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Abstract

Signaling networks are key regulators of cellular function. Although the concentrations of 

signaling proteins are perturbed in disease states, such as cancer, and are modulated by drug 

therapies, our understanding of how such changes shape the properties of signaling networks is 

limited. Here we couple mass cytometry-based single-cell analysis with overexpression of tagged 

signaling proteins to study the dependence of signaling relationships and dynamics on protein 

node abundance. Focusing on the epidermal growth factor receptor (EGFR) signaling network in 

HEK293T cells, we analyze 20 signaling proteins during a one hour EGF stimulation time course 

using a panel of 35 antibodies. Data analysis with BP-R2, a measure that quantifies complex 

signaling relationships, reveals abundance-dependent network states and identifies novel signaling 

relationships. Further, we show that upstream signaling proteins have abundance-dependent effects 

on downstream signaling dynamics. Our approach elucidates the influence of node abundance on 

signal transduction networks and will further our understanding of signaling in health and disease.

Signaling networks are at the core of cellular information processing and transform external 

signals into cellular responses. Signals are transduced by modulating enzymatic activities 

mainly via protein phosphorylation, and cells implement sophisticated mechanisms, such as 
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feedback loops, pathway crosstalk, and differential enzyme localization, to integrate signals 

and drive cellular processes and physiological outputs. The abundance of individual 

signaling pathway components (nodes) is central to the activity and output of a signaling 

network1. Changes in node abundance are tightly regulated and control biological programs 

such as stem cell differentiation and embryogenesis2. Abundance deregulation of particular 

signaling network nodes via genomic, transcriptional, or post-transcriptional regulatory 

defects3–5 underlies human diseases, the prime example being cancer6. Copy number 

alterations of genes encoding critical proteins7–9, independent of mutations that 

constitutively change enzymatic activity10, drive progression of many cancer types. 

Genomic instability in cancer cells causes abnormally broad distributions of signaling 

protein abundances in a given tumor11, yet the consequences of the protein abundance levels 

on signaling properties is poorly understood limiting our ability to rationally design 

therapies.

The epidermal growth factor receptor (EGFR) signaling network is affected by gene copy 

number alterations that deregulate protein abundances (e.g., of EGFR, HER2, ERK and 

AKT) in a number of cancer types7–9. EGFR signaling controls cell growth, motility, 

survival, differentiation, and metabolism12. Many drugs target the activity of the EGFR 

signaling network13,14. The receptor tyrosine kinase (RTK) function of EGFR is activated 

by its dimerization upon ligand binding. EGFR auto-phosphorylation recruits adaptor 

proteins that typically activate the MAPK/ERK and AKT signaling pathways. The 

MAPK/ERK branch activates the GTPase RAS, which triggers a kinase phosphorylation 

cascade consisting of RAF, MEK, ERK, and p90RSK. The output of the MAPK/ERK 

branch is transcription of genes regulating growth and division15,16. Signal transduction 

through the AKT branch starts by PI3K activation, producing PIP3, which recruits AKT and 

PDK1 to the plasma membrane. PDK1 phosphorylates AKT15,17, which mediates signaling 

through the mTORC1 complex to modulate translation via p70S6K and 4EBP117. Other 

AKT targets are GSK3β, PRAS40, and TSC2. The AKT pathway controls cell survival, 

proliferation, and migration17. STAT proteins and the PKC pathway can also be activated by 

EGFR-mediated signaling18,19. EGFR signaling involves crosstalk and feedback loops both 

internally (e.g., active ERK attenuates upstream RAF or MEK signaling via negative 

feedback)15 and with other signaling pathways (e.g., WNT and TGF-β pathways)20,21.

Classically, two approaches are used to characterize the effect of proteins on signal 

transduction. The first approach analyzes cell populations. Here, western blotting, mass 

spectrometry, RNA-microarrays, and synthetic lethality screens are used to identify 

signaling relationships22–24. Protein-protein interaction analyses are used to determine 

which proteins in a network directly interact23,25. Population-based methods yield a 

comprehensive view of signaling but are difficult to use in analysis of protein abundance 

dependencies due to inherent limitations: Proteins must be expressed at different abundances 

or cells must be sorted to yield a non-continuous abundance titration. Such methods result in 

a large number of samples and cell-to-cell protein abundance variations within each sample 

remain masked. The second approach studies signaling relationships in single cells. Here 

fluorescence microscopy and flow cytometry (FACS) are used with a variety of assays, 

including proximity ligation assay (PLA)26 or fluorescence resonance energy transfer 
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(FRET)27. These approaches allow study of signaling relationships and dynamics through 

time and space; however, only a few signaling nodes can be measured simultaneously.

A recently developed single-cell analysis technology, called mass cytometry, allows for the 

simultaneous measurement of over 40 signaling nodes in single cells using metal-isotope 

tagged antibodies28,29. This capability makes mass cytometry uniquely suited to 

comprehensively query the function of nodes in signaling networks within heterogeneous 

cell populations. Mass cytometry is quantitative and, in combination with mass-tag cellular 

barcoding (MCB), a powerful screening tool28. Algorithms to analyze multiplexed single-

cell mass cytometry data allow quantification of signaling relationships, therefore helping to 

decipher the highly complex network behaviors that operate even in simple biological 

systems30.

Here, we coupled protein overexpression with mass cytometry to measure the effect of 

varying node abundance on the activation state and signaling relationships of an 

unstimulated EGFR signaling network, as well as the signaling dynamics of the network in 

response to EGF stimulation. We exploited the finding that transient protein overexpression 

in a cell population typically produces a continuous abundance range of the target protein 

over four orders of magnitude. We overexpressed 20 central EGFR signaling network 

proteins individually in human embryonic kidney (HEK) 293T cells, sampled during an 

EGF stimulation time course over 60 minutes totaling 360 conditions. An average of 11,000 

cells per condition was analyzed with a panel of 35 antibodies to provide a comprehensive 

single-cell proteomic EGFR network analysis. To identify signaling relationships in this 

dataset, we developed a statistical measure that we call 'binned pseudo R-squared' (BP-R2) 

that recapitulated known signaling relationships and identified relationships that were –to 

the best of our knowledge- not described previously. Thus, our experimental and 

computational approach enables study of how the strength and dynamics of signal 

transduction are tuned by node abundances.

Results

Analyzing continuous protein abundance dependencies

To systematically identify and characterize protein abundance-dependent signaling 

relationships, dynamics, and network activation states, we exploited the variation and large 

dynamic range of protein abundance induced by transient transfection and used mass 

cytometry to quantify the abundance of the transfected protein of interest (POI) in 

conjunction with comprehensive signaling network readouts in single cells. We cloned POIs 

genes into vectors containing a cytomegalovirus (CMV) promoter and a GFP-tag 

sequence31 to transiently overexpress GFP-tagged POIs in HEK293T cells (Fig. 1a). The 

tagged protein abundance was measured by mass cytometry using an anti-GFP antibody 

(Fig. 1a). Ordering the measured cells based on the GFP signal provided a continuous POI 

titration (Fig. 1b). Typically, not all cells were transfected, yielding an internal control for 

every experiment. To measure the single-cell EGFR signaling network states, we designed 

and validated a panel of 35 antibodies that mostly detect phosphorylation sites on signaling 

proteins (Supplementary Tables 1-3). These data were used to determine the abundance 

dependencies of network activation state and signaling dynamics (Fig. 1b).
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To validate our system we confirmed that, first, the GFP tag was reliably detected by mass 

cytometry (Supplementary Fig. 1); second, the GFP tag did not affect the localization and 

activity of the POI (Supplementary Fig. 2, 3, Supplementary Table 4, Supplementary File 1); 

third, POI expression levels were linearly related to GFP abundance, validating GFP as 

readout of the total POI abundance (Supplementary Fig. 4a, c); fourth, POI overexpression 

for 18 hours (i.e., the time point of our experiments) did not alter the underlying network 

structure (Supplementary Fig. 4b, c); fifth, the antibody-based GFP quantification by mass 

cytometry was comparable to FACS (Supplementary Fig. 5); sixth, the cell culture media 

and cell detachment did not alter signaling processing in the EGFR network (Supplementary 

Fig. 6, 7); and, seventh, the levels of the GFP-tagged POIs were stable during the 1-hour 

EGF stimulation time course (Supplementary Fig. 8, Supplementary Video 1). We also 

found that the method is robust and highly reproducible as evidenced by the high 

concordance between the three individual experiment replicates (Supplementary Fig. 9, 

Supplementary File 2).

KRASG12V and MEK1DD abundance effect on signaling

We first studied a well-known signaling circuit: Constitutively active mutants of KRAS and 

MEK1 (KRASG12V and MEK1DD) lead to ERK phosphorylation and activate components 

downstream in the MAPK/ERK pathway. As expected, we found that overexpression of 

KRASG12V-GFP or MEK1DD-GFP increased phosphorylation on Thr202 and Tyr204 of 

ERK1/2 (Fig. 2a). Our approach also elucidated the abundance-dependent effects on these 

signaling relationships: The relationship between KRASG12V-GFP and p-ERK1/2 was bow-

like as high levels of KRASG12V-GFP corresponded to reduced phosphorylation of ERK1/2. 

By contrast, the MEK1DD-GFP abundance relationship with p-ERK1/2 was monotonic as p-

ERK1/2 increased with MEK1DD-GFP expression (Fig. 2a). These results verified the 

oncogenic activation of p-ERK1/2 induced by KRASG12V and MEK1DD.

Next, we analyzed the impact of KRASG12V-GFP and MEK1DD-GFP abundance on all 

measured phosphorylation sites. We divided the measured cells into 10 bins according to the 

GFP signals and plotted the bin medians (Fig. 2b, Supplementary Fig. 9b-e). This analysis 

revealed that the phosphorylation site abundances on ERK1/2 and its direct downstream 

target Ser380 of p90RSK had similar relationships to the abundances of KRASG12V-GFP or 

MEK1DD-GFP. Phosphorylation of AKT on Ser473 and its direct target Ser9 of GSK3β also 

had parallel trends and showed reduced levels when the MAPK/ERK signal peaked, 

suggesting inter-pathway regulation. We also observed increased JNK phosphorylation on 

Thr183/Tyr185 induced by the KRASG12V mutant (Fig. 2b) as reported previously32. This 

shows that our approach recapitulates known signaling relationships and identifies 

abundance-determined signaling responses.

We then systematically evaluated signaling relationships between all pairs of measured 

markers modulated by KRASG12V-GFP or MEK1DD-GFP overexpression. We exploited the 

fact that overexpression of one protein increases signaling (i.e., phosphorylation levels) and 

thus expands the dynamic range of many measured markers (Fig. 2c). This enabled the use 

of correlation analysis to distinguish signaling relationships (high correlation) from 

biological and technical noise (low correlation). For example, overexpression of KRASG12V-
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GFP resulted in an increased Spearman correlation between p-ERK1/2 and p-p90RSK 

compared to control (Fig. 2c), whereas ERK-independent phosphorylation sites, such as 

Tyr551 of BTK/ITK, showed low correlation with p-ERK1/2 levels in both control and 

overexpression conditions (Fig. 2d).

Identifying changes in pairwise Spearman correlations for all measured markers in the 

KRASG12V-GFP and MEK1DD-GFP overexpression data compared to the FLAG-GFP 

control enabled systematic analysis of signaling relationship patterns (Fig. 2e, f). 

Phosphorylation levels of proteins in the MAPK/ERK pathways showed strong increases in 

correlation, and pathway members clustered together (Fig. 2e, f, green squares). We also 

observed that phosphorylations of MAPK/p38 pathway members and STAT proteins (STAT1 

and STAT5) were increasingly correlated with levels of MAPK/ERK pathway members as 

MEKDD-GFP levels increased (Fig. 2f, purple rectangle), indicating crosstalk between 

MAPK and STAT pathways. These results reveal relationships among many measured 

markers and show that increases in correlation reflect pathways and grouped biological 

processes.

Automated analysis of abundance-induced signaling

Spearman correlation analysis can uncover strictly monotonic relationships between 

phosphorylation levels on signaling proteins; however, protein abundance-dependent 

signaling responses can be complex (Fig. 2a, see KRASG12V). We therefore developed a 

density-independent measure termed 'binned pseudo R-squared' (BP-R2) to quantify the 

strengths of relationships between the abundance of a POI and measured phosphorylation 

sites. BP-R2 creates 10 bins across the POI-GFP expression range and calculates the 

relationship strength considering bin medians and the global mean (Supplementary Fig. 10a, 

b, Methods, Supplementary Software). Using the BP-R2 values for all negative controls, a 

cutoff for strong signaling relationships was determined (Supplementary Fig. 10c). 

Benchmarking BP-R2 in identifying strong signaling relationships from the overexpression 

datasets showed that BP-R2 outperformed methods often used for this task30,33 

(Supplementary Fig. 11a, b). The strong relationships identified by BP-R2 were plotted in a 

two-dimensional layout guided by canonical pathways (Fig. 2g, h). The directionality of 

measured signaling relationships was determined by Spearman correlation of the bin 

medians (Supplementary Fig. 10b, Methods). A positive correlation indicates that cells show 

generally increasing marker levels and a negative correlation indicates generally decreasing 

marker levels as POI-GFP levels increase.

Analysis of KRASG12V-GFP and MEK1DD-GFP overexpression versus all measured 

markers using BP-R2 revealed strong, positively correlated relationships of MEKDD-GFP to 

downstream MAPK/ERK pathway nodes. KRASG12V-GFP levels, although also positively 

correlated with MAPK/ERK nodes, exhibited the same, but weaker relationships (Fig. 2a, b, 

g, h). Together, these results suggest that feedback regulation of upstream MAPK nodes 

differs between the studied mutants. Additionally, this network view revealed that MEK1DD-

GFP abundance had a strong positive impact on nodes in the MAPK/p38 pathway; the 

previously observed KRASG12V-induced phosphorylation of JNK32 was dependent on 

KRASG12V abundance (Fig. 2g, h). These results show that overexpression of signaling 

Lun et al. Page 5

Nat Biotechnol. Author manuscript; available in PMC 2017 September 27.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



proteins, in conjunction with BP-R2 and correlation analysis, identifies known relationships 

and is a valid platform for discovery of signaling relationships in a comprehensive and 

abundance-dependent manner.

Node abundance dependency analyses of the EGFR network

To study the node abundance dependency of signaling relationships and dynamics in the 

EGFR signaling network, we overexpressed 20 EGFR-related signaling proteins individually 

in HEK293T cells (Table 1). Each of the 20 GFP-tagged POIs was validated in previous 

studies (Supplementary Table 5) and in our system (Supplementary Fig. 2, 3, Supplementary 

File 1). 18 hours after transfection, we treated cells with EGF and quantified signaling by 

mass cytometry over a 60-min time course. To exclude signaling relationships caused by 

channel-to-channel spillover, we applied a stringent experimental filter (Supplementary Fig. 

12, Methods). The median marker intensities during the time course are shown in 

Supplementary Fig. 13a. Based on these data we performed two sets of analyses. In the first, 

we used BP-R2 analysis and Spearman correlations to evaluate how the abundance of 

overexpressed proteins influenced phosphorylation at the measured sites (Fig. 3, 

Supplementary Fig. 13b and Supplementary Files 2-4). In the second, we examined how 

features of signaling dynamics depend on protein abundance (Fig. 4).

In the first analysis, strong and broad signaling responses to overexpression were identified 

for the upstream kinases PDK1-, GSK3β-, SRC-, and ASK1-GFP without EGF stimulation 

(Fig. 3. Overall, we identified 59 strong signaling relationships in the unstimulated 

conditions. Overexpression of many kinases induced strong and positively correlated 

signaling relationships with their own phosphorylation (Fig. 3, Supplementary File 4). 

Overexpression of CRAF-, KRAS-, p70S6K-GFP, and others only induced signaling 

responses upon EGF stimulation (Fig. 3). Notably, under stimulated conditions, KRAS-, 

CRAF-, and MEK1-GFP levels negatively correlated with phosphorylation levels of 

downstream kinases p-ERK1/2 and p-p90RSK (Fig. 3). Activating mutations in KRAS and 

CRAF (Fig. 2), but not protein overexpression alone, may activate oncogenic signaling.

To systematically assess signaling relationships identified by BP-R2, we used the literature-

based signaling network, SIGNOR34. For each relationship, we computed the shortest 

signed directed path length according to the SIGNOR network (Supplementary Table 6). We 

found that 76% of the strong relationships identified in the unstimulated conditions had 

paths with a maximum of three steps, highlighting that our approach identifies rather direct 

signaling relationships. Only 14 abundance-dependent relationships with four or more path 

steps were identified. Comparison of our strong signaling relationships with literature 

indicated that many EGF signaling connections that we identified were previously reported. 

We also propose many relationships that have—to our knowledge—not been previously 

reported, for example: p90RSK to PDK1 (Ser241), GSK3β to SHP2 (Tyr580), JNK1 to 

MAPKAPK2 (Thr334), p110α to MKK3 (Ser189), p110α to MKK6 (Ser207), ASK1 to 

PDK1 (Ser241), ASK1 to GSK3β (Ser9), and ASK1 to AMPKα (Thr172) (Table 2).

Phosphorylation levels of many members of the MAPK/ERK pathways showed complex 

relationships (i.e., measured phosphorylation levels varied over the analyzed POI-GFP range 

and the relationships did not fit linear, sigmoidal, or quadratic models) with levels of POI-
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GFPs upon EGF stimulation. These relationships can be explained by abundance-dependent 

modulation of the signaling dynamics in response to EGF. Thus, in the second set of 

analyses we examined how signaling dynamics, as quantified by amplitude and peak-time, 

depended on abundance of an overexpressed protein (Fig. 4). In order to view signaling 

trajectories as functions of protein abundance, we binned the POI-GFP levels into 10 bins 

(Fig. 4a, Supplementary File 2). This allowed tracing the signaling trajectories of cells with 

similar protein overexpression levels (i.e., those in the same bin) over the EGF stimulation 

time course (Fig. 4b, Supplementary File 5). Strong and robust changes in signaling 

amplitudes (Fig. 4c-i) and peak-times (Supplementary Fig. 14) were found. Notably, the 

maximum amplitudes were independent of the overexpression range of a given POI 

(Supplementary Fig. 15).

We found that high CRAF-GFP and KRAS-GFP abundance strongly reduced signaling 

amplitudes of p-ERK1/2 and p-p90RSK (Fig. 4c, d, i), whereas high abundance of MEK1-

GFP strongly reduced amplitudes and delayed peak-times for p-p90RSK (Fig. 4i, 

Supplementary Fig. 14). Overexpression of ERK2-GFP led to complex abundance-

dependent responses of p-p90RSK and p-ERK1/2 after EGF stimulation (Fig. 4e-h). p-

ERK1/2 amplitudes increased and peak-times delayed as a function of ERK2-GFP 

abundance level (Fig. 4g-i, Supplementary Fig. 14). Intermediate abundance levels of ERK2-

GFP also delayed the p-p90RSK peak-times relative to low ERK2-GFP abundance, whereas 

cells with high ERK2-GFP levels exhibited minimal p-p90RSK signaling dynamics (Fig. 4e, 

f, i, Supplementary Fig. 14). Overexpression of p90RSK-GFP modulated the signaling 

amplitude of its potential crosstalk phosphorylation site, Ser241 of PDK1, in an abundance-

dependent manner, and increasing expression of p90RSK increased p-PDK1 amplitudes 

(Fig. 4i). Thus, we observed abundance-dependent signaling dynamics across the range of 

overexpression levels. Overexpression of upstream signaling proteins (KRAS-, CRAF-, 

MEK1-, and ERK2-GFP) in the MAPK/ERK pathway led to reduced signaling amplitudes 

and delayed peak-times of their downstream targets. These observations show that our 

approach can quantify the role of protein abundance in determining the dynamic signaling 

response to an extracellular stimulation.

Discussion

Here we present an approach coupling transient overexpression with mass cytometry-based 

single-cell measurements to characterize signaling network activation states and signaling 

dynamics over a quasi-continuous, high dynamic range of protein abundance. To highlight 

the utility of our approach, we present a comprehensive single-cell proteomic analysis of the 

EGFR network that enabled an analysis of abundance-dependent effects of signaling 

proteins on state and dynamics of the signaling network. We evaluated the effects of 

overexpressing 20 EGFR network key nodes with a 60-minute EGF stimulation time course. 

In each of the 360 conditions, we measured the effect of a POI over a four order of 

magnitude abundance range on 35 markers by mass cytometry providing a unique and 

valuable quantitative single-cell resource of abundance dependencies of EGFR signaling.

Previously, the heterogeneity of protein levels after transient transfection was considered 

problematic. Here, we took advantage of this cell-to-cell variation as it results in a 
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continuous titration of protein abundance over four orders of magnitude. Untransfected cells 

also provided an internal control for each experiment. We used the multiplexing capabilities 

of mass cytometry to characterize abundance dependencies of signaling network state and 

dynamics. Applied to the EGFR signaling network, our approach recapitulated known 

relationships, suggested previously not described ones, and revealed the intricate modulation 

of signal amplitudes and peak-times as functions of continuous protein abundance.

Our approach contributes to the understanding of signaling on several levels. First, the 

approach can be used to study uncharacterized proteins and to suggest additional roles to 

characterized ones. Second, we were able to directly relate POI abundance with the 

comprehensive analysis of signaling dynamics in response to stimulation. Such analyses are 

necessary for understanding of differential signal processing in identical cell types and in 

disease states characterized by heterogeneity in protein expression such as cancer. Third, the 

overexpression yields a large dynamic range of signaling activity and can reveal signaling 

relationships masked by stochastic processes and technical noise under otherwise similar 

conditions, facilitating the computational analysis of signaling relationships. Fourth, we 

present a metric termed BP-R2, which allows the quantification of the strengths of arbitrary 

shaped signaling relationships. BP-R2 was superior to state-of-the-art methods for analysis 

of our dataset. Fifth, and finally, we were able to infer protein abundance-dependent 

signaling kinetics from single-cell snapshot data.

Our approach recapitulated known oncogenic signaling behaviors induced by the 

constitutively active mutants KRASG12V and MEK1DD and identified novel abundance-

dependent signaling relationships. For example, p-ERK1/2 was attenuated in cells with 

highly overexpressed KRASG12V-GFP, potentially due to negative feedback loops or 

senescence35. Overexpression of the wild-type KRAS-GFP and MEK1-GFP did not induce 

downstream signaling activation, suggesting that mutations on KRAS or MEK1 are the main 

drivers of oncogenic signaling. Further, our approach allows study of abundance-dependent 

signaling dynamics. In the MAPK/ERK pathway, high abundance of upstream signaling 

mediators KRAS, CRAF, MEK1, or ERK2 reduced amplitudes and delayed peak-times of 

downstream phosphorylation sites. One possible explanation is that the signal transduction is 

determined by the competition between active and inactive forms of a signaling protein for 

substrates. Overexpression increases the total abundance but may reduce the percentage of 

the active form.

KRAS amplification has been identified in many cancer types. Amplification, however, is 

not correlated with the phosphorylation of ERK1/236. Rather, KRAS amplification mediates 

resistance to inhibitors targeting growth pathway related kinases, including EGFR, MET and 

MEK1/2; KRAS knockdown diminishes the drug resistance37–39. Our results indicate that 

due to reduced downstream signaling amplitudes in response to EGF stimulation, the 

dependency of cells on the MAPK/ERK pathway may decrease upon KRAS overexpression, 

suggesting a mechanism for cancer cell resistance to inhibitors.

Comparing the identified strong signaling relationships with those in the SIGNOR database, 

we propose previously not described signaling relationships, e.g.: 1) Our data suggest that 

p90RSK potentially forms a positive feedback loop and activates the upstream signaling 
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protein PDK1. 2) GSK3β has been identified as a central signaling controller and has 

multiple substrates40; our results suggest that SHP2 is a potential direct or indirect target of 

GSK3β. 3) We also propose that JNK1 is a MAPKAPK2 activator. 4) PI3K and MKK3/6 are 

known to be regulated by RAC141; our results suggest PI3K activates MKK3/6 

independently. 5) Recent studies indicate that ASK1 contributes in negative regulation of 

PDK1 through phosphorylation on Thr254 of PDK142; We observe ASK1 overexpression-

induced PDK1 phosphorylation on Ser241, inducing PDK1 activity and downstream GSK3β 
phosphorylation on Ser9. 6) In addition to the known AMPK-mediated ASK1 activation43, 

our data indicates ASK1 activation of AMPKα via phosphorylation on Thr172. 7) We have 

also observed negative correlations between the abundance of p70S6K or PDK1 to the 

phosphorylation level of S6 (Ser235/Ser236), indicating overexpression-induced-negative 

feedback regulations.

Our method has several limitations. First, we do not measure the endogenous expression 

level of the POI. However, exogenous expression is linearly correlated with the total protein 

level (Supplementary Fig. 4a), validating GFP as readout of the total POI. Second, all results 

in mass cytometry rely on antibodies; for this work, all antibodies were thoroughly validated 

(Supplementary Table 3). Third, we do not measure the abundance range of the studied 

proteins in cancer cells, however, proteome studies of cancer cells and databases such as 

PaxDb11 indicate a range similar to those studied here. Fourth, high expression levels of a 

protein kinase may induce non-specific phosphorylation; however, our data allows choosing 

the analyzed expression range in silico, thus such effects can be excluded.

The approach described here provides a method to study how the abundance variance of 

signaling proteins in different tissues and cell lines results in distinct signaling behaviors. 

The application of our approach to synthetic biology, stem cell biology, developmental 

biology, and cancer-related processes, such as the epithelial-mesenchymal transition, will 

enable quantitative identification of key proteins and signaling determinants in cell 

differentiation at phenotypical switching points. We envision that determining which 

signaling relationships and thresholds enable diseased cells to overcome drug treatment will 

be a highly relevant application.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Workflow of abundance-dependent network analysis. (a) Experimental workflow. Signaling 

POIs are cloned into vectors containing a CMV promoter and a GFP-tag sequence to 

transiently overexpress GFP-tagged POIs in HEK293T cells. We quantify anti-GFP antibody 

as readout of POI-GFP abundance, together with other 35 markers, by mass cytometry. (b) 

Data analysis workflow. Cells were ordered based on the GFP signal, providing a continuous 

POI titration, which was then coupled to other signaling markers to determine the abundance 
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dependencies of network activation state and signaling dynamics in the network after 

transfection. The network in the illustration does not represent an actual biological example.
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Figure 2. 
MAPK/ERK pathway mutants induce oncogenic signaling. (a) Biaxial plots of GFP, 

representing the abundance of the overexpressed mutant POIs, versus abundance of 

phosphorylation on Thr202/Tyr204 on ERK1/2. Constitutively active KRASG12V-GFP 

shows a downregulation on Thr202/Tyr204 on ERK1/2 at the highest levels of KRASG12V-

GFP. Constitutively active MEK1DD-GFP directly phosphorylates Thr202/Tyr204 on 

ERK1/2, and the abundance of the POI-GFP is correlated with amount of ERK1/2 

phosphorylated at these sites. The FLAG-GFP control does not affect ERK phosphorylation 
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sites. (b) The abundances of measured phosphorylation sites are plotted over the range of the 

KRASG12V-GFP and MEK1DD-GFP expression. Phosphorylation sites of the same pathway 

(e.g., on ERK1/2 and p90RSK, AKT and GSK3β, or p38 and JNK) show similar trends. An 

individual experiment is shown here. Plots for 3 replicates are shown in Supplementary Fig. 

9b-e. (c) Strong single-cell correlations within biaxial plots indicate co-regulated 

phosphorylation sites. (d) Unchanged and reduced correlations indicate unrelated 

phosphorylation sites. (e) and (f) Heat maps showing for all pairs of measured markers the 

change in Fisher-transformed Spearman correlation values for overexpression of (e) 

KRASG12V-GFP and (f) MEK1DD-GFP when compared to the FLAG-GFP overexpression 

control. (g) and (h) BP-R2 scores and Spearman correlations of bin medians for all measured 

markers in cells where (g) KRASG12V-GFP or (h) MEK1DD-GFP was overexpressed 

overlaid on a literature-based graph of canonical signaling 

pathways14,15,21,23,44,45,35,46–48. Strong relationships identified from the BP-R2 

analysis are plotted on the signaling maps as colored circles. The sizes of circles indicate 

relationship strengths quantified by BP-R2. The directionalities of relationships, as judged 

by Spearman correlation of bin medians, are shown by the color of the circles (positive 

correlation indicates that cells show generally increasing marker levels, and a negative 

correlation indicates decreasing marker levels as POI-GFP levels increase). For (e) to (h), 

data from 3 individual experiment replicates were used.
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Figure 3. 
Analysis of dynamics of EGFR signaling. HEK293T cells overexpressing GFP-tagged 

signaling proteins listed in Table 1 were treated with EGF for 0, 5, 15, 30, and 60 min. 

Strong abundance-dependent signaling relationships (Supplementary Fig. 10c) are plotted on 

the signaling map with circle sizes and colors indicating strengths (BP-R2 score) and 

directionalities (Spearman correlation of bin medians), respectively. The miniaturized 

network is the same as used in Fig. 2. Overexpression of S6-GFP did not induce any strong 
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signaling relationships (data not shown). For all analyses, data from 3 individual experiment 

replicates were used.
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Figure 4. 
Analysis of node abundance-dependent EGFR signaling dynamics. (a, b) Schematic plots of 

amplitude and peak-time analysis. (a) The x-axis (i.e., overexpressed protein as determined 

by the GFP measurement) was split into 10 bins. (b) Median phosphorylation abundance in 

each bin was plotted on the y-axis versus time (x-axis) to visualize abundance dependency 

of signaling dynamics. (c, d) Mass cytometry ion counts (arcsinh transformed, Methods) 

measured for p-p90RSK (y-axis) as a function of ion counts measured for abundance of 

CRAF-GFP (x-axis) and EGF stimulation time. The same layouts for (e, f) ERK2-GFP 

abundance-determined p-p90RSK levels and (g, h) p-ERK1/2 levels are shown. (i) Heat map 

showing protein abundances with strong influences on signaling amplitudes with color 

indicating normalized signaling amplitudes. Only overexpressed proteins with an amplitude-

ratio higher than 3 fold for more than two of the three replicates were identified as strong 

influences and are included in the heat map. For (a) to (h), representative examples from the 

3 individual experiment replicates are shown. Other replicates are presented in 

Supplementary File 5. In (i), all replicate data are shown.
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Table 1
Overexpressed signaling proteins

Overexpressed proteins Gene ID UniProt Entry

SRC SRC P12931

PDK1 PDPK1 O15530

AKT1 AKT1 P31749

GSK3β GSK3B P49841

MKK7 MAP2K7 O14733

MKK6 MAP2K6 P52564

p38α MAPK14 Q16539

ERK2 MAPK1 P28482

p90RSK RPS6KA1 Q15418

CRAF RAF1 P04049

JNK1 MAPK8 P45983

p110α PIK3CA P42336

BRAF BRAF P15056

ASK1 MAP3K5 Q99683

p70S6K RPS6KB1 P23443

MEK1 MAP2K1 Q02750

KRAS KRAS P01116

HRAS HRAS P01112

SHP2 PTPN11 Q06124

S6 RPS6 P62753
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Table 2
Relationships with shortest singed directed path length above 3 in the SIGNOR database

Overexpressed POI Target Sign Shortest Signed Directed Path (SIGNOR) Literature Information

SRC p-BTK/ITK 1 6 SRC family kinases phosphorylate BTK48

SHP2 p-S6 -1 5 Known regulation49

ASK1 p-PDK1 1 5 Potential novel relationship

SRC p-PLCγ2 1 5 SRC family kinases activates PLCγ248

ASK1 p-AMPKα 1 4 Potential novel relationship

GSK3β p-SHP2 1 4 Potential novel relationship

p90RSK p-PDK1 1 4 Potential novel relationship

JNK1 p-STAT1 1 4 JNK activates STAT150

JNK1 p-MAPKAPK2 1 4 Potential novel relationship

p110α p-MKK3/6 1 4 Potential novel relationships

HRAS p-SMAD2/3 1 4 Known crosstalk21

ASK1 p-GSK3β 1 4 Potential novel relationships

PDK1 p-S6 -1 4 Overexpression-induced negative regulation

p70S6K p-S6 -1 4 Overexpression-induced negative regulation
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