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Abstract

We construct a recursive Bayesian smoother, termed EpiFilter, for estimating the effective

reproduction number, R, from the incidence of an infectious disease in real time and retro-

spectively. Our approach borrows from Kalman filtering theory, is quick and easy to com-

pute, generalisable, deterministic and unlike many current methods, requires no change-

point or window size assumptions. We model R as a flexible, hidden Markov state process

and exactly solve forward-backward algorithms, to derive R estimates that incorporate all

available incidence information. This unifies and extends two popular methods, EpiEstim,

which considers past incidence, and the Wallinga-Teunis method, which looks forward in

time. We find that this combination of maximising information and minimising assumptions

significantly reduces the bias and variance of R estimates. Moreover, these properties make

EpiFilter more statistically robust in periods of low incidence, where several existing meth-

ods can become destabilised. As a result, EpiFilter offers improved inference of time-varying

transmission patterns that are advantageous for assessing the risk of upcoming waves of

infection or the influence of interventions, in real time and at various spatial scales.

Author summary

Inferring changes in the transmissibility of an infectious disease is crucial for under-

standing and controlling epidemic spread. The effective reproduction number, R, is

widely used to assess transmissibility. R measures the average number of secondary

cases caused by a primary case and has provided insight into many diseases including

COVID-19. An upsurge in R can forewarn of upcoming infections, while suppression of

R can indicate if public health interventions are working. Reliable estimates of temporal

changes in R can contribute important evidence to policymaking. Popular R-inference

methods, while powerful, can struggle when cases are few because data are noisy. This

can limit detection of crucial variations in transmissibility that may occur, for example,

when infections are waning or when analysing transmissibility over fine geographic

scales. In this paper we improve the general reliability of R-estimates and specifically

increase robustness when cases are few. By adapting principles from control engineer-

ing, we formulate EpiFilter, a novel method for inferring R in real time and
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retrospectively. EpiFilter can potentially double the information extracted from epi-

demic time-series (when compared to popular approaches), significantly filtering the

noise within data, to minimise both bias and uncertainty of R-estimates and enhance the

detection of salient change-points in transmissibility.

This is a PLOS Computational Biology Methods paper.

Introduction

During an unfolding epidemic, one of the most commonly available and useful types of sur-

veillance data is the daily (or weekly) number of newly reported cases. This time-series of case

counts, also known as the incidence curve, not only measures the epidemic size and burden,

but also provides information about trends or changes in its transmissibility [1, 2]. These

trends are captured by the time-varying effective or instantaneous reproduction number,

denoted Rs at time s, which defines how the number of secondary cases generated per primary

case varies across the outbreak [3]. Broadly, when Rs> 1 we can expect and prepare for grow-

ing incidence, whereas sustained Rs< 1 signifies that the epidemic is waning and likely to

enter a more controlled phase [4].

Inferring changes in Rs given an observed incidence curve is therefore crucial, both to

understanding transmissibility and to forecasting upcoming case loads, especially for an ongo-

ing epidemic, where it can help inform policymaking and intervention choices or predict

healthcare demands [1, 5]. Real-time and retrospective Rs estimates have been used to charac-

terise rates and patterns of spread in various diseases such as malaria [6] and Ebola virus dis-

ease [7]. Such estimates have proven valuable throughout the COVID-19 pandemic, providing

updating synopses of global transmission [8] and evidencing the impact of past control actions

(e.g., lockdowns and social distancing) [9] or the likelihood of a resurgence in infections when

those controls are relaxed [10].

Most studies that infer Rs or related quantities either apply the Wallinga-Teunis (WT)

method [2] or the Cori et al method, known as EpiEstim [11]. Both methods take complemen-

tary viewpoints on how incidence data inform on transmissibility and hence have diverse use-

cases. The WT method reconstructs the average number of new cases caused by infectious

individuals at s and so requires incidence data beyond time s for its estimate. It computes the

case or cohort reproduction number, Rc
s , which is a function of Rs+j for future times j� 0, and

is suited for retrospective analyses [12]. Alternatively, EpiEstim infers how past infections

propagate to form the incidence observed at s, only requiring data prior to time s. EpiEstim

directly computes instantaneous reproduction numbers, Rs, and is preferred for real-time

investigations [3].

While both methods provide useful and important estimators of transmission, they are not

perfect. Two main limitations exist. First, each suffers from data censoring or edge-effects [3].

Because the WT method is forward-looking i.e., depends on data later than s, its estimates are

right censored when s is close to the last observed time point [12]. In contrast, EpiEstim looks

backward in time and suffers edge-effects when s is near the first observed time point [11].

Estimates in the vicinity of the start and end of the incidence time-series are therefore unreli-

able under EpiEstim and the WT method, respectively. Techniques have been proposed to

limit this unreliability [5, 13], but the problem is intrinsic, and inevitable near the actual start

and end times of an epidemic, where there is necessarily no or sparse data.
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This leads into the second key limitation: inference in periods of small incidence. This pres-

ents a fundamental challenge for any Rs estimation approach and effectively creates additional

edge-effects. When few or no case counts are available to constrain inference, methods are

largely driven by their inherent prior distributions and assumptions. This can result in mis-

leading or unreliable estimates and mask subcritical (i.e., Rs< 1) transmission patterns [11,

15]. Small incidence may occur during sustained periods of interventions, when pathogens

invade new susceptible regions and also naturally arise by division when analyses are per-

formed at smaller spatial scales (e.g., regional or community levels). Understanding how to

best mediate the trade-off between prior assumptions and data when incidence is small is of

both statistical and epidemiological significance.

Following a period of low incidence, two important outcomes are possible: either the epi-

demic continues to exhibit small or zero case counts until it goes extinct, or a resurgence in

infections, also termed a second wave, occurs. Inferring, in real time, which of these conditions

is likely presents a key challenge for infectious disease epidemiology given the information

bottleneck at low incidence [16]. Better inference of transmission under these conditions is

currently considered central to designing data-informed COVID-19 intervention exit or relax-

ation strategies [17]. With many countries facing multiple resurgent waves in this pandemic,

estimating fluctuations in transmission during suspected epidemic troughs could be essential

to achieving sustained control [10].

Here we present and develop a novel method, termed EpiFilter, for reliably estimating Rs in

real time, which ameliorates the above limitations. We take an engineering inspired approach

and construct an exact, recursive and deterministic (i.e., EpiFilter produces the same output

for fixed input data and requires no Monte Carlo steps) inference algorithm that is quick and

easy to compute both across an unfolding outbreak and in retrospect. Our method solves what

is called the smoothing problem in control engineering [14]. This means we compute instanta-

neous reproduction number, Rs, estimates that formally integrate both forward and backward

looking information. This unifies the WT method and EpiEstim, and largely nullifies their

edge-effect issues.

Further, EpiFilter only makes a minimal Markov assumption for Rs, which allows it to

avoid the strong prior window size and change-point assumptions that existing methods may

apply to infer shifts in transmission [9, 11]. Using simulated and empirical data, we demon-

strate that EpiFilter accurately tracks changes in Rs and provides reliable one-step-ahead

incidence predictions. Moreover, we show that EpiFilter is appreciably more robust and statis-

tically efficient than even optimised versions of EpiEstim [13]. We find that EpiFilter does not

easily destabilise when performing real-time inference in periods of low incidence, such as in

lulls between epidemic waves, and that generally (i.e., for outbreaks of any size) it minimises

the mean squared error (MSE) of Rs estimates, while maintaining good coverage and predic-

tive performance.

We illustrate the practical utility of EpiFilter on the COVID-19 incidence curve of New Zea-

land, which exhibits a second wave that was seeded during a prolonged low incidence period.

We find stark improvements in the transmission patterns EpiFilter uncovers. Our method,

which is outlined in Fig 1, provides a straightforward yet formally optimal (in mean squared

error sense [18]) solution to real-time and retrospective instantaneous reproduction number

estimation. Because it couples minimal prior assumptions with maximum information extrac-

tion, it more gracefully handles periods with scarce data. Hopefully our approach will serve as

a useful inference tool for investigating the transmissibility risks of COVID-19 and other epi-

demics. Matlab and R implementations of EpiFilter are available at https://github.com/kpzoo/

EpiFilter and its mechanics are explored and validated in the S1 Appendix.
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Methods

Renewal models and inference problems

We consider an infectious disease epidemic observed over some time period 1� s� t in a

homogeneous and well-mixed population. While epidemics actually spread on dynamic net-

works involving stratified contact structures, homogeneous models can provide useful real-

time insight into key transmission patterns and are more easily fit and verified with routine

surveillance data such as incidence curves [19]. If the incidence or number of newly infected

cases at time s is Is then the set It
1
¼ fI1; I2; . . . Itg is the incidence curve of the epidemic. We

assume that incidence is available on a daily scale so that It
1

is a vector of t daily counts but

weeks or months could be used instead. A common problem in infectious disease is the

inference of the transmissibility of the epidemic given this curve. The renewal model [1, 20]

presents a general and popular framework for investigating this problem and its estimates, in

some instances, can even approximate those from detailed network models [21].

The renewal model posits that epidemic transmissibility, summarised by the effective or

instantaneous reproduction number, Rs, generates the observed incidence as in Eq (1). We

Fig 1. EpiFilter algorithm and relationship to other methods. In the left panels we consider three ways of inferring

the instantaneous or effective reproduction number at time s, Rs, from the incidence curve, It
1

(blue dots). The filtering

solution produces the posterior distribution ps from all data prior to time s. EpiEstim approximates this solution by

using the subset of data in a window of size k into the past. Reverse-filtering considers the complementary part of the

incidence curve, leading to rs, which utilises data beyond s. The WT method, with future window k, approximates this

type of solution. Smoothing uses all information from It
1

to generate qs, which is precisely computed by EpiFilter. Blue

windows show the portions of It
1

that inform on Rs for each of ps, rs and qs while red windows highlight the subsets

used by EpiEstim and the WT method. Double arrows indicate data used for constructing various posterior

distributions, while square arrows pinpoint instances of those distributions at the edges of It
1
. In the right panels we

summarise the construction of EpiFilter. We outline the main assumptions (the model box) and computations (the

algorithm box) necessary for realising EpiFilter, which allow us to obtain the most informative and minimum mean

squared error (MSE) smoothing posterior distribution qs. See the main text for the specific equations employed in our

implementation [14].

https://doi.org/10.1371/journal.pcbi.1009347.g001
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assume incidence counts are Poisson distributed with Pois indicating Poisson noise. Here¼
d

signifies equality in distributions and | means ‘conditioned on’.

PðIs jRs; Is� 1
1
Þ¼

d PoisðLsRsÞ ð1Þ

While Eq (1) does not directly model how susceptible individuals become infected, these

effects are encoded in the reproduction number Rs, which measures the secondary cases gener-

ated per effective primary case at s [3]. The quantity Ls≔
Ps� 1

u¼1
Is� uwu, known as the total

infectiousness, counts how many effective past cases are still infectious at s i.e., it describes the

number of circulating cases that can actively transmit.

The generation time distribution of the epidemic, ws� 1
1
¼ fw1; w2; . . .ws� 1g, controls how

past incidence influences Λs, with wu as the probability that a primary case takes between u − 1

and u days to generate a secondary case [1]. We make the standard assumption that w1
1

is well

approximated by the serial interval distribution of the epidemic of interest, which is known

[11]. The serial interval is the time between symptom onset of a primary and its secondary

case. While onset times are more practically measurable than actual infection times they do

not include asymptomatic or subclinical cases. This approximation can limit inference (for

example, serial intervals often have larger variances than generation times), but methods are

being developed to improve its quality [22].

We focus on inferring the complete set of Rs values, denoted Rt
1
¼ fR1; R2; . . .Rtg, given

the incidence curve It
1

with t as the last recorded time. Estimating Rt
1

is important because

changes in the values of instantaneous reproduction numbers often signify key transitions in

epidemic transmissibility, which might be due to the imposition or relaxation of interventions.

Instantaneous reproduction numbers are also the basis of other transmissibility metrics, such

as cohort reproduction numbers or growth rates [3]. We define three main inference prob-

lems, based on how information in It
1

is recruited to construct every Rs estimate. We represent

these problems in terms of the posterior distribution their solutions induce over possible Rs

values. Estimates are functions of these posteriors.

The first is called filtering, where we sequentially compute the filtering posterior ps ¼ PðRs j Is1Þ
for every s� t [23]. Filtering only uses incidence data up to time s, Is

1
, for inferring Rs. Solving

this problem is fundamental to real-time inference [24]. Filtering solutions are commonly

employed for inferring instantaneous reproduction numbers. The second problem, which

we call reverse-filtering, is the complement of the first. The reverse-filtering posterior

rs ¼ PðRs j ItsÞ, is important for retrospective or backward-looking estimates and infers Rs

from incidence beyond s i.e., Its [25]. Practical Rs calculations do not involve reverse-filtering.

Instead, the information used by rs is implicit to deriving cohort reproduction numbers,

Rc
s ¼

Pt� s
j¼0

Rsþjwjþ1 [12]. Later we show that estimates from EpiEstim and the WT method are

related to the ps and rs distributions, respectively.

The last problem, which is termed smoothing, is our main interest. It asks the question:

how can we construct an Rs, at every s� t, that integrates all available incidence information

from It
1
. To solve this problem we must formulate the smoothing posterior distribution

qs ¼ PðRs j It1Þ [14]. Functions of this posterior would then yield maximally informed instanta-

neous reproduction number estimates (and cohort reproduction number estimates by exten-

sion). Note that ps, rs and qs depend on the choices of state space model, which describes the

dynamics of Rs across time, and observation model, which explains how changes in Rs lead to

trends in observed incidence data [18]. These models encode our assumptions about the epi-

demic of interest and determine how estimates trade off assumptions against data. We next
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explore how posterior distribution selection determines performance, especially when data are

scarce, and examine how EpiEstim and the WT methods fit within this framework.

Inference methods and low incidence

We mostly detail EpiEstim as instantaneous reproduction number, Rs, estimates are the main

focus of this work. EpiEstim assumes that the estimate of Rs at time s depends on a rolling past

window of data, τ(s) = {s, s − 1, . . ., s − k + 1}, of size k [11]. Consequently, at time s, only size k
subsets of the incidence, Iss� kþ1

, and total infectiousness, L
s
s� kþ1

¼ fLs; Ls� 1; . . .Ls� kþ1g, are

considered informative about Rs. Their sums over this window are iτ(s) = ∑u2τ(s) Iu and λτ(s) =

∑u2τ(s) Λu. When k = 1, EpiEstim only uses the most recent case count, Is, (and Λs) to estimate

Rs. While this maximises flexibility, it usually results in over-fitting and so larger windows are

often employed to trade off estimate variance with bias [11, 26].

EpiEstim therefore effectively solves a filtering problem, as discussed in the previous sec-

tion. The filtering posterior distribution produced by EpiEstim is restricted to the informative

window τ(s) and denoted ptðsÞ ¼ PðRs j Iss� kþ1
Þ. This is parametrised by the shape-scale gamma

posterior distribution in Eq (2).

ptðsÞ ¼
d Gamðaþ itðsÞ; ðcþ ltðsÞÞ

� 1
Þ ð2Þ

The posterior pτ(s) results from combining a gamma prior distribution on Rs,

PðRsÞ¼
d Gamða; c� 1Þ, with a Poisson observation likelihood for the incidence (see Eq (1)), as

detailed in [11, 13]. We never explicitly include Λs terms in our notation (e.g., we could write

pτ(s) as PðRs j Iss� kþ1
; L

s
s� kþ1
Þ) since they appear naturally when using Eq (1) and the key differ-

ence among our inference problems relate to Is terms.

The posterior mean estimate from Eq (2) is constructed as

~RtðsÞ ¼
R
ptðsÞ Rs dRs ¼ E½Rs j Iss� kþ1

�, ðaþ itðsÞÞðcþ ltðsÞÞ
� 1

. The variance around this estimate

is (a + iτ(s))(c + λτ(s))
−2. The observation model is given by Eq (1) but the state space model of

EpiEstim is not explicit. However, if Rτ(s) is the assumed average reproduction number in τ(s)
(which is used to estimate Rs) then λτ(s) Rτ(s) = ∑u2τ(s) Λu Ru [13]. Thus, EpiEstim somewhat

incorporates a linear moving average state space model, and assumes that the filtering distribu-

tion ps� pτ(s) by deeming data outside τ(s), Is� k
1

, as effectively uninformative [12]. Since pτ(s)

can be computed sequentially across an ongoing epidemic, EpiEstim provides real-time

inference.

The WT method takes a complementary approach to EpiEstim, computing transmissibility

over a forward-looking window γ(s) = {s, s + 1, . . ., s + k − 1} [2]. Often k = t − s + 1 i.e., the

window extends to the last observed incidence. The WT method uses the observation model of

Eq (1) and has an implicit moving average state model Rγ(s) = ∑u2γ(s) Ru wu−s+1, which leads to

its cohort reproduction number estimates [3]. As this method effectively uses future informa-

tion [12], it implicitly involves approximating the reverse-filtering distribution (see previous

section) as rs � rgðsÞ ¼ PðRs j Isþk� 1
s Þ. We illustrate the information windows employed by the

WT method and EpiEstim, as well as the complete filtering and reverse-filtering windows in

Fig 1. The goodness of the windowed distributions pτ(s) and rγ(s) as approximations to the gen-

eral posterior distributions ps and rs will depend on k and the appropriateness of the state

model underlying each method [13].

While EpiEstim and the WT methods are powerful tools for inferring transmissibility in real-

time and in retrospect, they have two main and related limitations, which necessarily reduce the

reliability of their outputs [12]. First, their performance degrades as s gets close to 1 for EpiEstim

and t for the WT method [11]. These edge or censoring effects correspond, at the extreme, to
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p1 ¼ ptð1Þ ¼ PðR1 j I1Þ and rt ¼ rgðtÞ ¼ PðRt j ItÞ, which are weakly informed posterior distribu-

tions. As a result, at the beginning of the incidence curve EpiEstim can be unreliable (and even

unidentifiable). The WT method suffers similarly at the end of that curve [1] (see Fig 1).

The second limitation occurs in phases of the epidemic where incidence is low for a pro-

longed period of time [17, 26]. In these periods data are sparse and the quality of estimates

depend on how well the method of choice mediates between the little available information

and its inherent assumptions [15]. We illustrate this with EpiEstim, using the mean and vari-

ance of the posterior estimate from Eq (2), ~RtðsÞ, which are defined above. If incidence is small

over the window τ(s) then the sum of incidence, iτ(s), and the total infectiousness λτ(s) shrink,

meaning that the prior hyperparameters, a and c, strongly influence the resulting estimate

mean and variance. This contrasts the data-rich scenario when an epidemic is large, where iτ(s)

and λτ(s) overpower a and c.
Further, should a sequence of n� k zero-incidence days occur, then iτ(s) = 0 and λτ(s)! 0

as n increases, with a rate controlled by the serial interval of the epidemic. Here the shape

parameter of pτ(s) is exactly that of the prior distribution PðRsÞ. As λτ(s) decays, ptðsÞ ! PðRsÞ

(see Eq (2)), Rs becomes statistically unidentifiable from the window of data and inference is

completely prior driven [26, 27]. While lack of data is a fundamental limitation, the point at

which we lose inferential power is not fixed, and depends on the window size, k. Studies that

formally optimised k for estimate reliability, found that small k is needed to infer sharp

changes in transmissibility (e.g., due to lockdowns) [13], indicating that these issues can be

acute. Analogous effects occur in the WT method if there are few incident cases across its for-

ward-looking window γ(s) [12].

These prior-driven scenarios are realistic for epidemics in waning or tail phases, and can

precede either elimination (i.e., epidemic extinction) or resurgence [28]. While some estimate

degradation is guaranteed for any Rs inference method when faced with either edge-effects or

low incidence, robustness can still be improved. Edge-effects can be largely overcome by con-

structing the smoothed posterior distribution for estimating the instantaneous reproduction

number Rs, denoted qs. Solving the smoothing problem melds the advantages of the opposite

looking windows of EpiEstim and the WT method, removing the vulnerability near the ends

of the incidence curve It
1
. This follows as q1 = r1 and qt = pt (see Fig 1). Further, by maximising

the information used for inferring every Rs and by minimising our state model assumptions,

we can ameliorate the impact of low incidence. We next develop a method, termed EpiFilter,

to realise these improvements.

Bayesian (forward) recursive filtering

We reformulate the inference problem of estimating instantaneous reproduction numbers Rs

from past incidence Is
1

as an optimal Markov state filtering problem. Filtering describes a gen-

eral class of engineering problems aimed at optimally, usually in a MSE sense, inferring some

hidden state in real time from noisy observations [14, 18]. Given some functions fs and gs,
which describe the state (Rs in our case) space dynamics and the process of generating noisy

observations (the Is here), the filtering problem tries to construct the posterior distribution ps

(see previous section) [23], which EpiEstim approximates. The conditional mean estimate

~Rs ¼ E½Rs j Is1� leads to the minimum MSE of E½ðRs �
~RsÞ

2
� [23], which depends on all the past

information.

The famed Kalman filter [24] was the genesis of these methods. Here we focus on Bayesian

recursive filters for models with noisy count observations. These generalise the Kalman filter

[23] and have been successfully applied to similar problems in phylodynamics and computa-

tional biology [29–31]. We reconsider our renewal model inference problem within this
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engineering state-observation framework, as described in Eq (3) [14].

Rs ¼ fsðRs� 1; �s� 1Þ; Is ¼ gsðRs; nsÞ ð3Þ

Here Rs is the hidden Markov state that we wish to infer. It dynamically depends on the pre-

vious state Rs−1 and a noise term �s−1 via fs. Observation Is is then elicited due to Rs and a noise

term νs, according to gs [32].

We develop our filter under two very mild assumptions. First, we define some closed space,

R, over which Rs is valid. For a given resolution m, extrema Rmin and Rmax, and grid size δ =

m−1(Rmax − Rmin) then R≔ fRmin; Rmin þ d; . . . ; Rmaxg. This means the instantaneous repro-

duction number Rs must take a discrete value in R, the ith element of which is denoted R½i�.
We formalise this notion in Eq (4a).

Xm

i¼1
PðRs ¼ R½i�Þ ¼ 1; 1 � s � t ð4aÞ

Rs ¼ Rs� 1 þ ðZ
ffiffiffiffiffiffiffiffi
Rs� 1

p
Þ�s� 1 ð4bÞ

This is not restrictive since we can compute our filter for large m if needed and usually we

are only interested in Rs on a coarse scale (e.g., policymakers may only want to know if Rs� 1

or not). Other approaches, which depend on MCMC or related sampling methods (e.g., [9]

and some implementations of EpiEstim), all implicitly assume some discretisation [29]. In Fig

A of the S1 Appendix we show that convergence often occurs at small m.

Second, we propose a linear model for fs, as defined in Eq (4b). There �s−1 is a standard

white noise term i.e., Pð�s� 1Þ¼
d Normð0; 1Þ with Norm signifying a normal distribution and η

as a free parameter. We assume that a noisy linear projection of states over consecutive time-

points provides a good approximation of the state trajectory. Not only is this assumption stan-

dard in engineering [23] and epidemiology [33] but it is also more flexible than the state

model inherent to EpiEstim and the WT method. We scale the noise of this projection by a

fraction, η< 1, of the magnitude of
ffiffiffiffiffiffiffiffi
Rs� 1

p
. This parameter controls the correlation among suc-

cessive instantaneous reproduction numbers (and hence the state noise) but is set to ensure

that Rs is a-priori non-negative.

Our observation model, gs, is implicit and leads to the probability law in Eq (1). As a result,

both our observations and state models are discrete (see Fig 1 for summaries). Because the

state model governing Rs in Eq (4b) is stochastic, Eq (1) actually describes an over-dispersed

(doubly stochastic) Poisson incidence curve. Consequently, η, allows us to partially model

some heterogeneity in transmissibility, and may increase robustness to violations of the well-

mixed assumption inherent to renewal models [21]. We can optimise our choice of η value by

minimising the square error of the one-step-ahead predictions that result from our observa-

tion model [13].

We now define the Bayesian recursive filtering procedure, which is a main contribution of

this work, and can be solved exactly, in real-time and with minimal computational effort. We

adapt general recursive filtering equations from [14, 18, 25, 32], which are valid for various

types of observation and state models, to our renewal model inference problem. The proof of

the equations we employ can be found in these works. While we solve discrete, univariate

problems (our state model is one dimensional), extensions to continuous-time, multivariate

problems also exist [23, 30]. These recursive equations can also be approximately solved using

particle filters [14, 32].

Recursive filtering involves two steps: prediction and correction. The first, given in Eq (5a),

constructs a sequential prior predictive distribution, ps ¼ PðRs j Is� 1
1
Þ. This is informed by past
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incidence data Is� 1
1

and the last state Rs−1. The second step then corrects or updates this prior

prediction into a posterior filtering distribution, ps, which constrains ps using the latest obser-

vation, Is, according to Eq (5b).

ps ¼
Z

PðRsjRs� 1; I
s� 1

1
Þps� 1dRs� 1 ð5aÞ

ps / PðIsjRs; I
s� 1

1
Þps ð5bÞ

Here PðRs jRs� 1; Is� 1
1
Þ ¼

d NormðRs� 1; Z
2Rs� 1Þ is the state model from Eq (4b), PðIs jRs; Is� 1

1
Þ

is the observation model from Eq (1) and the constant of proportionality for Eq (5b) is simply

a normalising factor.

Solving Eq (5) iteratively and simultaneously over the grid of R leads to our novel real-time

estimate of the time-varying effective reproduction number. We initialise this process with a

uniform prior distribution over R for p1 and note that ps and ps are m element vectors that

sum to 1, with ith term corresponding to when Rs ¼ R½i�. Eq (5) forms the first half of EpiFil-

ter, is flexible and can be adapted to many related problems [14]. A key difference between

EpiFilter and the EpiEstim-type methods [11, 13] is that the latter approximate the distribu-

tions PðRs j Is1Þ and PðRs j Is� 1
1
Þ with PðRs j Iss� kþ1

Þ and PðRsÞ, respectively. Estimators based on

these approximations can be suboptimal, especially when data (i.e., cases) are scarce.

Bayesian (backward) recursive smoothing

While Eq (5) provides a complete real-time solution to the filtering problem, it is necessarily

limited at the starting edge of the incidence curve, where past data are sparse or unavailable.

Further, because it does not update past estimates as new data accumulate, it cannot provide

optimal retrospective estimates. Here we develop the second half of EpiFilter, which involves

solving the optimal smoothing problem i.e., computing the smoothing posterior distribution

qs ¼ PðRs j It1Þ, which provides maximally informed estimates of the instantaneous repro-

duction number Rs, given the complete incidence curve It
1
. To our knowledge, smoothing

has not yet been explicitly considered in infectious disease epidemiology (either exactly or

approximately).

We specialise the general methodology from [14, 25] to obtain the recursive smoother

of Eq (6a). This equation uses the filtering distribution, ps ¼ PðRs j Is1Þ and the predictive

distributions psþ1 ¼ PðRsþ1 j Is1Þ, which we obtain from Eq (5). Our state model means that

PðRsþ1 jRs; Is1Þ ¼
d NormðRs; Z

2RsÞ.

qs ¼ ps

Z

PðRsþ1jRs; I
s
1
Þqsþ1 p

� 1

sþ1
dRsþ1 ð6aÞ

qs / rs psPðRsÞ
� 1
; if rs � PðRsjI

t
sþ1
Þ ð6bÞ

We realise Eq (6a) exactly by taking a forward-backward algorithmic approach (this is the

backward pass whereas Eq (5) is the forward one). We solve this equation by noting that qt =

pt and iterating backwards in time to obtain the first smoothing distribution q1. The integrals

become sums over our grid R and distributions are m element vectors. Eq (6a) sequentially

updates our earlier filtering solutions to include future data, forms the second half of EpiFilter

and can also be approximately solved using particle smoothers [14].

This approach neatly links the filtering and smoothing distributions ps and qs. If we assume

that the reverse-filtering distribution rs is reasonably approximated by PðRs j Itsþ1
Þ then we can
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also apply the two-filter smoothing solution of [25] to get Eq (6b). If either future (Itsþ1
) or past

(Is� 1
1

) incidence is uninformative then either rs or ps will reduce to the prior PðRsÞ, leading to

qs/ ps or qs/ rs, respectively. The end and beginning of the epidemic provide important

examples of each of these scenarios. Consequently, Eq (6b) shows how smoothing connects

EpiEstim and the WT methods, and explains why EpiFilter, which can be used for both real-

time and retrospective inference, better overcomes edge-effects and periods of low data.

Further, the smoothed posterior qs yields the conditional mean estimate R̂s ¼ E½Rs j It1�,
which is known to significantly improve on the MSE of the filtered equivalent ~Rs (see previous

section) [23]. While filtering provides the minimum MSE estimator of every instantaneous

reproduction number Rs given past knowledge, smoothing provides the minimum given all

knowledge. This relationship is formal, with filtered and smoothed MSE values mapping to the

amount of mutual information that It
1

provides about Rt
1

[34]. Extracting the maximum infor-

mation from the incidence curve It
1

should engender estimates that are more robust and statis-

tically efficient in periods of low incidence. We summarise the EpiFilter algorithm in Fig 1.

While our main interest is on optimised and rigorous real-time and retrospective estimates

of transmissibility, which are completely defined by the smoothing distribution qs, we may

also want to predict future incidence, for informing epidemic preparedness plans and for vali-

dating past Rs estimates [13, 35]. We compute the filtered one-step-ahead posterior predictive

distribution as in Eq (7) (integrals are over R) [14].

PðIsþ1 j Is1Þ ¼
Z

PðIsþ1 jRs; I
s
1
Þ ps dRs ð7Þ

We assume, as in [36], that PðIsþ1 jRs; Is1Þ ¼
d PoisðLsþ1RsÞ. Replacing ps with qs yields the

smoothed equivalent of Eq (7). We will use Eq (7) to compare EpiFilter against APEestim,

which is the prediction-optimised version of EpiEstim, developed in [13]. Since predictions

depend strongly on ps or qs, optimising these distributions can be important, for example,

when forecasting second waves of infection.

Last, we comment on how we represent uncertainty in our estimates and predictions. Often

we will provide 95% equal tailed Bayesian credible intervals. These are computed directly from

the 2.5th and 97.5th quantiles of the relevant posterior distribution and used to assess perfor-

mance statistics such as coverage of true values.

Results

Improved estimation at low incidence

The reliable estimation of time-varying effective reproduction numbers, Rs, at low incidence,

Is, is a key challenge limiting our understanding of transmission [17]. Periods with small

counts of new cases contain little information and so present necessary statistical difficulties

[26]. Uncovering the transmissibility patterns in these periods can evidence intervention relax-

ation strategies, indicate potential elimination and provide insight into mechanisms of spread

[28, 50]. Here we compare EpiFilter, which allows exact inference over a state grid R, with

EpiEstim and APEestim at these data-poor settings. We use EpiEstim with weekly and monthly

windows. Weekly windows are the default recommendation in [11]. We include monthly ones

as long windows can improve robustness at low incidence [28]. APEestim, developed in [13],

optimises the window choice of EpiEstim to minimise one-step-ahead prediction errors. The

assumptions and choices inherent in estimation methods become important and visible when

data are scarce, and can bias inference or support spurious predictions [15].
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We generate epidemics using the Poisson noise model of Eq (1) under the serial interval

distribution of Ebola virus disease described in [37]. We examine three diverse scenarios in Fig

2. These describe (A) rapidly controlled epidemics (Rs step changes from 2 to 0.5 at s = 100),

(B) small outbreaks with exponentially rising and falling Rs (change-point at s = 30 and rates

of 0.02 and -0.008 per time unit) and (C) medium outbreaks that are initially controlled (Rs

changes from 4 to 0.6 at s = 40) then resurge (Rs rebounds to 2 at s = 80) into large epidemics,

before finally being suppressed (Rs = 0.2 from s = 150). These scenarios are similar to ones

investigated in [12, 28] and describe various epidemic dynamics that culminate in elimination.

We simulate 200 incidence curves for each scenario and apply APEestim (optimal window k�),
EpiEstim (k = 7 and 31) and EpiFilter (state noise η = 0.1) to estimate Rs and sequentially pre-

dict Is (given data up to s − 1) for each curve.

For the first two methods we compute mean one-step-ahead incidence predictions (~I tðsÞ) as

in [13] and instantaneous reproduction number estimates (~RtðsÞ) from Eq (2) with τ(s) delimit-

ing the window times used. We obtain smoothed EpiFilter estimates (R̂s) and filtered predic-

tions (~I s) from Eqs (6) and (7). We could use smoothed predictions (Î s), which implicitly

include data beyond s − 1, to assess fit but as we want to test model adequacy ~I s is more appro-

priate [38]. Our main focus is on real-time performance so we do not investigate the WT

method. See [11, 12] for comparisons of the WT method and EpiEstim. Fig 2A–2C provide

representative single runs (we only show k = 31 for EpiEstim as k = 7 is often similar to APEes-

tim) while Fig 2D presents reproduction number MSE and one-step-ahead predicted inci-

dence MSE (PMSE) distributions from the 200 runs.

In the Methods we showed that since EpiEstim-type methods group data over some win-

dow into the past, they revert to their prior distribution as the total cases in this window

becomes small. During low incidence periods, e.g., when the epidemic is waning, using long

windows makes sense [28]. However, this reduces predictive accuracy as fluctuations in Rs are

underfit. This is the use-case for APEestim, which optimises for prediction. The consequences

of these trade-offs are made clear in Fig 2A–2C where APEestim provides the best one-step-

ahead Is predictions but quickly reverts to its prior (seen as wide credible intervals) when cases

are few. Longer window EpiEstim improves on this destabilisation but cannot track salient

fluctuations in Rs. Fig 2D verifies these trends. APEstim has the smallest PMSE but often worse

MSE than the larger k EpiEstim choices.

Interestingly, EpiFilter is able to jointly optimise both instantaneous reproduction number

tracking and incidence predictions (computed via Eq (7)). In Fig 2A–2C we see that EpiFilter

maintains stable and accurate estimates of Rs and only slowly reverts to its prior (which has the

same support as that of EpiEstim and APEesim). However, unlike long window methods it

does not sacrifice prediction fidelity. The improvement in MSE shown in Fig 2D is stark (the

numerical reduction in MSE when compared to the next best method is on average at least

2-fold and often 10-fold). The PMSE, while larger than that of APEestim (which is optimised

for predictions) is still good. These points are reinforced in Fig 3, which expands on the statis-

tics of scenarios A-C.

There the MSE and PMSE computed over the 200 replicate simulations are plotted with

time. We observe a clear and significant reduction in MSE at most time points (both at low

and large incidence) for EpiFilter, with similar PMSE performance, as compared to EpiEstim

and APEestim. This confirms the widespread benefits of smoothing solutions. Moreover, the

coverage of both the true Rs and Is of EpiFilter (i.e., the probability that Rs or Is is contained

within estimated or predicted 95% equal tailed credible intervals) is more consistent than all

other approaches. We present this in Fig C of the S1 Appendix. Thus, EpiFilter combines the
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advantages of APEestim and long-window EpiEstim, strongly minimises estimation error and,

further, is able to reliably detect transmission change-points automatically.

Improved estimation between epidemic waves

Maintaining robust instantaneous reproduction number, Rs, estimation when incidence, Is,
becomes small is not just statistically important. Two possible outcomes may follow periods of

small Is: either the epidemic goes extinct (elimination occurs, as in the previous section), or an

Fig 2. Small or waning epidemics. We compare reproduction number estimates (~RtðsÞ or R̂s) and one-step-ahead incidence predictions (~I tðsÞ or ~I s)
from APEestim with optimal window k�, EpiEstim with window k and EpiFilter with state noise η. We simulate 200 epidemics with low daily case

numbers or long tails (long sequences of zero cases) using the standard renewal model (Eq (1)) for three scenarios, representative examples of which are

given in A-C. The true Rs and Is are in black. All mean estimates or predictions are in red and blue with 95% credible intervals. APEestim and EpiEstim

use a Gam(1, 2) prior distribution and EpiFilter a grid with m = 2000, Rmin = 0.01 and Rmax = 10. In D we provide statistics of the MSE of these

estimates (relative to Rs) and the PMSE of these predictions (relative to Is) for all 200 runs. We find that EpiFilter is more robust to small incidence

(better uncertainty), whereas the other approaches can quickly decay to their prior distribution. It achieves significantly smaller MSE (2–10 fold

reductions) and comparable PMSE to APEestim (which is optimised for prediction).

https://doi.org/10.1371/journal.pcbi.1009347.g002
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additional wave of infection surfaces (resurgence) e.g., due to imports or unmonitored local

transmission. Predicting which outcome is likely, in real-time, is of global concern as countries

aim to relax interventions during the ongoing COVID-19 pandemic, while also minimising

the risks of further cases [17, 39]. As changes in instantaneous reproduction numbers signal

variations in transmission and hence incidence, reliably identifying and inferring Rs trends in

the trough preceding potential new peaks can be crucial for preparedness, providing evidence

for timely and effective epidemic interventions [10].

Reliable estimation of Rs between epidemic waves depends on the prior assumptions of the

inference method used and on how that method relies on those assumptions when data are

scarce [40, 41]. Here we examine this dependence and investigate cases where resurgence fol-

lows a low-incidence period. As in the above section, we compare EpiFilter (η = 0.1) with

APEestim (optimal window k�) and EpiEstim (weekly, k = 7, and monthly, k = 31, windows)

over 200 simulated epidemics under the serial interval of Ebola virus. We explore scenarios

Fig 3. Temporal statistics of small or waning epidemics. We expand on the results from Fig 2D by decomposing the MSE and one-step-

ahead PMSE statistics across the 200 simulated trajectories for every scenario in Fig 2. We do not consider the k = 31 EpiEstim example

given its poor performance. We present the k = 7 case, which is the generally recommended EpiEstim setting. We observe that EpiFilter

significantly improves on MSE throughout the epidemic trajectory (and not only in periods of low incidence) while maintaining

comparable prediction accuracies. Coverage statistics for these scenarios, which are given in Fig C of the S1 Appendix, confirm that

EpiFilter also consistently contains the true Rs and Is values within its credible intervals.

https://doi.org/10.1371/journal.pcbi.1009347.g003
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depicting (A) epidemics that are initially controlled (Rs falls from 2.5 to 0.5 at s = 70) but

which resurge just as quickly (Rs returns to 2.5 from s = 230), (B) periodic or seasonal trans-

mission (Rs is sinusoidal with magnitude 1.3 ±1.2 and period of 120 time units) and (C) out-

breaks with exponentially rising and then falling transmissibility (change-points at s = 40 and

190 and exponent rates 0.03, -0.015 and 0.02).

These examples are similar to some in [13] and describe diverse epidemics with multiple

peaks and troughs. We provide representative runs of each scenario in A-C and collect MSE

(for Rs) and PMSE (relative to Is) distributions over the 200 runs of every scenario in Fig 4D.

Fig 4. Epidemics with multiple waves. We compare reproduction number estimates (~RtðsÞ or R̂s) and one-step-ahead incidence predictions (~I tðsÞ or ~I s)
from APEestim with optimal window k�, EpiEstim with window k and EpiFilter with state noise η. We simulate 200 epidemics with multiple waves of

infection using the standard renewal model (Eq (1)) for three scenarios, representative examples of which are given in A-C. The true Rs and Is are in

black. All mean estimates or predictions are in red and blue with 95% equal tailed credible intervals. APEestim and EpiEstim use a Gam(1, 2) prior

distribution and EpiFilter a grid with m = 2000, Rmin = 0.01 and Rmax = 10. In D we provide statistics of the MSE of these estimates (relative to Rs) and

the PMSE of these predictions (relative to Is) for all 200 runs. We find EpiFilter is best able to negotiate troughs between epidemic peaks and hence infer

resurging infectious dynamics, achieving significantly smaller MSE (2–10 fold reductions) and comparable PMSE to APEestim (which is optimised for

prediction).

https://doi.org/10.1371/journal.pcbi.1009347.g004
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We also provide these statistics across time in Fig 5. We observe a similar pattern in perfor-

mance among the methods as in our previous analyses of Figs 2 and 3. APEestim is best able to

predict upcoming incidence and achieves the lowest PMSE as expected. While the monthly

window EpiEstim is less useful in these cases (since prior reversion does not occur as often,

though could be an issue for more extended troughs), the weekly window version loses predic-

tive fidelity for minor MSE improvements.

EpiFilter once again combines the advantages of the other approaches. For every scenario

in Fig 4 it provides accurate tracking of changes in Rs with stable credible intervals and a MSE

that is at least 1

2
and sometimes even 1

10
that of the next best method. The improvement in MSE

is clear and maintained at almost every time point of each scenario, regardless of whether inci-

dence is low or high. Concurrently, the incidence PMSE of EpiFilter rivals that of APEestim

and it attains the most consistent coverage of the true Rs and Is values, as shown in Fig D of the

S1 Appendix. EpiFilter is therefore a proficient tool for inferring resurgence. We also find that

the η = 0.1 parameter value seems to be an all-purpose heuristic, meaning that usage of EpiFil-

ter can be simpler than EpiEstim and other window or change-point based methods. The

Fig 5. Temporal statistics of epidemics with multiple waves. We expand on the results from Fig 4D by decomposing the MSE and

one-step-ahead PMSE statistics across the 200 simulated trajectories for every scenario in Fig 4. We do not consider the k = 31

EpiEstim example given its poor performance. We present the k = 7 case, which is the generally recommended EpiEstim setting. We

observe that EpiFilter significantly improves on MSE throughout the resurgent epidemic trajectory (whether incidence is small or

large) while maintaining comparable prediction accuracies. Coverage statistics for these scenarios, which are given in Fig D of the S1

Appendix, confirm that EpiFilter consistently contains the true Rs and Is values within its credible intervals.

https://doi.org/10.1371/journal.pcbi.1009347.g005
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improvements of EpiFilter likely result from its minimal assumptions (see Eq (4)) and its

increased information extraction. We next test our method on empirical data.

COVID-19 in New Zealand and H1N1 influenza in the USA

The previous sections confirmed EpiFilter as a powerful inference and prediction tool, espe-

cially in data-poor conditions, using simulated epidemics. We now confront our method with

empirical data from the 1918 H1N1 influenza pandemic in Baltimore (USA) [42] and the

ongoing COVID-19 pandemic in New Zealand (up to 17 August 2020) [43]. The H1N1 dataset

has been well-studied and so we first use this to benchmark EpiFilter. We clean this dataset by

applying a 5-day moving average filter as recommended in [42]. Previous work [11] analysed

this dataset with EpiEstim and found that sensible instantaneous reproduction number, Rs,

estimates are obtained when a weekly window (k = 7) is applied. However, more recent work,

using APEestim [13], showed that while k = 7 provides stable estimates for this epidemic, it is a

poor predictor of the incidence data. Instead, an optimised window of 2 days (k� = 2) yields

good predictions but the resulting Rs estimates are noisy.

We reproduce the instantaneous reproduction number estimates (~RtðsÞ) and incidence pre-

dictions (~I tðsÞ) from both studies in Fig 6 and compare them against EpiFilter with η = 0.1

(R̂s and ~I s). Top and middle rows of Fig 6 illustrate the aforementioned trade-off between

Fig 6. H1N1 influenza transmission in Baltimore (1918). We compare APEestim (top), EpiEstim with

recommended weekly window (middle) (both with Gam(1, 2) prior distribution) and EpiFilter (with m = 2000, η = 0.1,

Rmin = 0.01 and Rmax = 10) on the H1N1 influenza dataset from [42]. We use a 5-day moving average filter, as in [42],

to ameliorate known sampling biases. Estimates of reproduction numbers, Rs, and corresponding 95% equal tailed

credible intervals are in red. One-step-ahead predictions of incidence, Is, (with 95% credible intervals) are in blue with

the actual incidence in black. We find that EpiFilter combines the benefits of APEestim and EpiEstim, achieving both

good estimates and predictions.

https://doi.org/10.1371/journal.pcbi.1009347.g006
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estimate stability and prediction accuracy. The bottom row confirms the power of EpiFilter.

Our Rs estimates are of comparable stability to those of EpiEstim at k = 7, yet our prediction

fidelity matches that of APEestim. Our improved inference again benefits from using more

information (i.e., the backward pass in Fig 1) and making less restrictive prior assumptions.

We see the latter from the Rs credible intervals over 40� s� 60. There EpiEstim seems over-

confident, and this results in a rigid overestimation of incidence. However, EpiFilter mediates

its estimate uncertainty to a level similar to APEestim.

We explore COVID-19 transmission patterns in New Zealand using incidence data up to

17 August 2020 from [43]. New Zealand presents an insightful case study because officials

combined swift lockdowns with intensive testing to achieve and sustain very low incidence lev-

els that eventually led to local elimination of COVID-19 [44]. However, an upsurge in cases in

early August inspired concerns about a second wave (which led to new interventions and is

why we do not consider data beyond 17 August). Here we investigate the time-varying trans-

mission in New Zealand to see if this uptick suggests that the epidemic was resurfacing in mid-

August. We believe smoothing can confer important inferential advantages in exactly these

types of low incidence scenarios.

We make the common assumptions that case under-reporting is constant [11], which

seems reasonable given the intensive surveillance employed by New Zealand [45]. We ignore

reporting delays, which are known to be small [46] and use the COVID-19 serial interval dis-

tribution from [47]. We do not explicitly distinguish imported from local cases in our analysis.

The latter could bias our study [28, 39] but our focus is on demonstrating differences between

filtering and smoothing on instantaneous reproduction number, Rs, trends and not on provid-

ing detailed Rs estimates during this period. We plot the results of our exploration in Fig 7.

Fig 7. COVID-19 transmission in New Zealand. We compute smoothed and filtered reproduction number estimates, R̂s (red) and ~Rs (blue)

respectively, from the COVID-19 incidence curve for New Zealand (available at [43]) in the left panels. We use EpiFilter with m = 2000, η = 0.1, Rmin =

0.01 and Rmax = 10 with a uniform prior distribution over the grid R. The top of 7A shows conditional mean estimates and 95% credible intervals for R̂s

(red) and ~Rs (blue). Vertical lines indicate the start and end of lockdown, a major intervention that was employed to halt transmission. The additional

‘future’ information used in smoothing has a notable effect. The bottom of 7A provides smoothed one-step-ahead predictions Î s (blue, with 95%

credible intervals) of the actual reported cases Is (black). The inset gives the estimated probability of Rs� 1. We observe a clear trend of subcritical

transmission that eventually seeds a second wave by August. In 7B we compare EpiFilter with EpiEstim (using weekly windows) and APEestim (both

with Gam(1, 2) priors) with all left subfigures presenting Rs estimates and right ones providing filtered Is predictions. We observe that both APEestim

and EpiEstim lead to largely unusable estimates that mask transmission trends, in sharp contrast to EpiFilter.

https://doi.org/10.1371/journal.pcbi.1009347.g007
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We apply EpiFilter and obtain filtered (~Rs, blue) and smoothed (R̂s, red) conditional mean

estimates together with their 95% confidence intervals. These are in the left panels of Fig 7 and

computed from Eqs (5) and (6) respectively. The times of lockdown and release are included

for reference. Interestingly, we see a notable difference in the quality of inference between ~Rs

and R̂s. The former, as expected, is unreliable at the beginning of the incidence curve and fea-

tures wider uncertainty and noisier trends. The smoothed R̂s, by using both forward and back-

ward-looking data largely overcomes these issues and clarifies transmission dynamics. In the

right panels we compare EpiFilter with EpiEstim (weekly windows) and APEestim. The differ-

ence is striking. Neither APEestim nor EpiEstim recovers a clear trend and both are apprecia-

bly worse than even the filtered estimate ~Rs.

Our smoothed analysis suggests that Rs has resurged and supports the re-implementation

of measures around 14 August. We recover suppression of the initial wave in April, likely asso-

ciated with the implementation of key interventions, including lockdown [46]. Following this,

we infer a prolonged period of subcritical transmission, where PðRs � 1Þ � 1. Low and then

zero incidence over this period strikingly destabilises both APEestim and EpiEstim and con-

ceals the rise in Rs that occurs after July. EpiFilter signals this upsurge, which continually

grows until August, where a second wave becomes likely. We also provide one-step-ahead pre-

dictions (which are from the smoothed R̂s hence the notation Î s) and their equal tailed 95%

credible intervals against the reported incidence from [43]. These verify that R̂s reasonably

describes the data (we also present ~I s when comparing methods). We find that PðRs � 1Þ � 0

around July, further supporting this resurgence hypothesis.

While the analyses of the H1N1 and COVID-19 data above illustrate the advantages of Epi-

Filter, these estimates can be further improved. We used case data and not actual infection

times (which relates to the approximation of the generation time by the serial interval distribu-

tion) and did not account for introductions, case ascertainment fractions and reporting delays.

For more practical analyses it may be necessary to first compensate for these biases to obtain

the best possible incidence curve. Methods from [6, 12, 48] can be applied if relevant incuba-

tion period, reporting distributions and contact tracing data are available to diagnose and

correct for these issues. The resulting pre-processed incidence curve can then be input to Epi-

Filter to obtain more realistic Rs estimates.

Discussion

Estimating time-varying trends in the instantaneous or effective reproduction number, Rs, reli-

ably and in real-time is an important and popular problem in infectious disease epidemiology

[5]. As the COVID-19 pandemic has unfolded, the interest in solving this problem has only

elevated with Rs playing a central role both in aiding situational awareness [8] and informing

policymaking [49]. Initially, interest was on understanding how changes in Rs may correlate

with interventions such as lockdowns and social distancing [9, 10]. However, as countries have

entered waning phases of the pandemic and vaccine deployment has begun, focus has shifted

to charactering how existing interventions can be relaxed with minimum risk [50]. The litera-

ture on intervention exit strategies is, however, still in development, and several challenges

remain to modelling transmission.

One key challenge lies in understanding and inferring transmissibility during periods when

the incidence of new cases is small [17]. Such periods may occur under sustained control mea-

sures and necessarily contain limited data, which make inferences difficult. Moreover, it is in

these lulls that information on transmission may be crucial, helping to determine if the

removal of interventions will lead to resurgence or if elimination is realistic by maintaining
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controls [28, 39]. While reproduction numbers are not the only analytic for assessing these

outcomes, they do provide an important real-time diagnostic since upticks in Rs generally

precede elevations in case loads. Unfortunately, many current approaches to estimating Rs

become underpowered, unstable or prior-constrained in these data-limited conditions [11, 26,

50]. These problems are only magnified when finer-scale analyses (where cases are fewer by

division) are of interest (e.g., regional versus national level estimation).

In this paper we re-examined existing methodology for inferring instantaneous reproduc-

tion numbers, Rs, from an engineering perspective. We observed that two of the most useful

and popular inference approaches, EpiEstim [11] and the WT method (this computes cohort

reproduction numbers, which are functions of Rs) [2], only capitalise on a portion of the data

available, deeming either upcoming or past incidence to be informative (see Fig 1) [12]. This

informative portion is directly controlled by prior assumptions on the speed of possible Rs

changes, which are often characterised by a window of size k. Other methods also apply simi-

larly strong change-point or state assumptions on Rs, explicitly linking its variations with spe-

cific dates or events, for example [9, 26]. When data are scarce these assumptions can unduly

control or skew inference.

In control engineering a common problem, known as filtering, involves optimally (in a

MSE sense) estimating hidden Markov states, in real-time, from noisy and uncertain observa-

tions [18]. A related problem termed smoothing provides accompanying and optimal retro-

spective inferences [14]. By reinterpreting Rs as a Markov state Eq (4) observed through a

noisy renewal process (Eq (1)) and defining Rs on a predetermined grid R, we were able to

construct exact filtering (Eq (5)) and smoothing (Eq (6)) solutions. This led to EpiFilter, which

is our central contribution. Generally, filtering and smoothing can be involved and require

sophisticated sequential Monte Carlo techniques [32]. However, because we make only mini-

mal assumptions about Rs, modelling it as a simple diffusion, we were able to solve these prob-

lems exactly and without complex sampling algorithms [29].

Our solutions are computationally simple, often executing in a few minutes (see Fig A of

the S1 Appendix), and deterministic i.e., precisely reproducible given the same data and set-

tings. Our method replaces strong change-point or window size assumptions with one free

parameter, η, which allows us to model some heterogeneity in transmission and sets the corre-

lation among successive Rs values. We find that η = 0.1 serves as a general heuristic, providing

good estimates and automatically detecting change-points and salient Rs dynamics over

diverse scenarios (see Figs 2 and 4, and Fig B in S1 Appendix). This heuristic is statistically jus-

tified by its good one-step-ahead predictive performance and consistent coverage of true simu-

lated values (see Fig C-D of the S1 Appendix) [13].

Importantly, EpiFilter is able to look both forward and backward through the incidence

data, and so maximise the information extracted at every time point [34]. This property means

it combines advantages from both EpiEstim and the WT method (see Fig 1) and largely ame-

liorates their edge-effect issues [12]. These benefits, which also hold at large incidence, make

EpiFilter a useful and robust tool for both real-time and retrospective Rs inference. We con-

firmed the advantages of EpiFilter by comparing it to EpiEstim and APEestim (a prediction

optimised analogue to EpiEstim) on many simulated examples with periods of low incidence

and epidemic resurgences (Figs 2 and 4). Interestingly, we found EpiFilter was able to achieve

significant 2–10 fold reductions in the MSE of Rs estimates without compromising predictive

power or coverage of the true Rs and Is values.

EpiFilter was especially better at negotiating periods of low incidence, offering a graceful

degradation to its prior distribution or assumptions without sacrificing predictive accuracy.

When incidence is low, it can be beneficial to use longer windows with EpiEstim [28]. This

keeps Rs estimates reasonably stable but often leads to poor predictions [13]. APEestim, which
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optimises window size for prediction fidelity, showed that in many of the simulated scenarios

short windows are necessary for describing transmission patterns. Consequently, we have a

trade-off between estimate robustness and prediction accuracy. We found that EpiFilter over-

comes this trade-off, concurrently achieving good estimates and predictions. In doing so, it

revealed or clarified subcritical transmission trends and unmasked important signals of resur-

gence from noisy data in those periods.

We verified the practical utility and performance of EpiFilter on empirical data from the

H1N1 pandemic of 1918 (see Fig 6) and COVID-19 in New Zealand (see Fig 7). In the first,

which is a standard dataset that has been used to test previous Rs methods, we found that Epi-

Filter integrated the benefits of EpiEstim and APEestim to achieve simultaneously good esti-

mates and predictions. A key use-case for EpiFilter is in estimating resurgence during low

incidence. The COVID-19 epidemic in New Zealand featured precisely those dynamics [46].

While EpiEstim and APEestim were destabilised and unable to extract clear transmission

trends, EpiFilter inferred subcritical Rs values and warned of upcoming cases by signalling an

uptick in Rs just before a second wave become apparent. Recent, more involved COVID-19

analyses [39], have confirmed EpiFilter as a useful outbreak analytics tool.

Balancing the assumptions inherent to a model against the data it is applied on, to produce

reliable inference is a non-trivial problem that is still under active investigation in several fields

[15, 40, 41]. EpiFilter, by maximising the information extracted from available incidence data

and minimising its state space model assumptions, appears to strike this balance as an estima-

tor of instantaneous or effective reproduction numbers. Consequently, it performs strongly on

a wide range of problems, including those involving sparse data, where other methods might

struggle. Given its demonstrated advantages, straightforward formulation and theoretical

underpinning, we hope that EpiFilter will prove a useful diagnostic tool for robustly signalling

waves of infection across multiple scales, improving the uncertainty quantification of transmis-

sibility estimates and assessing dynamical transmission patterns, both in real time and retro-

spectively. EpiFilter is freely available at https://github.com/kpzoo/EpiFilter.

Supporting information

S1 Appendix. Validating the mechanics and performance of EpiFilter. This includes analy-

ses of computational complexity, further examples showing performance and calculation of

coverage statistics (additionally supporting Figs 2–5 of the main text). Results are embedded

within Figs A-D of the S1 Appendix. Fig A: EpiFilter mechanics. We examine the computa-

tional complexity (as a function of grid size m on the examples in Figs 6 and 7) and accuracy

(in terms of m and state noise η) of EpiFilter. Fig B: Validation against APEestim. We com-

pare estimates from EpiFilter with optimised ones from APEestim [13] over various general

epidemic scenarios (which may have large or small incidence). Fig C: Coverage statistics of

waning epidemics We provide the probability that the true values of instantaneous reproduc-

tion numbers and incidence from scenarios in Fig 3 are within EpiFilter’s 95% credible inter-

vals. Fig D: Coverage statistics of resurging epidemics. We provide the probability that the

true values of instantaneous reproduction numbers and incidence from scenarios in Fig 5 are

within EpiFilter’s 95% credible intervals.

(PDF)
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