroemia (Lythraceae) species [67–69]. Most of forests in the area are recovered after log-

ging (early 1943 and from 1976 to 1996), herbicide spraying (1961–1971) and other deforesta-

tion activities (1976–1996) [70,71]. The forests at the ME site contained mixed evergreen tree

species (D. dyeri, Hopea recopei, Vatica odorata, Artocarpus spp., Syzygium spp.) and decid-

uous species (Lagerstroemia spp., Cratoxylum spp., Nephelium melliferum). The MB site was

dominated by bamboos which were considered as a regrowth stage of broadleaf forest after dis-

turbances [68,69].

2.2. Study species

Dipterocarpus dyeri is a large lowland evergreen rainforest tree species. It also occurs in dry

evergreen forests as a brevideciduous species, as they lose their leaves for only a few days

[42,72]. In DNBR, according to our observations since 2016, fruiting of adult D. dyeri trees

(DBH more than 40 cm) occurs almost every year with flowering in November–December

and fruit maturation in March–April.

Fig 1. Location of study site and plots in Dong Nai Province, Vietnam. Colours on the basemap represent forested (green) and unforested (yellow

and brown) land cover. The land cover basemap, country and province borders were sourced from NaturalEarth (http://www.naturalearthdata.com/

about/terms-of-use/).

https://doi.org/10.1371/journal.pone.0233524.g001
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2.3. Data collection

The data from the forests were collected during the dry season in November 2017 –January

2018 inside the DNBR (Fig 1). A total of 122 observation points (2 m x 2 m) were taken from

18 sampling clusters (represented by plot vegetation data, Table 1, Fig 1, S1 Data). The loca-

tions of these clusters and points were allocated on two sites with 101 points (15 plots) on

Mixed Evergreen (ME), and 21 points (3 clusters) on Mixed Bamboo (MB), approximately 20

km from ME site (Fig 1). First, we identified potential D. dyeri (DBH > 40 cm) mother trees.

Then a search for D. dyeri seedlings was undertaken with distance from the mother tree 100

m. If a seedling was found, then that seedling became a corner of a 400 m2 plot. Then all seed-

lings within that area were identified and measured. If no seedlings were found, then a similar

400 m2 plot was established for surveying site and soil conditions, with a mother tree as the

centre and five observation points (each of the four corners and at the centre of the plot).

2.3.1 Vegetation composition. In each plot, all woody species (excluding lianas) were

recorded and divided into three classes based on the diameter at 1.3 m height from the ground

(DBH): adults (DBH� 10 cm), juveniles (5 cm� DBH < 10 cm). Adults and juveniles were

surveyed from 400 m2 plots while seedlings of all species were surveyed from the observation

points.

2.3.2 Soil. At each observation point, a description of soil from 0–35 cm depth was made,

including horizons, colour and texture. One topsoil (0–10 cm depth) sample which was a mix-

ture of soil from 3–5 observation points was taken for soil chemical characterisation of each

Table 1. Description of soil and site characteristics from 122 observation points.

Variable Abbreviation Mixed Evergreen Mixed Bamboo

Cluster Plot 15 3

Observation points (presence) 101 (67) 21 (9)

Elevation (m) Elevation 83 (13) 137 (26)a

Parent materials Parent.m Alluvium Schist and Shale

Slope (Degrees) Slope 8.6 (7.4) 11.7 (7.5)a

Stand basal area (m2/Ha) BA 35.3 (12.6)a 17.5 (16.6)

Dominance of adult D. dyeri PD.A 0.27 (0.18)a 0.22 (0.08)

Count of D. dyeri seedlings dyeri 1.1 (1.6)a 0.4 (0.5)

Canopy openness (%) CO 12.9 (3.5) 16.3 (5.1)a

Topographic Wetness Index TWI 11.1 (2.03) 10.3 (1.33)

Topsoil bulk density (g/cm3) Topsoil.BD 1.13 (0.21) 1.11 (0.04)

Topsoil pH (KCl) pH 3.8 (0.2) 3.7 (0.1)

Topsoil organic carbon (%) OC 2.6 (1.1) 1.97 (0.2)

Topsoil total nitrogen (%) N 0.23 (0.06) 0.21 (0.02)

Carbon: Nitrogen ratio CN 10.7 (1.98)a 9.3 (0.3)

Total phosphorous (mg/100g) P2O5 7.6 (2.8)a 5.2 (0.15)

Cation Exchange Capacity CEC 8.5 (2.6) 8.9 (0.9)

Sand (0.2–2 mm) (%) Sand 24 (12)a 17 (8)

Fine Sand (0.05–0.2 mm) Fine.Sand 18 (6) 20 (7)a

Silt (0.002–0.05 mm) Silt 30 (12) 31 (7)

Clay (<0.002 mm) (%) Clay 26 (13) 32 (6)a

Fine particles Silt + Clay (%) Silt.clay 57 (14) 63 (4)

Mean (SE)
a Significant different between two site with wilcox.test function significant level 0.05 [79]

https://doi.org/10.1371/journal.pone.0233524.t001
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sampling cluster. At each sampling cluster one core sample (5 cm diameter x 5 cm length) was

taken for topsoil bulk density calculation.

2.3.3 Light. A hemispherical canopy photograph was taken at each observation point at

170 cm above the ground. We chose this height to avoid the shrub and herb layers. These pho-

tos were used to determine canopy openness (%) using Gap Light Analyzer (GLA) software

[73], after processing the image through SideLook [74] using automatic thresholding. The pro-

cedure of using automatic threshold to adjudge colour canopy photographs is recommended

for assessing canopy openness [75].

2.3.4 Environment. Basic site conditions were described at each observation point,

including slope (degrees), aspect (degrees), outcrop rock (% cover), forest floor vegetation

cover (%), litter cover (%) and litter thickness (cm). Topographic wetness index (TWI) [76],

was calculated as a soil moisture indicator [77,78] for each observation point was derived by

Arctoolbox from a digital elevation model (DEM) through SAGAGIS, AcrGIS v 10.1. A DEM

of 30 x 30 m grid spacing was downloaded from https://earthexplorer.usgs.gov/.

2.3.5 Shade house experiment establishment. Seeds were collected from one mother tree

from Cay Gui Forest Ranger Station (approximately 500 m from plot CG1). The seedlings

were germinated using moist sand for 20–30 days until developing to seedlings with two true

leaves (S2A Fig) which were then transplanted in plastic pots (8 cm diameter x 40 cm height).

There were six treatments of three light levels (high, medium and low) and two sources of soil

(old growth forest and heavily logged and degraded forest) with a total of 432 seedlings (72

seedlings per treatment). Each light treatment was set up in a shelter with light levels controlled

by shade cloth, one layer for the high level, doubling for the medium level and tripling for the

low level. The light levels were confirmed by the measurement of leaf area index (LAI) by

using Li-2200. The LAI at the three shelters were 2.9, 5.4 and 7.1 giving estimations of canopy

openness for each light levels were proximately 45%, 20% and 5% of full sun, respectively. Soil

used for the trial was the topsoil of a Chromic Acrisol (Fp) and it was collected from two sites.

Both soils were light clays in texture and the old growth forest soil (F) was higher in organic

matter, total nitrogen and CEC than the degraded site soil (D) (S1 Table).

2.4. Data analysis

2.4.1. Forest data: Correlation between presence/number of D. dyeri seedlings and

microsite conditions. The effect of site (mixed evergreen and mixed bamboo sites) on the

assemblage of seedlings of the target species per observation point was tested using multivari-

ate models [80] through manyglm function in mvabund R package [81]. This function analyses

the individual and interactive influences of each site condition variable based on mixed effect

models. Negative binomial family of distribution link was chosen as seedling abundance data

was overdispersed.

The sets of variables were also used to test their effects on presence and abundance of D.

dyeri seedlings at observation points in generalized linear regression models (GLM). We used

the glm.nb function within ‘MASS’ [82] to fit models with a negative binomial family with dis-

tribution for data collected at observation points where seedlings occurred. We also used func-

tion glm from package ‘lme4’ [83] with binomial family for presence/absence data. In the

GLM, the cluster (plot) of observation point was not treated as random factor since the forest

stand variables were aggregated in the cluster. The final models were selected by AIC in the

stepwise search through function step in stats R package stats [79].

As canopy openness was one of the factors of most interest in the forests, we used Bayes t.

test function in BayesianFirstAid R package [84] to compare the difference in canopy openness
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against seedling abundance level groups and between presence and absence groups for all

observation points and for each site.

2.4.2. D. dyeri seedling in shade houses: Influence of soil and light. To investigate the

differences in seedling survival according to light level and soil we used the Pearson Chi-

squared test. Analysis of variance (ANOVA) was used to compare the differences in seedling

growth (based on diameter and height) among treatments (soil types and light levels, and their

interactions).

3. Results

3.1. Forest data: Differences in seedling abundance in varying soil and site

conditions

Correlations between soil and stand properties differed between the two sites (S1 Fig). Stand

basal area (BA) was weakly correlated with canopy openness (CO) on the mixed evergreen

(ME) site and moderately correlated with proportion of adult D. dyeri on the higher elevation

mixed bamboo (MB) site. Canopy openness showed weak negative correlations with soil CN,

P2O5 and sand content, and these correlations were similar on the higher site (S1 Fig). For the

observation points where the seedlings were present, the correlations of site and soil properties

were quite similar to the correlations at all observation points (S1 Fig).

The multivariate test of deviance indicated a significant effect of site on D. dyeri seedling

abundance (p = 0.001) and no significant effect on D. dyeri presence (p = 0.065). Both the

abundance and presence of D. dyeri seedlings were positively correlated with the site ME asso-

ciation, with coefficients (Wald value) of 2.5 and 1.98 respectively.

Seedlings were more likely to be present in darker sites (Table 2, Fig 2, S1 Fig). The associa-

tion of D. dyeri seedling with lower CO was also indicated by the mean difference in CO

Table 2. Results for four generalized linear models which predict presence and abundance of D. dyeri seedlings per observation point at both sites (models 1 and 2),

and at the mixed evergreen (models 3 and 4) site only. ME: Mixed evergreen, MB: Mixed bamboo, BA: Stand basal area, PD.A: Dominance of adult D. dyeri.

Model Parameter Estimate Std.Dev./ Std. Error p AIC Deviance explain by the model

(1) Presence of seedlings Intercept 3.653 1.107 0.001 153.6 11.2%

BA -0.028 0.016 0.069

PD.A 4.358 1.584 0.006

openness -0.171 0.054 0.001

Silt -0.035 0.02 0.084

(2) Abundance of seedlings Intercept 5.33 2.109 0.0115 227.7 28.84%

BA 0.025 0.007 0.0004 Std. Err.: 25.8

pH -1.52 0.57 0.008 Theta: 19.6

(3) Presence of seedling on ME site Intercept 5.978 1.498 0.000 113.1 35.3%

BA -0.083 0.025 0.001

pH -1.817 1.227 0.138

PD.A 7.781 2.244 0.0005

openness -0.207 0.077 0.007

Silt -0.07 0.027 0.01

(4) Abundance of seedlings on ME site Intercept 4.597 2.359 0.0514 291.6 8.4%

PD.A 0.029 0.01 0.0295 Std. Err.: 0.92

pH -1.302 0.6323 0.0395 Theta: 2.32

(5) Presence of seedlings on MB site Intercept -93.448 69.728 0.18 32.384 8.0%

Silt 0.301 0.225 0.181

pH 22.747 17.083 0.183

https://doi.org/10.1371/journal.pone.0233524.t002
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between the presence and absence observation points of -2.1% (95% credible interval from -3.6

to -0.65) (Fig 2A). The lower CO was also found on ME site with the mean difference of CO

between presence and absence points was -1.9% (95% credible interval from -3.3 to -0.48) (Fig

2B). However, the lower CO points where D. dyeri seedlings were absent on the MB site was

not clear, with mean of difference with the present points was -1.1 (95% credible interval from

-6.4 to 4.1) (Fig 2C). The results of the GLM also indicated that presence of seedlings signifi-

cantly negatively correlated with CO on both sites (p = 0.01), and with ME site (p = 0.007), but

not correlated with the MB site (Table 2).

The dominance of adult D. dyeri trees (PD.A) was positively correlated with the presence of

seedlings for both sites (p = 0.006). PD.A was positively correlated with presence and abun-

dance of seedling on ME site, but was not correlated to these variables on the MB site

(Table 2). The results from BMA showed that, PD.A was the fourth most important variable in

the presence of seedling model with a probability of 46% coefficient is not equal to zero, coeffi-

cient of 1.704 (± 2.218), but PD.A was the least important variable in the abundance model

with only 7.4% probability that coefficient is not equal to zero, coefficient of -0.018 (± 0.176).

Seedling abundance was not correlated with CO (Table 2) but it was marginally negatively

correlated with stand total basal area (BA) with p = 0.069 (Table 2, but when seedlings were

present their abundance was positively correlated with stand total basal area (p = 0.0004,

Table 2). The correlations of BA with seedling presence and abundance were significant on the

ME site, with a negative correlation with presence, and positive correlation with abundance.

However, all of the variables included in the model-averaged analysis were not always nega-

tively or positively correlated with abundance of seedlings (S2 Table). Comparing with other

factors, BA showed weaker effects to seedling presence than CO and weaker effects than soil

pH to the seedling abundance (Table 2).

When analysed across both sites, seedling abundance was negatively correlated with soil pH

and positively correlated with BA (Table 2). In contrast, when the data for the ME site was ana-

lysed separately, there was a significant negative correlation between abundance and PD.A

(p = 0.03) and also with soil pH (p = 0.04) (Table 2). This consistent negative correlation of pH

with abundance of seedlings is reflected in a probability of 95% coefficient of pH not equal to

zero out of 97% all the BMA models with coefficient of -1.619 (± 0.629) (S2 Table). In the set

Fig 2. Difference of means of canopy openness (%) between presence (μ1) and absence (μ2) of seedlings for all data (A), for points on mixed

evergreen site (B) and for points on bamboo dominant site (C).

https://doi.org/10.1371/journal.pone.0233524.g002
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of models for abundance of seedlings on both sites, pH was included in less than 50% of the

models, and inconsistently negatively or positively correlated with coefficient of -0.529

(± 0.677). Overall, at both sites soil pH was low (typically less than 5.0) (Table 1). Topsoil silt

content had a weakest negative correlation (coefficient = -0.07, p = 0.01) with seedling pres-

ence only on the ME site (Table 2).

3.2. Shade house study: Seedlings response to light and soil treatments

After 10 months, the seedlings grown in the lowest light level had significantly lower survival

rates compared with those at higher light levels (χ-squared = 83.51, df = 5, p< 0.00). While

most of the seedlings at medium and high light levels survived (99% survival, only one seedling

died in F.M treatment), only 19.4% of seedlings at the lowest light level survived (Table 3). The

effect of soil type on seedling survival was evident at the lowest light level with 25% survival of

seedlings on degraded soil compared to only 14% seedling survival on forest soil (Table 3). At

the highest light level, soil type also appeared to have an effect on seedling health with a lower

rate of seedlings with leaf damage (holes or marks by fungal disease or insects) on the forest

soil (16.7%) compared to degraded soil (25%).

ANOVA results showed that light level, soil and light: soil interaction significantly influ-

enced seedling height (p = 0.03; Fig 3), however, only light level resulted in a significant differ-

ence in seedling diameter (p = 0.000; Fig 3). The seedlings grown at a high light level grew

higher (Low–High = -37.1, p = 0.000; Medium—High = -26.35, p = 0.000, Medium–

Low = 10.75, p = 0.001) and larger (Low–High = -1.88, p = 0.000; Medium—High = -2.06,

p = 0.000, Medium–Low = -0.19, p = 0.73) than those in low light levels (Fig 3). Soils signifi-

cantly influenced the seedling height at the high light level treatment (p = 0.000; Fig 3A). The

seedlings grown on forest soil had significantly higher stem height (Forest—Degraded = 6.39,

p = 0.000; Fig 3A) and slightly larger diameters than those grown in degraded soil (Forest—

Degraded = 0.15, p = 0.29; Fig 3B) and. The seedlings grown at low and medium light levels

were very similar in growth with no difference between the two soils.

The data on seedling leaf characteristics after 10 months was collected from shade house

component of three light levels and two soil type. Leaf morphology and anatomy were signifi-

cantly different among light and soil treatments (Fig 4). Seedlings in higher light and on forest

soil had greater leaves of leaf length (p< 0.001) and leaf width (p<0.001) (Fig 4A and 4B) but

thinner leaf thickness (Fig 4C), except at the medium light level, leaves of seedlings on forest

soil and degraded soils were not significant in length and wide. The leaves of seedlings on for-

ested soil were thinner than those on degraded soil (p< 0.001). Leaf stomatal density was posi-

tively correlated with light levels, and seedlings on degraded soil treatments had higher leaf

stomatal density compared to those on forest soil treatments (Fig 4D). Leaf chlorophyll

Table 3. Seedling survival and health status depending on soils and light levels.

Treatment Survival Health status (leaf damage)

Seedling Rate (%) Seedling Rate (%)

F.H 72 100 12 16.7

D.H 72 100 18 25.0

F.M 71 98.6 19 26.4

D.M 72 100 18 25.0

F.L 10 13.9 10 100

D.L 18 25.0 18 100

F: Forested soil, D: Degraded soil, H: High light level, M: Medium light level, L: Low light level.

https://doi.org/10.1371/journal.pone.0233524.t003
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content was negatively correlated to light level (Fig 4E). Soil type had a significant effect on

chlorophyll content at both low and high light levels but not significant at the medium light

level. At the low light level, seedlings on forest soil had lower leaf chlorophyll content than

those on degraded soil and the opposite result was shown at high light level.

4. Discussion

Dipterocarpus dyeri seedlings were more likely to be present at sites with lower canopy open-

ness (Table 1, Table 2, Fig 2). Previous studies have shown that D. dyeri is a typical climax trop-

ical shade-tolerant species in Dong Nai [42,58] and this is supported by our results. In our

study, the seedlings that survived in low light level conditions had higher leaf chlorophyll con-

tent and stomata density (Fig 4) indicating that D. dyeri has high light capture efficiency at low

light availability [85]. In addition, D. dyeri is a large-seeded species (S2B Fig), with recalcitrant

seeds [54], a further indicator that it is a shade tolerant tropical climax species [86]. Seedlings

which have high leaf area, such as D. dyeri, are more likely disadvantaged in large gaps because

of dryer soil, higher temperature and greater water loss through their leaves [87]. The D. dyeri
seedlings growing in the forest understory tended to have a lateral branching trait (S2C Fig),

which allows maximum light capture in shade [88]. Our finding that D. dyeri seedlings

occurred in sites with low light is consistent with previous research that concluded that the

late-successional tropical seedlings in the Dipterocarpus genus are the most shade-tolerant

genus in the Dipterocarpaceae family [42,89–91].

Fig 3. Seedlings growth in base diameter (A), and height (B).

https://doi.org/10.1371/journal.pone.0233524.g003
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Fig 4. Influence of soils and light levels to leaves length (A), leaves wide (B) blade thickness (C); chlorophyll

concentration (D); and stomatal density (E).

https://doi.org/10.1371/journal.pone.0233524.g004
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Dipterocarpus dyeri appears to be a broadly adapted generalist dipterocarp species that can

survive and grow in a broad range of light and soil conditions. The negative correlation

between seedling presence and light was at odds with species abundance findings (which indi-

cated a positive association between abundance and light) (Table 2). This result may be due to

the limited range of light availability levels at our study sites (9.5% to 22%). These levels fall

within the range appropriate for many shade-tolerant dipterocarps [92–94]. In the shade

house, survival and growth of D. dyeri was higher at the higher light levels, with only 25% of

seedlings surviving at the lowest light level (5%) (Table 3). These results suggest that D. dyeri
probably can persist at canopy openness lower than 10%, and that it is a generalist species

rather than a shade-tolerant specialist. This is consistent with the findings of Denslow [11] and

Paoli et al. [94] who found that in rainforest, most canopy species are neither open environ-

ment pioneer species nor shade-preferring “climax” forest species but generalists that can tol-

erate low light but require more open condition to grow into canopy trees [95–97].

Dipterocarpus dyeri seedling presence had a weak negative correlation with total forest basal

area (BA) (Table 2). However, at the subset of sites where the seedlings were present, their

abundance was positively correlated with BA (Table 2). On the surface, this results seems

counterintuitive, because typically sites with higher BA are also darker. However, in this study

canopy openness was not correlated with BA (S1 Fig) because the sampling time was in the

dry season, after deciduous species had dropped their leaves. Seedlings were less likely to be

present at higher BA sites because these sites were characterised by a higher deciduous compo-

nent, which was typically composed of Cratoxylum and Lagerstroemia species. Cratoxylum
and Lagerstroemia are strongly competitive, long-lived pioneer species and, D. dyeri seedling

survival is likely to be lower at these sites.

Seedling presence and abundance were strongly positively correlated with the dominance

of mother trees (PD.A) (Table 2). This result was expected for a number of reasons. Firstly, the

higher PD.A indicated that the site conditions were suitable for the species. Secondly, higher

PD.A suggested a more stable seed source in the recovered forest [42,98,99]. Thirdly, D. dyeri
is a brevideciduous species with leaf-flushing within one week (this study and [42]). It can be

grouped with evergreen species similar to two other Dipterocarpus species in Thailand [72], so

where it dominates basal area, the canopy in the dry season is less open (cf. deciduous forests),

and lower light availability was associated with the presence of D. dyeri seedlings in our study

(Fig 2). This positive correlation between presence/abundance of seedlings and mother trees

contradicts previous research describing a negative effect of conspecific adult effects (due to

impacts of pathogens and leaf litter) on the survival of early-stage seedlings, which was consid-

ered to be a partial explanation for the species richness in tropical forests [100–103]. However,

conspecific negative density effects have often been found to be a weaker factor compared to

environmental conditions [47,104,105]. Conspecific density affects differently on different spe-

cies, and at different stages of forest development [106]. For example, D. dyeri species produces

an abundance of large seeds and large seed mass can be one of the strongest factors compensat-

ing for the conspecific negative density effect [107]. In Dong Nai, D. dyeri had been logged

[58,108], resulting in the abundance of adult D. dyeri present today. Hence the density of adult

D. dyeri trees might not be high enough to show the negative effects.

Dipterocarpus dyeri seedling abundance was negatively correlated with soil pH (Table 2).

Overall, at all sites, soil pH was low (pH(KCl) from 3.6 to 4.0 or pH(water) of 4.5 to 5.0) (Table 1,

S2 Table). Commonly, climax lowland tropical species show a high tolerance to the infertile,

acidic and high aluminium concentration of tropical soils (Acrisol and Ferrasols) [20], such as

occurs in dipterocarp forests. However, tropical soils can be very spatially variable and while

forest soils are generally of low fertility, the higher fertility soils can be found on sloping sites

where the soils are younger and have undergone less leaching [20]. The negative correlation
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between seedling abundance and pH is attributed to the higher tolerance of evergreen species

to strongly acidic soils, compared with deciduous species, which usually prefer higher soil pH

(from 5.8 to 6.2) [20]. Evergreen species are also less tolerant of low moisture than deciduous

species, as occurs in these sites during the dry season. Lower pH affects the availability (or is

correlated with the availability) of a range of beneficial as well as toxic minerals (aluminium,

iron, manganese and phosphorus) and these are likely to be the driving factor [20]. The nega-

tive correlation between seedling abundance and soil pH was in contrast with findings for D.

sublamellatus in Borneo, which was not associated with pH [94]. However, in that study the

species is considered to be a soil nutrient generalist and therefore would be expected to be

more tolerant of a wide range of conditions [94].

Seedling mortality was greatest in the lowest light level in the shade house trial (Table 3).

The results show opposite trends in natural vs simulated (shade house) conditions; it is possi-

ble that factors other than light might have discernible influence on the presence or absence of

seedlings. Local site temporal factors such as litter thickness, soil CO2 concentration, presence

of herbivores and pathogens can affect germination and process of seedling establishment. In

our case, there was the evidence of Fusarium wilt disease (S2D and S2E Fig), which infected

the plants in the lower light and higher humidity conditions. In addition, while all seedlings

were given the same amount of irrigation the soils in heavy shade appeared to stay wetter. This

result was similar to the lower survival of a range of tropical species under lower light availabil-

ity reported by Augspurger et al. [102] and Gaviria and Engelbrecht [109], and high mortality

for Dipterocarpus seedlings at low light levels [94,110]. There are other possible and related

explanations for high mortality in low light. Firstly, seedling photosynthesis was low and lead-

ing to seedlings being less able to resist disease and insect damage. Secondly, saturation of the

soils could negatively affect survival of seedlings. Under the low light levels, the photosynthesis

rate was low, meaning that less water was lost through leaves and evaporation from soil. Con-

sequently, the soil, which was a Chromic Acrisol with a relatively high clay content maintained

high moisture levels [65,111]. The Fe/Al-rich, acidic tropical soil may have become anoxic and

therefore toxic for seedlings [112]. The heaviness of this soil may also explain the higher sur-

vival rate of seedlings on the lower clay content (degraded soil) at the same light level treat-

ment (Table 3). Our survey also showed that adult D. dyeri were found at higher densities on

the steep sites (cluster RR1 with 80% total basal area was made of D. dyeri) where the dry sea-

sons were relatively wetter and have a shorter time for which they are waterlogged during the

rainy season [17,113,114]. Thirdly, D. dyeri may be maladapted to flooding and waterlogged

soils, as the species shows some morphological characteristics indicative of drought tolerance.

For example, D. dyeri seedlings have hairy leaves and deep tap roots possibly giving them

more tolerance to droughts [115–117].

5. Conclusions

Regeneration of D. dyeri, the most dominant dipterocarp species in the region, is the key for

restoring the forest landscape. D. dyeri appears to be a broadly adapted generalist dipterocarp

species that can survive and grow in a broad range of light and soil conditions. D. dyeri seed-

lings also survived better where soils had low pH, and good drainage/dry soils rather than wet

soils. The strong correlation of D. dyeri seedling presence and abundance with the dominance

of mother trees is linked to the recovering status of the forest in Dong Nai. At the landscape

scale, sites characterised by mixed bamboo (lower available soil water and light level [118–

120]) and shallow soils (on schist and shale soil parent materials) have lower presence and

abundance of D. dyeri seedlings, indicating that such sites are less suitable for D. dyeri; refores-

tation of these sites should focus on other species. Microsite conditions, especially topographic
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location, impact on soil water regime in seasonally dry areas like Dong Nai, and this contrib-

utes to the observed distribution patterns of seedlings. With regard to restoration techniques,

our findings suggest that (a) nurse crops are not necessary for D. dyeri establishment, if the site

is moist enough, but (b) nurse crops should be used at drought-prone sites; (c) under the most

common tree cover conditions, including intermediate recovered forest or dense plantation,

light liberation will be necessary for native forest restoration; (d) restoration should not be

attempted on waterlogged sites and (e) using phosphorus or lime carefully to increase soil

phosphorus (but maintaining pH< 5.5) should be considered.
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